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Abstract— In this paper, Space-Time Block Codes (STBCs)
with reduced Sphere Decoding Complexity (SDC) are constructed
for two-user Multiple-Input Multiple-Output (MIMO) fadin g
multiple access channels. In this set-up, both the users employ
identical STBCs and the destination performs sphere decoding
for the symbols of the two users. First, we identify the positions of
the zeros in the R matrix arising out of the Q-R decompositionof
the lattice generator such that (i) the worst case SDC (WSDC)
and (ii) the average SDC (ASDC) are reduced. Then, a set of
necessary and sufficient conditions on the lattice generator is
provided such that the R matrix has zeros at the identified
positions. Subsequently, explicit constructions of STBCswhich
results in the reduced ASDC are presented. The rate (in complex
symbols per channel use) of the proposed designs is at most2/Nt

whereNt denotes the number of transmit antennas for each user.
We also show that the class of STBCs from complex orthogonal
designs (other than the Alamouti design) reduce the WSDC but
not the ASDC.

I. I NTRODUCTION AND PRELIMINARIES

Two-user Gaussian multiple access channels (MAC) with
finite complex input alphabets and continuous output have
been studied in [1] wherein the impact of the rotation between
the alphabets of the two users on the capacity region has
been investigated. Coding schemes for the above channel
model has also been proposed in [2]. Recently, the idea of
rotation between the alphabets of the two users is extended
to MIMO fading MAC in [3] wherein Space-Time Block
Code (STBC) pairs with low Maximum Likelihood (ML)
decoding complexity and information-losslessness property
are proposed for a two-user MIMO (Multiple-Input Multiple-
Output) fading MAC (See Fig. 1 for the two-user MIMO-
MAC model). In the channel model considered in [3], it is
assumed that the destination has the perfect knowledge of
Channel State Information (CSI) and the two users have the
perfect knowledge of only the phase components of their
channels to the destination (referred as CSIT-P). When CSIT-
P is not available, STBCs proposed in [3] are not applicable.
For some earlier works on space-time coding for MIMO-MAC,
we refer the reader to [4] and the references therein. Note that
STBCs with minimum ML decoding complexity have been
well studied in the literature for co-located MIMO channels
[5], [6] and distributed MIMO channels as well [7], [8].

In this paper, a two-user MIMO fading MAC withNt

antennas at both the users andNr antennas at the destination
is considered with the assumption that the destination has the

perfect knowledge of CSI and the users do not have CSI. For
such a set-up, STBC pairs are proposed such that the sphere
decoding [9], [10] complexity is reduced. The contributions of
the paper may be summarized as below :

• In a two-user MIMO fading MAC, when both the users
employ identical STBCs from linear complex designs
[11] and the destination performs sphere decoding for
the symbols of the two users, we identify a class of
complex designs which results in a special class of lat-
tice generators called row-column (RC) monomial lattice
generators. (Definition 2 in Section II). Employing Q-R
decomposition on RC monomial lattice generators, we
identify the positions of the zeros in theR matrix such
that the worst case sphere decoding complexity (WSDC)
and/or the average sphere decoding complexity (ASDC)
is reduced (Definition 3 and Definition 4). Further, a set of
necessary and sufficient conditions on the RC monomial
lattice generators is provided such that theR matrix has
zeros at the identified positions (Theorem 1 in Section
III).

• We explicitly construct STBCs which reduce the ASDC.
The rate of the proposed STBCs in complex symbols
per channel use per user is at most2

Nt
. We also show

that STBCs from the class of complex orthogonal designs
(other than the Alamouti design) only reduce the WSDC
(but not the ASDC). (Section IV).

Notations:Throughout the paper, boldface letters and capital
boldface letters are used to represent vectors and matrices
respectively. For a complex matrixX, the matricesX∗, XT ,
XH , |X|, Re(X) and Im(X) denote, respectively, the conjugate,
transpose, conjugate transpose, determinant, real part and
imaginary part ofX. For any matrixX, Xc(j) denotes thej-th
column of X and [X]i,j denotes the element in thei-th row
and thej-th column ofX. The tensor product of the matrixX
with itself r times is represented byX⊗r

. Cardinality of the
setS is denoted by|S|. Absolute value of a complex number
x is denoted by|x| andE [x] denotes the expectation of the
random variablex. A circularly symmetric complex Gaussian
random vector,x with meanµ and covariance matrixΓ is
denoted byx ∼ CN (µ,Γ). The inner product of two vectors
x, y ∈ RT×1 is denoted by〈x, y〉. The set of all real diagonal
matrices is denoted byD. For any complex vectorx ∈ Ck×1,
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Fig. 1. Two-user MIMO-MAC model

~x is given by

~x =
[

Re(x)T Im(x)T
]T ∈ R

2k×1.

The remaining content of the paper is organized as follows:
In Section II, the MIMO-MAC model considered in this paper
is described. In Section III, conditions on the lattice generator
are presented such that the WSDC and/or ASDC are reduced.
In Section IV, STBCs with reduced WSDC and reduced
ASDC are presented. Section V constitutes conclusion and
some directions for possible further work.

II. CHANNEL MODEL

The two-user MIMO-MAC model considered in this paper
(see Fig. 1) consists of two users each equipped withNt

antennas and a destination equipped withNr antennas. The
MIMO channels from User-1 to the destination and User-2 to
the destination are respectively denoted byH(1) ∈ CNt×Nr

and H(2) ∈ CNt×Nr where [H(1)]i,j , [H(2)]i,j ∼ CN (0, 1)
∀ i = 1 to Nt andj = 1 to Nr. The two MIMO channels
are assumed to be quasi-static with a coherence time of at
least T channel uses. LetC1 and C2 represent STBCs of
dimensionT×Nt employed by User-1 and User-2 respectively.
If X1 ∈ C1 andX2 ∈ C2 are the codeword matrices transmitted
from User-1 and User-2 simultaneously, the received matrix
Y ∈ CT×Nr at the destination is given by,

Y =

√

ρ

2Nt

X1H(1) +

√

ρ

2Nt

X2H(2) + N, (1)

where N ∈ CT×Nr is the additive noise at the destination
such that each component ofN is distributed asCN (0, 1). In
this model, we have assumed equal average power constraint
for both the users. AssumingE

[

[X1]t,i [X1]
∗
t,i

]

= 1 and

E
[

[X2]t,i [X2]
∗
t,i

]

= 1 for all t = 1 to T andi = 1 to Nt, the
average receive signal to noise ratio (SNR) at the destination

is ρ. Throughout the paper, we assume perfect knowledge of
bothH(1) andH(2) at the destination for every codeword use.

We construct STBC pairs(C1, C2) such that the sphere-
decoding complexity at the destination is reduced. The STBC
pair (C1, C2) is specified by presenting a complex design pair
(X1,X2) and a complex signal set pair(S1,S2) such thatC1
andC2 are generated by making the complex variables ofX1

andX2 take values from the signal setsS1 andS2 respectively.
We only consider the class of linear designs forX1 and X2

[11]. In particular, identical designs are employed for both
the users and hence in order to distinguish the two designs,
the complex variables of the design for User-1 and User-
2 are denoted by{x11, x12 · · ·x1k} and {x21, x22 · · ·x2k}
respectively wherek denotes the number of complex variables
in the design. Since the designs are linear, they can be
represented as shown below,

X1 = [A1x1 + B1x∗1 A2x1 + B2x∗1 · · · ANt
x1 + BNt

x∗1] ,

X2 = [A1x2 + B1x∗2 A2x2 + B2x∗2 · · · ANt
x2 + BNt

x∗2]

where
{

Ai,Bi ∈ C
T×k | i = 1 to Nt

}

is the set of column vector representation matrices [6] ofX1,
X2 and xT1 = [x11 x12 · · · x1k], xT2 = [x21 x22 · · · x2k].
If the above two designs are employed in a two-user MIMO-
MAC, the vector received at thej-th antenna of the destination
is of the form,

Yc(j) =

√

ρ

2Nt

X1H(1)
c (j) +

√

ρ

2Nt

X2H(2)
c (j) + Nc(j).

Throughout the paper, it is assumed that the destination
performs sphere decoding for the symbols of User-1 and
User-2 jointly. Therefore, the complex variables of the two
designs need to take values from a lattice constellation and
hence squareM -QAM constellation is used as the underlying
constellation in the rest of this paper. Also, the channel
equation has to be rewritten in a particular form in real
variables which is amenable for sphere decoding. Towards that
direction, using the column vector representations ofX1 and
X2, for eachj = 1 to Nr, Yc(j) can be written in terms of
its real and imaginary components as,

~Yc(j) =

√

ρ

2Nt

H̃
(1)

c (j)~x1 +
√

ρ

2Nt

H̃
(2)

c (j)~x2 + ~Nc(j) (2)

where the matrices̃H
(1)

c (j) ∈ R2T×2k andH̃
(2)

c (j) ∈ R2T×2k

are as given in (3) and (4) respectively withh(1)
i,j denoting the

channel from thei-th antenna of User-1 to thej-th antenna
of the destination andh(2)

i,j denoting the channel from thei-
th antenna of User-2 to thej-th antenna of the destination.
Equation (2) can be written as

~Yc(j) =

√

ρ

2Nt

[

H̃
1

c(j) H̃
2

c(j)
]

z+ ~Nc(j)

wherez =
[

(~x1)T (~x2)T
]T ∈ R4k×1. Juxtaposing~Yc(j) for

all j = 1 to Nr one below the other, the channel equation is



H̃
(1)

c (j) =

Nt
∑

i=1

[

Re(h(1)
i,j Ai) + Re(h(1)

i,j Bi) −Im(h
(1)
i,j Ai) + Im(h

(1)
i,j Bi)

Im(h
(1)
i,j Ai) + Im(h

(1)
i,j Bi) Re(h(1)

i,j Ai)− Re(h(1)
i,j Bi)

]

(3)

H̃
(2)

c (j) =

Nt
∑

i=1

[

Re(h(2)
i,j Ai) + Re(h(2)

i,j Bi) −Im(h
(2)
i,j Ai) + Im(h

(2)
i,j Bi)

Im(h
(2)
i,j Ai) + Im(h

(2)
i,j Bi) Re(h(2)

i,j Ai)− Re(h(2)
i,j Bi)

]

(4)

given by

y =

√

ρ

2Nt

Mz + n (5)

where

y =
[

(~Yc(1))
T (~Yc(2))

T · · · (~Yc(Nr))
T
]T

∈ R
2TNr×1,

n =
[

(~Nc(1))
T (~Nc(2))

T · · · (~Nc(Nr))
T
]T

∈ R
2TNr×1

and

M =















H̃
(1)

c (1) H̃
(2)

c (1)

H̃
(1)

c (2) H̃
(2)

c (2)
...

...

H̃
(1)

c (Nr) H̃
(2)

c (Nr)















∈ R
2TNr×4k. (6)

The matrixM can be used as the lattice generator for carrying
out sphere decoding algorithm. Since the variables of the
two designs take values from an identical squareM -QAM
constellation, each component ofz takes value from the
corresponding

√
M -PAM signal set. ForM to have rank4k,

the inequality2TNr ≥ 4k must hold. Hence, throughout the
paper, we assumeNr = ⌈ 2k

T
⌉. Viewing the lattice generator

M as a real linear design in the variables Re(h
(1)
i,j ), Im(h

(1)
i,j ),

Re(h(2)
i,j ) and Im(h(2)

i,j ), M can also be written using the column
vector representation as shown below,

M =
[

C1h(1) C2h(1) · · ·C2kh(1) C1h(2) C2h(2) · · ·C2kh(2)
]

where

h(1) =
h

(~H
(1)

c (1))T (~H
(1)

c (2))T · · · (~H
(1)

c (Nr))
T

iT

∈ R
2NtNr×1,

h(2) =
h

(~H
(2)

c (1))T (~H
(2)

c (2))T · · · (~H
(2)

c (Nr))
T

iT

∈ R
2NtNr×1,

and
{

Ci ∈ R
2TNr×2NtNr | i = 1 to 2k

}

is the set of column
vector representation matrices ofM . Since the design em-
ployed for both the users is the same, observe that the set of
column vector representation matrices for the first2k columns
of M and the last2k columns ofM are the same.

Definition 1: [7] A matrix is said to be column (row)
monomial, if there is at most one non-zero entry in every
column (row) of it.

In this paper, we design a special class of complex designs
such that the resultingM has the following properties:

• (p.1). The entries in the first2k columns ofM are of the

form ±Re(h(1)
i,j ), ±Im(h

(1)
i,j ) ∀ i, j.

• (p.2). The entries in the last2k columns ofM are of the
form ±Re(h(2)

i,j ), ±Im(h
(2)
i,j ) ∀ i, j.

• (p.3). Every column ofM has all the2NtNr variables
appearing exactly once.

The above three properties imply that for eachi = 1 to
2k,Ci is both row and column monomial. The class of lattice
generators with the above set of conditions are referred as
row-column monomial lattice generators which are formally
defined as below.

Definition 2: A lattice generator,M is said to be row-
column monomial (RC monomial) if the column vector repre-
sentation matrices ofM are both row and column monomial.

Note that the property (p.3) implies that the norm of the
first 2k columns ofM are equal. Similarly, the norm of the
last 2k columns ofM are equal.

III. STRUCTURE ONM FOR REDUCTION IN THE DECODING

COMPLEXITY

Applying Q-R decomposition onM and multiplyingQT on
both the sides of the channel equation in (5), we have

ỹ =

√

ρ

2Nt

Rz+ ñ (7)

where ỹ = QT y ∈ R2TNr×1, ñ = QT n ∈ R2TNr×1 and
R ∈ R2TNr×4k. Since we have assumedNr = ⌈ 2k

T
⌉, only

the first 4k rows ofR have non-zero entries and henceỹ is
essentially a4k×1 vector andR is essentially a square matrix
(neglecting the last2TNr − 4k rows) given by,

R =

[

R1,1 R1,2

0 R2,2

]

with R1,1,R1,2,R2,2 ∈ R2k×2k such thatR1,1 and R2,2 are
upper triangular matrices. The ML decoding metric is given
by

ẑ = argmin
z

||ỹ −
√

α

2Nt

Rz||2. (8)

The following proposition shows that the entries in the sub-
matrix R1,2 cannot be made zero when identical STBCs are
employed in the two-user MIMO-MAC set-up.

Proposition 1: When identical STBCs are employed in a
two-user MIMO-MAC, it is not possible to have zero entries
in the matrixR1,2.

Proof: The matrixR arising out of the Q-R decomposi-



tion of M is of the form,

R =















〈e1, c1〉 〈e1, c2〉 · · · 〈e1, c4k〉
0 〈e2, c2〉 · · · 〈e2, c4k〉
0 0 · · · 〈e3, c4k〉
...

...
. . .

...
0 0 0 〈e4k, c4k〉















(9)

whereci denotes thei-th column ofM , ei = ui

|ui|
with

ui = ci −
i−1
∑

j=1

〈ej , ci〉ej ∀i = 1 · · · 4k. (10)

Note that for1 ≤ m ≤ 2k and 2k + 1 ≤ n ≤ 4k, [R]m,n is
given by,

[R]m,n = 〈em, cn〉.
Also, note that the variables in the first2k columns ofM do
not appear in the last2k columns ofM . In particular,em is
a vector in the variables Re(h(1)

i,j ), Im(h
(1)
i,j ) whereascm is a

vector in the variables Re(h(2)
i,j ), Im(h

(2)
i,j ). Therefore, for any

STBC employed in a two-user MIMO-MAC, the matrixR1,2

cannot have zero entries unless there exists at least one pair of
columns (sayci and cj) in the first2k columns ofM which
are orthogonal.

From the above proposition, constructing STBCs which
give rise to bothR1,1 ∈ D andR2,2 ∈ D is the best thing that
can be done towards constructing STBCs with reduced SDC.
Hence, we study STBCs from a special class of complex
designs which results inM (through (6)) such that the Q-R
decomposition ofM gives rise to theR matrix with (i)
R1,1 ∈ D andR2,2 ∈ D and (ii) R1,1 ∈ D andR2,2 /∈ D
(such classes of STBCs are formally defined below).

Definition 3: For a two-user MIMO-MAC, an STBC is said
to have reduced average SDC (ASDC), if the corresponding
R matrix is such that bothR1,1,R2,2 ∈ D.

Definition 4: For a two-user MIMO-MAC, an STBC
is said to have reduced worst-case SDC (WSDC), if the
correspondingR matrix is such that onlyR1,1 ∈ D (but
R2,2 /∈ D).

In the next subsection, we quantify the reduction in the
decoding complexity when bothR1,1 and R2,2 are diagonal
matrices.

A. Reduction in the decoding complexity whenR1,1,R2,2 ∈ D
For the decoder given by (8), we quantify the reduction in

the decoding complexity whenR1,1,R2,2 ∈ D. For point to
point co-located MIMO channels, the SDC has been reduced
in [12], [13] and [14] by making certain entries ofR matrix
take zero values. SinceR is upper triangular, the ML decoding
metric in (8) can be split as

||ỹ1 −
√

α

2Nt

(R1,1~x1 + R1,2~x2)||2 + ||ỹ2 −
√

α

2Nt

R2,2~x2||2

where
ỹ1 = [ỹ(1) ỹ(2) · · · ỹ(2k)]T

and
ỹ2 = [ỹ(2k + 1) ỹ(2k + 2) · · · ỹ(4k)]T .

Note that each component of~x2 takes value from
√
M -PAM

and hence the vector~x2 totally takesMk distinct values. For
a particular choice of~x2, say~x2 = a, the metric for decoding
~x1 is

||ỹa1 −
√

α

2Nt

R1,1~x1||2 + ||ỹa2 ||2 (11)

where

ỹa1 = ỹ1 −
√

α

2Nt

R1,2a and ỹa2 = ỹ2 −
√

α

2Nt

R2,2a.

SinceR1,1 ∈ D, for eachi = 1 to 2k, the i-th real variable of
~x1 can be decoded independent of the other real variables as

~̂x1(i) = Q





ỹa1(i)
√

α
2Nt

[R1,1]i,i





where Q(.) denotes the nearest integer quantizer operation
whose complexity is independent of the size of the con-
stellation. Therefore, the worst case decoding complexityis
O(M2k). Note that, the worst case complexity of the decoder
remains to beO(M2k) irrespective of whetherR2,2 ∈ D or
otherwise. However, whenR2,2 ∈ D, the ASDC is reduced as
follows: WhenR2,2 ∈ D, in choosing a particular value for
~x2, 2k independent sorting operations are needed where each
sorting operation involves sorting of

√
M integers based on

a constraint function. However, in the worst case, ifR2,2 is
not diagonal (with all the upper diagonal entries ofR2,2 being
nonzero), then there needs to be a single sorting operation of
Mk vectors of length2k based on a constraint function. Thus,
with R2,2 ∈ D, there is a reduction in the sorting complexity
which is significant especially whenM is large.

B. Necessary and sufficient conditions onM such thatR1,1,
R2,2 ∈ D

In this subsection, a set of necessary and sufficient con-
ditions on the matrix set{C1,C2 · · ·C2k} is provided such
that bothR1,1 andR2,2 are diagonal matrices. The following
definition is important towards proving the necessary and
sufficient conditions.

Definition 5: A k-group partition of the index setI2k =
{1, 2 · · · 2k} consists ofk disjoint subsets,G1,G2, · · · Gk such
that |Gi| = 2 ∀ i = 1 to k.

Theorem 1:The Q-R decomposition ofM results in aR
matrix with R1,1,R2,2 ∈ D if and only if the matrix set
{C1,C2 · · ·C2k} satisfies the following conditions:

1) For i 6= j, the matrices in the set{C1,C2 · · ·C2k} must
be Hurwitz-Radon orthogonal, i.e.,

CT
i Cj + CT

j Ci = 02NtNr
.

2) For a fixed l,m ∈ I2k such that l 6= m, there
exists a k-group partition of I2k given by P l,m =



{

Gl,m
1 ,Gl,m

2 , · · · Gl,m
k

}

such that

CT
l CGl,m

i
(1) = CT

mCGl,m

i
(2) and

CT
mCGl,m

i
(1) = −CT

l CGl,m

i
(2) ∀i = 1 to k.

Proof: The ’if’ part can be proved by substituting the
conditions 1) and 2) (given in the statement of the theorem)
in R which is straightforward. Hence, we prove the ’only if’
part of the theorem. SinceR1,1 ∈ D, 〈ei, cj〉 = 0 for all i 6= j
such that1 ≤ i, j ≤ 2k. This implies〈ci, cj〉 = 0 for all i 6= j
such that1 ≤ i, j ≤ 2k. Therefore, the first2k columns ofM
are necessarily orthogonal to each other and hence

CT
i Cj + CT

j Ci = 02NtNr
for all i 6= j.

This proves the condition 1) of the theorem (This condition
reduces the WSDC). In the rest of the proof, the condition in
2) is proved.

The structure of the matrixR2,2 is given in (12) (shown at
the top of the next page). SinceR2,2 ∈ D, we have〈el, cm〉 =
0 for l 6= m such that2k + 1 ≤ l,m ≤ 4k. This implies

〈ul, cm〉 = 0.

Using (10) in the above equation, we have

〈ul, cm〉 = 〈cl, cm〉 −
l−1
∑

j=1

〈ej , cl〉〈ej , cm〉 = 0.

Since CT
i Cj + CT

j Ci = 02NtNr
for all i 6= j, we have

〈cl, cm〉 = 0 and hence

l−1
∑

j=1

〈ej , cl〉〈ej , cm〉 = 0.

As l takes value from2k+1 to 4k, the above summation can
be split as

2k
∑

j=1

〈ej , cl〉〈ej , cm〉+
l−1
∑

j=2k+1

〈ej , cl〉〈ej , cm〉 = 0.

Since R2,2 ∈ D, each term in the second summand of the
above equation is individually zero and hence we have

2k
∑

j=1

〈ej , cl〉〈ej , cm〉 = 0.

As the first2k columns ofM are orthogonal to each other and
have equal norms, we have

2k
∑

j=1

〈cj , cl〉〈cj , cm〉 = 0.

As 2k + 1 ≤ l,m ≤ 4k, we havecl = Cl′h(2), cm =
Cm′h(2) and cj = Cjh

(1) where l′ = l modulo 2k and
m′ = m modulo2k and hence

2k
∑

j=1

((h(2))TCT
l Cjh

(1))((h(2))TCT
mCjh

(1)) = 0.

Note that for a fixedm, the matricesCT
mCj and CT

mCi do
not have nonzero entries at the same position for alli 6= j.
Similarly, for a fixed l, the matricesCT

l Cj and CT
l Ci do

not have nonzero entries at the same position for alli 6= j.
Hence, for a givenl,m, there exists ak-group partition
P l,m =

{

Gl,m
1 ,Gl,m

2 , · · · Gl,m
k

}

of the index setI2k such that

CT
l CGl,m

i
(1) = CT

mCGl,m

i
(2) and

CT
mCGl,m

i
(1) = −CT

l CGl,m

i
(2) ∀i = 1 to k.

This completes the proof.
In the following section, we present explicit constructions of

STBCs which have (i) reduced ASDC and (ii) reduced WSDC.

IV. CODE CONSTRUCTIONS

In this section, complex designs which results in theR
matrix with (i) R1,1,R2,2 ∈ D and (ii) only R1,1 ∈ D
are presented. Henceforth, we denote a complex design for
Nt antennas ink variables asX (Nt, k). First, we construct
complex designs which results inR1,1,R2,2 ∈ D. Construction
of these designs has been divided in to four cases depending
on the values ofNt andk.

Case 1:Nt = 2a andk = 2b (a andb are positive integers):
In this case, the design is constructed in the following 3 steps.

• Step (i) : Let Ωm represent a2 × 2 Alamouti design
in complex variablesx2m+1, x2m+2 for each m =
0, 1, · · · b− 1 as given below,

Ωm =

[

x2m+1 −x∗
2m+2

x2m+2 x∗
2m+1

]

.

• Step (ii) : UsingΩm, construct a2a × 2a matrix Xm

given by

Xm = Ωm ⊗ I⊗(a−1)
2 for eachm = 0, 1, · · · b− 1.

• Step (iii) : UsingΩm, X (Nt, k) is constructed as

X (Nt, k) =
[

XT
0 XT

1 · · · XT
b−1

]T
.

Case 2:Nt = 2a andk = 2b + 1 : In this case,X (Nt, k)
is constructed in two steps as given below.

• Step (i) : ConstructX (Nt, 2b) as given in Case 1.

• Step (ii) : X (Nt, k) =
[

X (Nt, 2b)
T x2b+1INt

]T

.

Case 3:Nt = 2a+ 1 andk = 2b : In this case,X (Nt, k)
are constructed in the following 2 steps.

• Step (i) : ConstructX (Nt + 2, k) as given in Case 1.
• Step (ii) : Drop the last column ofX (Nt + 2, k).
Case 4:Nt = 2a+1 andk = 2b+1 : In this case,X (Nt, k)

are constructed in the following 2 steps.
• Step (i) : ConstructX (Nt + 2, k) as given in Case 2.
• Step (ii) : Drop the last column ofX (Nt + 2, k) .

The rate (in complex symbols per channel use) of the above
proposed designs is at most2

Nt
. Therefore, whenever STBCs

with minimum ASDC are desired (with bothR1,1 ∈ D and
R2,2 ∈ D), there is a substantial loss in the rate of transmission
especially whenNt > 2. However, if reduction of WSDC



R2,2 =















〈e2k+1, c2k+1〉 〈e2k+1, c2k+2〉 · · · 〈e2k+1, c4k〉
0 〈e2k+2, c2k+2〉 · · · 〈e2k+2, c4k〉
0 0 · · · 〈e2k+3, c4k〉
...

...
. . .

...
0 0 0 〈e4k, c4k〉















(12)

is targeted, then constructing complex designs which lead to
only R1,1 ∈ D is sufficient. The following theorem states that
the class of complex orthogonal designs [5], [6] (other than
Alamouti design) results in the class of RC monomial lattice
generators which in-turn lead toR1,1 ∈ D (but R2,2 /∈ D).

Theorem 2:For Nt > 2, STBCs from square complex
orthogonal designs (CODs) reduce the WSDC for a two-user
MIMO-MAC.

Proof: We have to show that STBCs from the class of
CODs (other than Alamouti design) results in a class of RC
monomial lattice generators which in-turn lead toR1,1 ∈ D
but R2,2 /∈ D. It is straightforward to verify that the column
vector representation matrices{Ci | i = 1 to 2k} of M arising
from CODs satisfy the sufficient condition 1) of Theorem 1.
Hence, the corresponding class ofR matrices satisfyR1,1 ∈ D.

In the rest of this paragraph, we only provide a sketch of
the proof to show that the matrices{Ci | i = 1 to 2k} arising
from CODs do not satisfy the sufficient conditions in 2) of
Theorem 1 (this is to prove thatR2,2 /∈ D). Recall that a
COD in a+1 complex variables forNt = 2a antennas can be
constructed in a recursive fashion from a COD ina variables
for Nt = 2a−1 antennas for alla ≥ 2 (See Section III. D
in [6]). We use the recursive construction technique of CODs
to prove our result. First, it can be shown that the matrices
{Ci | i = 1 to 6} arising from the COD forNt = 4 antennas
do not satisfy the sufficient condition 2) of Theorem 1. Then,
from the recursive construction technique of CODs, it can
be proved that the matrices{Ci | i = 1 to 2k} arising CODs
with larger number of antennas do not satisfy the sufficient
conditions in 2) of Theorem 1 as well. This completes the
proof.

From the above theorem, it is clear that when only the
WSDC is to be reduced, the rate of transmission can be
increased from 2

Nt
to (i) a+1

2a for the case of square designs
whereNt = 2ab for positive integersa andb.

V. D ISCUSSION

In this paper, we have proposed STBCs with minimum
SDC for a two-user MIMO-MAC. Some possible directions
for further research are as follows:

• The rate (in complex symbols per channel use) of the
proposed class of STBCs (in Section IV) which reduces
the ASDC is at most 2

Nt
for each user. Using the

necessary and sufficient conditions on the column vector
representation matrices in Theorem 1, upper bounds on
the rate (in complex symbols per channel use) can be
obtained and possibly STBCs with higher rates can be
constructed.

• We have studied STBCs which result in aR matrix such
thatR1,1 andR2,2 are diagonal matrices. Construction of
STBCs which results in more number of non-zeros in the
upper-diagonal entries ofR1,1 andR2,2 is an interesting
direction for future work. Such STBCs may have higher
ASDC and/or higher WSDC but may lead to larger rates.
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