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Abstract—In this paper, Space-Time Block Codes (STBCs) perfect knowledge of CSI and the users do not have CSI. For
with reduced Sphere Decoding Complexity (SDC) are constried  such a set-up, STBC pairs are proposed such that the sphere

for two-user Multiple-Input Multiple-Output (MIMO) fadin g ; . TR
multiple access channels. In this set-up, both the users erqgy ?hecodlng 9, [13] compIeXIt_y 'Z redl:)c?d' The contribugat
identical STBCs and the destination performs sphere decodg € paper may be summarized as below -

for the symbols of the two users. First, we identify the posibns of « In a two-user MIMO fading MAC, when both the users

the zeros in the R matrix arising out of the Q-R decompositiornof . . 2 .

the lattice generator such that (i) the worst case SDC (WSDC) employ identical ,STB_CS from linear complex d§3|gns
and (i) the average SDC (ASDC) are reduced. Then, a set of [11] and the destination performs sphere decoding for

necessary and sufficient conditions on the lattice generatas
provided such that the R matrix has zeros at the identified
positions. Subsequently, explicit constructions of STBCsvhich
results in the reduced ASDC are presented. The rate (in compk

the symbols of the two users, we identify a class of
complex designs which results in a special class of lat-
tice generators called row-column (RC) monomial lattice
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symbols per channel use) of the proposed designs is at masty; generators. (Definitioh]2 in Secti¢d Il). Employing Q-R

where N; denotes the number of transmit antennas for each user. decomposition on RC monomial lattice generators, we
We also show that the class of STBCs from complex orthogonal identify the positions of the zeros in tHe matrix such
designs (other than the Alamouti design) reduce the WSDC but that the worst case sphere decoding complexity (WSDC)
not the ASDC. and/or the average sphere decoding complexity (ASDC)
I. INTRODUCTION AND PRELIMINARIES is reduced (Definitiohl3 and Definitigh 4). Further, a set of

necessary and sufficient conditions on the RC monomial
lattice generators is provided such that Renatrix has
zeros at the identified positions (Theor€in 1 in Section
[m.

We explicitly construct STBCs which reduce the ASDC.
The rate of the proposed STBCs in complex symbols
per channel use per user is at mq@t We also show
that STBCs from the class of complex orthogonal designs
(other than the Alamouti design) only reduce the WSDC
(but not the ASDC). (Sectidn1V).

Two-user Gaussian multiple access channels (MAC) with
finite complex input alphabets and continuous output have
been studied in [1] wherein the impact of the rotation betwee
the alphabets of the two users on the capacity region has
been investigated. Coding schemes for the above channel
model has also been proposed in [2]. Recently, the idea of
rotation between the alphabets of the two users is extended
to MIMO fading MAC in [3] wherein Space-Time Block
Code (STBC) pairs with low Maximum Likelihood (ML)
decoding complexity and information-losslessness ptgper
are proposed for a two-user MIMO (Multiple-Input Multiple-Notations: Throughout the paper, boldface letters and capital
Output) fading MAC (See Fig.l1 for the two-user MIMO-boldface letters are used to represent vectors and matrices
MAC model). In the channel model considered in [3], it isespectively. For a complex matriX, the matricesx*, X7,
assumed that the destination has the perfect knowledgeXdf, |X|, Re(X) and Im(X) denote, respectively, the conjugate,
Channel State Information (CSI) and the two users have ttranspose, conjugate transpose, determinant, real part an
perfect knowledge of only the phase components of themaginary part ofX. For any matrixX, X.(j) denotes thg-th
channels to the destination (referred as CSIT-P). When -CSEblumn of X and [X]; ; denotes the element in theth row
P is not available, STBCs proposed in [3] are not applicabland thej-th column ofX. The tensor product of the matr
For some earlier works on space-time coding for MIMO-MAQwith itself » times is represented by® . Cardinality of the
we refer the reader to [4] and the references therein. Neatie teetS is denoted byS|. Absolute value of a complex number
STBCs with minimum ML decoding complexity have been: is denoted by|z| and F [x] denotes the expectation of the
well studied in the literature for co-located MIMO channelsandom variable:. A circularly symmetric complex Gaussian
[5], [6] and distributed MIMO channels as well [7], [8]. random vectorx with meanu and covariance matrix is

In this paper, a two-user MIMO fading MAC withV; denoted byx ~ CN (u,T'). The inner product of two vectors
antennas at both the users aNgd antennas at the destinationx,y € R”>! is denoted byx,y). The set of all real diagonal
is considered with the assumption that the destination nas tatrices is denoted bf. For any complex vectax € CF*1,
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is p. Throughout the paper, we assume perfect knowledge of
bothH™ andH? at the destination for every codeword use.
We construct STBC pairgCy;,C2) such that the sphere-

| : decoding complexity at the destination is reduced. The STBC
. Ny pair (C1,C2) is specified by presenting a complex design pair
User-1 (X1,X3) and a complex signal set p&if;,S») such thatC;
and(, are generated by making the complex variableX of
. ) andX, take values from the signal se¥s andS; respectively.
j I N |

We only consider the class of linear designs for and Xo

[11]. In particular, identical designs are employed for oot
the users and hence in order to distinguish the two designs,
: Nt% T the complex variables of the design for User-1 and User-
. 2 are denoted by{wll,.%'lg v xlk} and {.%'21,,%22 .o 'ka}

respectively wheré denotes the number of complex variables

User=2 Destination in the design. Since the designs are linear, they can be
represented as shown below,
Fig. 1. Two-user MIMO-MAC model X1 = [A1X1 + BiX] AoXp + Baxj -+ Ay, X1 + By, Xi],
Xo = [A1X2 + B1X5 AoXe + Bax3 -+ An,Xe + BNtX;]
X is given by where

A;, B, e CT*k | i=1to N,

% = [Re(x)” Im(x)7]" € R2F*1. {A:B: | 3

o ] ) is the set of column vector representation matrices [6X of
The remaining content of the paper is organized as followgi.2 and x? = [z11 12 - 2], X5 = |21 2o -+ 2o

In SectiorL), the MIMO-MAC model considered in this papejt the anhove two designs are employed in a two-user MIMO-

is described. In Sectidn]ll, conditions on the lattice gat® \1ac, the vector received at theth antenna of the destination
are presented such that the WSDC and/or ASDC are reduggdys the form

In Section[1M, STBCs with reduced WSDC and reduced

ASDC are presented. Sectigi V constitutes conclusion andy ;) = P (M5 P (25 ;
() =gy XaHe () + 5 X2He7 () + Ne()-
some directions for possible further work. 2N, 2N,

Throughout the paper, it is assumed that the destination
performs sphere decoding for the symbols of User-1 and
User-2 jointly. Therefore, the complex variables of the two

The two-user MIMO-MAC model considered in this papeglesigns need to take values from a lattice constellation and
(see Fig.[Il) consists of two users each equipped wWth hence squard/-QAM constellation is used as the underlying
antennas and a destination equipped With antennas. The constellation in the rest of this paper. Also, the channel
MIMO channels from User-1 to the destination and User-2 gfjuation has to be rewritten in a particular form in real
the destination are respectively denotedHpy)) € CN:xN-  variables which is amenable for sphere decoding. Towaats th
and H® e CN:xNe where [H(l)]i,ja [H(Q)]m‘ ~ CN(0,1) direction, using the column vector representationXefand
Vi=1toN;andj = 1to N,. The two MIMO channels X», for eachj = 1to Ny, Y.(j) can be written in terms of
are assumed to be quasi-static with a coherence time ofitatreal and imaginary components as,
least 7' channel uses. Le€; and C, represent STBCs of b (1) b - (2) ~
dimensionl’x N, employed by User-1 and User-2 respectively. Yc(j) = y/ 57-He "()%1 + /55 He (1)X2 + Ne(d) (2)

. ) 2N, 2N,

If X1 € C; andX, € C, are the codeword matrices transmitted
from User-1 and User-2 simultaneously, the received matiihere the matriceBl. (j) € R27*2k and A" (j) e R2Tx2

II. CHANNEL MODEL

Y € CT* at the destination is given by, are as given in[{3) andl(4) respectively whﬁj) denoting the
P (1) p @ channel from the-th antenna of User-1 to thgth antenna
Y= \/ Q—]Vtle T/ 2—]\7tx2H +N, () of the destination andtfj) denoting the channel from the

) - ) ~_ th antenna of User-2 to th¢th antenna of the destination.
whereN € C™*"+ is the additive noise at the destinatiorzquation [2) can be written as

such that each component Kfis distributed a€’V (0,1). In
i i 5. [P [l .\ ~2,. P
this model, we have assumgd equal average power constraint Yo(j) = i [HC(J) HC(J)} z+ N.(4)
for both the users. Assuming [[Xl]t,i [X1] = 1 and ¢
E [[Xz]m [X2]:.,z} —1forallt=1toT andi=1to N, the wherez = [(%))7 (%)7]" € R**. Juxtaposing¥.(j) for
average receive signal to noise ratio (SNR) at the destimati@ll 7 = 1 to IV, one below the other, the channel equation is

"
t,i



A () = & l Re(h{")A;) + Re(h{")B;) —Im(hE;}An + Im(hﬁ-;,? B:) ] @)
c = (1) (1) (1 (1
Pt Im(hi_’j A;) + Im(hi_’j B;) Re(hiyj A — Re(hm. B;)
A®() = & [ Re(h\”)A;) + Re(h{")B;) —Im(h{7)A;) + |m(h§_‘>§? B:) ] @
c - (2) (2) (2) (2
| ImaDA) +Im(n2B,)  Re(h®A;) — Re(h(*)B,)
given by form iRe(hz(.,lj)), ilm(hz(.,lj)) Vi, j.
_|r o (p.2). The entries in the lagtk columns ofM are of the
=,/=Mz +n 5
Y=y ®) form +Re(h), £Im(h(>)) ¥ i, ;.

« (p.3). Every column oM has all the2N, N, variables
appearing exactly once.

The above three properties imply that for each= 1 to

. . . T 2k, C; is both row and column monomial. The class of lattice
n= {(Nc(l))T (Nc(2))T"'(Nc(Nr))T] € R#Nxd generators with the above set of conditions are referred as
row-column monomial lattice generators which are formally

and - @) defined as below.
H. (1)  H (1) Definition 2: A lattice generatorM is said to be row-
H(l)(g) H 2)(2) column monomial (RC monomial) if the column vector repre-
M= ‘. ‘ € R¥TNrxak, (6) sentation matrices dfl are both row and column monomial.
~(1)' N(Q)' Note that the property (p.3) implies that the norm of the
He "(N:) Ho (M) first 2k columns ofM are equal. Similarly, the norm of the

The matrixM can be used as the lattice generator for carryigSt 2+ columns ofM are equal.
out sphere decoding algorithm. Since the variables of the

two designs take values from an identical squa’feQAM
constellation, each component af takes value from the
corresponding/M-PAM signal set. FoM to have rankik,
the inequality2T'N,. > 4k must hold. Hence, throughout the
paper, we assumd/, = [2:]. Viewing the lattice generator APPlying Q-R decomposition oM and multiplyingQ” on

M as a real linear design in the variables(l%é}), Im(hz(.,lj)), both the sides of the channel equation[ih (5), we have

Re(h(.z.)) and In(h(.z.)), M can also be written using the column o 14 =
i, i,] y= —Rz+n (7)
vector representation as shown below, 2N

IIl. STRUCTURE ONM FOR REDUCTION IN THE DECODING
COMPLEXITY

M = [Clh(l) CQh(l)..~C2kh(1) C1h(2) Czh(Q) CQkh(Q):| Wherey _ QTy c ]RQTNer’ﬁ — QTn c R2TN-x1 gng
R € R?I'N-x4k Since we have assumel, = [2%], only
where the first 4k rows ofR have non-zero entries and hengeas
essentially alk x 1 vector ancR is essentially a square matrix
h — [(H’il)(l))T (H‘il)(Q))T . (H‘il)(Nr))T]T € R2NeNr X1 (neglecting the laskT' N, — 4k rows) given by,

| Rii Rip
R=[ 5 R |

with Ry 1,Ry2,Ra2 € R?*2k gych thatR; ; and R, are
and{Ci € R2TN-2NeN- | — ] to Qk} is the set of column upper triangular matrices. The ML decoding metric is given
vector representation matrices bf. Since the design em- by

ployed for both the users .is the same, observe that the set of 7 = argmin ||y — /LRZHQ. 8)
column vector representation matrices for the fisicolumns z 2N,

of M and the lasek columns ofM are the same. The following proposition shows that the entries in the sub-

Definition 1: [7] A matrix is said to be column (row) matrix R, , cannot be made zero when identical STBCs are
monomial, if there is at most one non-zero entry in eveRmployed in the two-user MIMO-MAC set-up.

column (row) of it. Proposition 1: When identical STBCs are employed in a

In this paper, we design a special class of complex desiggg,-user MIMO-MAGC, it is not possible to have zero entries
such that the resultiniyl has the following properties: in the matrixR .

n® = () H @) A )T] e re,

e (p.1). The entries in the fir&k columns ofM are of the Proof: The matrixR arising out of the Q-R decomposi-



tion of M is of the form, where .
<e17cl> <el7c2> <e1,C4k> yl = [y(l) y(2) y(2k)]
0 (€2,C2) (€2, Car) and
R = 0 0 (€3, Car) 9) Vo = [V(2k +1) y(2k +2)---y(4k)]" .
: 5 K : Note that each component &§ takes value from/M-PAM
0 0 0 (e, Car) and hence the vectot, totally takesM* distinct values. For
wherec; denotes the-th column ofM, e, = Iﬂ?\ with ri\ particular choice oks, sayXs = a, the metric for decoding
‘ X1 IS
i—1 ~a « R 7 112 Sa2 11
UiZCi—Z<ej,Ci>ej Vi=1---4k. (10) y1 — 2N, 1% [7 + (Y2l (11)
j=1
where
Note that forl < m < 2k and2k +1 <n <4k, [R],,  is

« Q
. V¢ =V, — —R d~a =V, — —R .
given by, Yi=Y1—4 9N, r2aandy; =ys; — 4/ N, 2,28
SinceR;; € D, for eachi = 1 to 2k, thei-th real variable of
X1 can be decoded independent of the other real variables as

yi(1)
1,]

STBC employed in a two-user MIMO-MAC, the matriX; 2 Ruali;
cannot have zero entries unless there exists at least onefpaivhere Q(.) denotes the nearest integer quantizer operation
columns (sayc; andc;) in the first2k columns ofM which  whose complexity is independent of the size of the con-
are orthogonal. B stellation. Therefore, the worst case decoding complesity
From the above proposition, constructing STBCs which(172*). Note that, the worst case complexity of the decoder
give rise to botlR; 1 € D andRz > € D is the best thing that remains to beO(M?*) irrespective of whetheR, » € D or
can be done towards constructing STBCs with reduced SDtherwise. However, wheR, » € D, the ASDC is reduced as
Hence, we study STBCs from a special class of compléxliows: WhenR,, € D, in choosing a particular value for
designs which results iM (through [8)) such that the Q-Rx,, 2k independent sorting operations are needed where each
decomposition ofM gives rise to theR matrix with (i) sorting operation involves sorting af M integers based on
Ri1 € DandRgz € D and (i) Ry1 € D andRq2 ¢ D a constraint function. However, in the worst caseRif» is
(such classes of STBCs are formally defined below). not diagonal (with all the upper diagonal entriesRaf; being
nonzero), then there needs to be a single sorting operation o
Definition 3: For a two-user MIMO-MAC, an STBC is said A% vectors of lengtt2k based on a constraint function. Thus,
to have reduced average SDC (ASDC), if the correspondingth R > € D, there is a reduction in the sorting complexity
R matrix is such that botfR; 1, Rz € D. which is significant especially whel/ is large.

(R, = (B, Cn).

Also, note that the variables in the firdk columns ofM do
not appear in the lastk columns ofM. In particular,e,, is
a vector in the variables RQES}), Im(hgfj?) whereasc,, is a

vector in the variables sz(.i.)), Im(h(Q?). Therefore, for any X (1) = Q

o B. Necessary and sufficient conditions nsuch thatR; 1,
Definition 4: For a two-user MIMO-MAC, an STBC Ryo €D ’

is said to have reduced worst-case SDC (WSDC), if the i _ .
In this subsection, a set of necessary and sufficient con-

correspondingR matrix is such that onlyR,; € D (but , / :
Ro ¢ D). ditions on the matrix se{C;,Cs---Csy} is provided such
' that bothR; ; andR; > are diagonal matrices. The following

In the next subsection, we quantify the reduction in th%efinition is important towards proving the necessary and
' fficient conditions.

decodi lexity when botR dR di | suTicient y .
ecoding compiexity When botRy,1 and iRz 2 are diagonal “nofinition 5: A k-group partition of the index Sefy

matrices. {1,2---2k} consists ofk disjoint subsetsg, Gs, - - - Gi, such
that|G,| =2V i=1tok.

Theorem 1:The Q-R decomposition of results in aR
For the decoder given byl(8), we quantify the reduction ijatrix with Ri1,R.0 € D if and only if the matrix set

the decoding complexity wheR, 1,Rz2 € D. For pointto (¢, C,...C,,} satisfies the following conditions:
point co-located MIMO channels, the SDC has been reducedl) Fori # j, the matrices in the s€C;, C, - - - Co;,} must

in [12], [13] and [14] by making certain entries & matrix
take zero values. Sinde is upper triangular, the ML decoding
metric in [8) can be split as

(@] @]
V1 — /570 (R1,1X1 + Ri2%0)|* + |V — 1/ 577 R2,2%e |
I 2Nt( 1,1X1 + R 2%2)[[* + ¥ 2N, 2,2%2||

A. Reduction in the decoding complexity whn,, Ry » € D

be Hurwitz-Radon orthogonal, i.e.,
C/C; +CIC;=0un,n,.

2) For a fixedl,m € Iy, such thatl # m, there
exists ak-group partition of Z,, given by PL™ =



{givm,gém, > ~g,l;m} such that Note that for a fixedn, the matricesC},C; and C!,C; do
not have nonzero entries at the same position for a# ;.

ClTCgi,m(l) = Cﬁcgg,m@) and Similarly, for a fixed !, the matricesC{ C; and C/'C; do
T T ) not have nonzero entries at the same position for a# ;.
Cmcgﬁ””(l) =-C Cgﬁ””(z) Vi=110k. Hence, for a givenl,m, there exists ak-group partition

m lm I,m I,m .
Proof: The 'if’ part can be proved by substituting the”" "™ = {gl Gy Gy } of the index sefZ,; such that
conditions 1) and 2) (given in the statement of the theorem)

T _ T
in R which is straightforward. Hence, we prove the 'only if’ C Cgﬁ’m(l) - Cmcgﬁ’m@) and
part of the theorem. Sind®, ; € D, (e;,c;) =0 forall i # j cTc — _cTc Vi—1tok
such thatl < i,j < 2k. This implies(c;, c;) = 0 for all i # j megT (L) I ANORE '
such thatl <i,j < 2k. Therefore, the firsek columns ofM  This completes the proof. [ |
are necessarily orthogonal to each other and hence In the following section, we present explicit constructaf

Cl-TCj n CJTCi — Oy, for alli £ j. STBCs which have (i) reduced ASDC and (ii) reduced WSDC.
IV. CODE CONSTRUCTIONS
This proves the condition 1) of the theorem (This condition

reduces the WSDC). In the rest of the proof, the condition in I this section, complex designs which results in Re
2) is proved. matrix with (i) Ry 1,R22 € D and (i) only Ry; € D
¢ are presented. Henceforth, we denote a complex design for

The structure of the matriRs » is given in [I2) (shown a ' - ;
the top of the next page). Sin€.» € D, we havele;, C,,) = N; antennas ink variables asX (IVy, k). First, we construct

0 for I # m such thak + 1 < I, m < 4k. This implies complex designs which resultsRy 1, R2 2 € D. Construction
- - of these designs has been divided in to four cases depending
(uj, ) = 0. on the values ofV; andk.

Case 1: N, = 2a andk = 2b (a andb are positive integers):
In this case, the design is constructed in the following Pste
o Step (i) : Let(2,, represent & x 2 Alamouti design
(U, Cm) = (€1, Cm) — . (&, i) (€, Cm) = 0. in complex variableszs,, 11, Tomio for eachm =

=1 0,1,---b—1 as given below,

Using [10) in the above equation, we have
1

1

Since C/C; + C/C; = Oyy,n, for all i # j, we have

Tom+1  — T30
(c;,¢,n) = 0 and hence Q,, = mt

Tomt2  Timyl

= o Step (ii) : Using(,,, construct a2a x 2a matrix X,,

;<ej,01><ej,%> =0. given by
J]=
. - ®R(a—1) o
As [ takes value fron2k + 1 to 4k, the above summation can X = Qm @15 ( for eachm = 0,1,---b — 1.
be split as « Step (iii) : UsingQ,,,, X (Ny, k) is constructed as
2k -1 T
S (e aecn) + Y. (6. C){e)Cn) = 0. X(Nek) = [Xo Xi - Xyq]

Case 2: N, = 2a andk = 2b + 1 : In this case X (N, k)

. . is constructed in two steps as given below.
SinceR D, each term in the second summand of the . . .
22 € « Step (i) : ConstrucK (N, 2b) as given in CasEl1.
T

above equation is individually zero and hence we have
, . Step (ii) : X (N, k) = [x (N, 2b)" beHth]
Z<ej’cl><ej’%> —0. Case 3: N, = 2a+ 1 andk = 2b : In this caseX (N, k)
are constructed in the following 2 steps.
d * Step (i) : ConstrucK (N; + 2, k) as given in Casgl1.

o Step (ii) : Drop the last column o (N; + 2, k).

Case 4: N, = 2a+1 andk = 2b+1 : In this caseX (N, k)
are constructed in the following 2 steps.
Z<Cj’cl><cj’c’”> =0 « Step (i) : ConstrucX (N, + 2, k) as given in CasEl2.
=t « Step (i) : Drop the last column ok (N; + 2, k).

j=1 Jj=2k+1

Jj=1

As the first2k columns ofM are orthogonal to each other an
have equal norms, we have

2k

As 2k +1 < I,m < 4k, we havec, = Cy/h®?, ¢, =

Ch® andc; = C;h) wherel’ = [ modulo 2k and  The rate (in complex symbols per channel use) of the above

m’ = m modulo2k and hence proposed designs is at moﬁg. Therefore, whenever STBCs
ok with minimum ASDC are desired (with botR; ; € D and
Z((h@))TCijh(l))((h(Q))TCﬁth(l)) —=0. Rs2 € D), there is a substantial loss in the rate of transmission

J=1 especially whenN; > 2. However, if reduction of WSDC



(€2k+1,Cokt1)  (€2kt1,Cont2) - (€2k41,Cak)

0 (€2k42,Cont2) -+ (€2, Cun)
Ry = 0 0 “+ (B2k+3, Cak) (12)
0 0 0 (e, Car)

is targeted, then constructing complex designs which lead t « We have studied STBCs which result irRamatrix such
only Ry ; € D is sufficient. The following theorem states that  thatR; ; andR; are diagonal matrices. Construction of
the class of complex orthogonal designs [5], [6] (other than STBCs which results in more number of non-zeros in the
Alamouti design) results in the class of RC monomial lattice  upper-diagonal entries d?; ; andRz 2 is an interesting
generators which in-turn lead 8, ; € D (butRz 5 ¢ D). direction for future work. Such STBCs may have higher

Theorem 2:For N, > 2, STBCs from square complex ASDC and/or higher WSDC but may lead to larger rates.
orthogonal designs (CODs) reduce the WSDC for a two-user
MIMO-MAC.

Proof: We have to show that STBCs from the class of This work was partly supported by the DRDO-IISc Program
CODs (other than Alamouti design) results in a class of ReN Advanced Research in Mathematical Engineering through
monomial lattice generators which in-turn leadRg; € D @ research grant to B.S. Rajan.
but Ry o ¢ D. It is straightforward to verify that the column
vector representation matricé§; | ¢ = 1 to 2k} of M arising

: - " [1] J. Harshan and B. Sundar Rajan, "Finite Signal-set Oapaf Two-
from CODs satisfy the sufficient condition 1) of Theorgin 1. user Gaussian Multiple Access Channel” in the proceedinfg$EBE

Hence, the corresponding classimatrices satisfR; ;1 € D. International Symposium on Information Theory, (ISIT 200Bronto,
In the rest of this paragraph, we only provide a sketch of Canada, July 06-11, 2008. pp. 1203 - 1207.

; s o ] J. Harshan and B. Sundar Rajan, "Coding for Two-User GiansMAC
the proof to show that the mamcéé:z | i=1to 2k} arising with PSK and PAM Signal Sets”, in the proceeding$EEE International

from CODs do not satisfy the sufficient conditions in 2) of symposium on Information Theory, (ISIT 2008%oul, South Korea, June
Theorem[L (this is to prove thd,, ¢ D). Recall that a 28- July 03, 2009, pp. 1859-1863.

: : _ oa [3] J. Harshan and B. Sundar Rajan, "Coding for two-user S&86@ MIMO
CODina+1 Complex variables forv, = 2¢ antennas can be multiple access channels”, available online at arXiv:00Q&&v3 [cs.IT]

constructed in a recursive fashion from a CODuiwvariables [4] M.E. Gartner and H. Bolcskei, "Multiuser space-timeffuency code
for N, = 2°~! antennas for alb > 2 (See Section lll. D design”, in the proceedings ¢EEE International Symposium on Infor-

; : : : mation Theory, (ISIT 2006pp.2819-2823.
In [6]) We use the recursive construction technlque of CO ﬁ V. Tarokh, H. Jafarkhani and A. R. Calderbank, "Spaceetiohock codes

to prove our result. First, it can be shown that the matrices from orthogonal designsIEEE Transactions on Information thegry
{C; | i =1 to 6} arising from the COD forV; = 4 antennas vol.45, no.05, 1999, pp.1456-1467.
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