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Abstract—In this paper, we propose a linear programming (LP)
decoding scheme for binary error-erasure channel for use intwo-
dimensional magnetic recording. We compare the performance
of this decoding scheme with other decoding schemes like LP
decoding for BSC and belief-propagation decoding. Also, we
compare the effect of variance of grain-area in the medium on
the bit-error rates of various decoding schemes.

I. I NTRODUCTION

The last few years have seen increased research efforts
focussed on improving the recording density in magnetic
recording systems with densities of upto10 Tb/in2 being
targetted. Two-Dimensional Magnetic Recording (TDMR) [1]
is one of the candidate technologies considered in this regard.
TDMR uses conventional media for storing data at high
densities while taking an aggressive approach to reading and
writing data.

Increasing the recording density in conventional media
comes at the expense of reduction in the (average) number
of grains used for storing one bit. In fact, at10 Tb/in.2, this
is as low 1 grain/bit. From a signal processing perspective,
this presents many challenges. Firstly, this causes severe
two-dimensional (2D) inter-symbol interference (ISI) during
readback [1]. Moreover, since conventional media have very
irregular grain-boundaries, making the bit-area comparable to
grain-area in such media leads to a high degree of irregularities
in the bit-boundaries. This is a significant source of noise
during readback. Indeed, the signal-to-noise ratio (SNR) can
be as low as0 dB [1]. It has also been observed that the
noise is highly correlated in both the “down-track” and “cross-
track” direction [2], [3]. These factors prompt the need to
develop sophisticated 2D signal processing algorithms in order
to achieve the goal of reliable data storage at such high
recording densities.

The strategy proposed for achieving low bit-error rates
(BER) in TDMR is to first achieve reasonably low detected bit-
error rates (BER) (say, of the order of10−2) and rely on strong
(comparatively lower rate) error-correcting codes to further
reduce the BER [1]. There has been considerable progress
in read-channel modelling and detector design [2], [3], [4].
Previously, design of detectors that achieve BER of about
5 × 10−2 have been reported [3]. However, design of error-
control systems for TDMR has been relatively unexplored.

The use of low-density parity-check (LDPC) codes [5]
for magnetic recording have been proposed on account of
their good performance [6], [7], and are a good choice for
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TDMR. Traditionally, belief-propagation (BP) decoders [5],
[8] have been used for decoding LDPC codes. Another type
of decoding decoder that has received much attention recently
is the linear programming (LP) decoding of binary linear
codes [9]. LP decoding have been considered as a sub-
optimal alternative to ML decoding. Their performance and
the fact that they possess theML certificate makes them
appealing. Also, the nature of the decoding algorithm makes
them more amenable to analysis (see [9] for more details),
thereby making them potential candidates for decoders with
predictable performance.

In this paper, we propose a method to transform the TDMR
channel into a binary error-erasure channel (BEEC) and use
LP decoding for BEEC to correct errors and erasures. As a
proof of concept, we compare the performance of this scheme
to that of other well-known decoding schemes. Also, we
compare the effect of improving the regularity of grains on
different decoding schemes. The rest of the paper is organized
as follows: Section II explains the system model in which
we briefly describe the model of the recording medium and
the readback process. In Section III, we present detector
architecture for the TDMR channel. An LP decoder for the
TDMR channel is presented in Section IV. We then compare
this decoder to other existing decoders in Section V. Finally,
we summarize our results in Section VI.

II. SYSTEM MODEL

Figure 1 shows the schematic representation of the TDMR
read channel. As shown in the diagram, the irregularity in the
recording medium source of noise. Since electronic noise is
very less compared to this noise, we assumed it to be zero.
The errors and interference in the system are compensated by
detection and decoding (to be discussed in detail).

The modelling of TDMR read-channel involves modelling
(1) the recording medium, (2) the write process, and (3) the
readback process. Although this has been discussed in detail
in [2], we give a brief description of the model for the sake of
completeness, and as it forms a basis for detector and decoder
design.

Recording Medium Model

Let S be the set of points on a square lattice. The ideal
medium (from the perspective of the detector) is modelled as
the Voronoi tiling of points inS with their Voronoi regions
representing the grains. We refer these points ascell-centers
and their corresponding Voronoi regions ascells. Fig. 2(a)
shows an ideal medium of dimension3×3 cells with the cell-
centers marked as ‘*’ and cell boundaries marked with dotted
lines.
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Fig. 1. Schematic representation of the TDMR read channel model

A regular medium is obtained by first randomly shifting
the points inS and then finding the Voronoi tiling of the
shifted points. The shifted points are referred to asgrain-
centers. Fig. 2(b) shows an example of a non-ideal recording
medium with the grain-centers and cell-centers marked as ‘•’
and ‘*’, respectively. The grain-boundaries and cell-boundaries
are marked with solid and dotted lines, respectively.

(a) (b)

Fig. 2. Modelling of recording medium: (a) an example of an ideal medium,
and (b) an example of a non-ideal medium.

For modelling the shift of grain-centers, Tikhonov distribu-
tion [10], [11] scaled between−0.5 and +0.5 is used. The
probability density function (pdf) for Tikhonov distribution is
given as:

pγ(∆x) =
exp (γ cos(∆x))

2πI0(γ)
0 ≤ ∆x ≤ 2π,

where I0 is the zeroth order modified Bessel function of
the second kind. The parameterγ varies from 0 to ∞,
and describes the level uniformity in the grain sizes in the
recording medium. Whenγ = 0, ∆x is uniformly distributed
in [−π, π]. Whenγ = ∞, p∞(∆x) = δ(∆x) (δ is the Dirac
delta function). Fig. 3 shows the pdfs for various values ofγ.

Figures 4(a) and 4(b) show instances of recording media
for γ = 0 and 4, respectively. It can be easily seen that the
medium shown Fig. 4(b) is more regular in grain shape and
position than the medium shown in Fig. 4(a). Fig. 5 shows the
variance of grain-area for various values ofγ. We note that
the grain variance is the highest forγ = 0 and approaches
zero asγ tends to∞.

A. Write and Readback process

Since the read/write mechanism does not havea priori
knowledge of the positions of the grains in the medium,
it simply attempts to write at the center of each cell. The
grain whose center is within the cell boundary is magnetized

appropriately. The readback signal is obtained as a convolution
of the magnetization of the recording medium with the 2D
impulse response of the read-head. We assume the impulse
response to be a truncated Gaussian window of unit energy
with a half-maximum width of1 cell and a span of3 cells in
both dimensions.

III. TDMR D ETECTION

Let C = {(c1, c2) : c1, c2 ∈ {0, 1, . . . , n − 1}}
be the points on an n × n square lattice
that define the positions of cell-centers. Let
X = {x0,0, x0,1, . . . , x0,n−1, x1,0, . . . , xn−1,n−1} ∈

{−1, +1}n2

be the input magnetization and let
Y = {y0,0, y0,1, . . . , y0,n−1, y1,0, . . . , yn−1,n−1} ∈ R

n2

be the readback signal. Letm(t1, t2) be the magnetization of
the recording medium at the point(t1, t2). Let Ai,j be the
region spanning the(i, j)th cell. Then, the readback signal,
yi,j , at center of the(i, j)th cell is given as:

yi,j = y(t1, t2) |(i,j)

=

∫∫

h(τ1, τ2)x(i − τ1, j − τ2) dτ1 dτ2

=
+1
∑

k1=−1

+1
∑

k2=−1
∫∫

Ak1,k2

h(τ1, τ2)x(i − τ1, j − τ2) dτ1 dτ2.

In an ideal medium, the grain boundaries coincide with the
bit-boundaries. Hence, we have:

m(τ1, τ2) = xτ̂1,τ̂2
,
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Fig. 3. Tikhonov distribution: The pdfs for various values of γ
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Fig. 4. Instances of recording media for different valuesγ’s: (a) γ = 0;
and (b)γ = 4. The cell-centers and the grain-centers are denoted by “*” and
“•”, respectively. The cell-boundaries and grain-boundarisare marked with
dashed and solid lines, respectively.
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Fig. 5. Variance of grain area for various values ofγ.

whereτ̂ is τ rounded to the nearest integer and is given as
τ̂ = bτ + 0.5c. Hence, the signal equation for an ideal medium
can be written as

yi,j =

+1
∑

k1=−1

+1
∑

k2=−1

hk1,k2
xi−k1,j−k2

where,

hk1,k2
=

∫∫

Ak1,k2

h(τ1, τ2) dτ1 dτ2.

That is, in an ideal medium, the output signal can be
expressed as a discrete convolution of the input magnetization
and the discretized read-head response. Consider now the
detector that is a zero forcing equalizer with impulse response
h−1. Then, for an ideal medium with no electronic noise,
this is the optimal detector. Indeed, the detected output,
x̃i,j = (h−1 ∗ x)i,j , is equal to inputxi,j . Suppose this zero-
forcing detector, which assumes the the medium to always
be ideal, is used to detect input magnetization on a non-ideal
medium, then we have

x̃i,j = (h−1 ∗ x)i,j ,

where x̃i,j ∈ R. We term x̃ as the effective magnetization.
Effective magnetization can also be interpreted as a noise-
free ISI channel withreal inputs, x̃. Fig. 6 shows thep(x̃|x)
obtained experimentally. We emphasize here that in general,
the effective magnetization are correlated in both dimensions.
However, as a simplification, we assume that they are uncor-
related.
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Fig. 6. Pdf of thex̃ given the input magnetization. The squares denote
erasures. Empty cicles and triangles represent correctly detected magnetization
and filled squares and circles represent magnetization which are incorrectly
decoded.
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Fig. 7. Plot of uncoded BER versusγ.

Using this detection scheme, uncoded data can be detected
by simply thresholding the effective magnetization based on
its sign.

Error rates of uncoded data:In order to test the effect
of variance of grain size on the uncoded bit-error rate, we
generated recording media with the shifted grain-centers fol-
lowing the Tikhonov distribution for different values ofγ. The
γ’s chosen were0.2, 0.4, 0.6, 0.8 and 2. Fig. 7 shows a plot
comparing the uncoded BER withγ. It can be seen that there
is significant decrease in BER with only slight increase inγ
(i.e., reduction in variance of grain-size).

We note that for coded data, the continuous nature of
x̃ allows us to process it in a number of ways, thereby
providing us with a choice from a number of novel decoding
architectures, each varying in complexity and performance.
Consider the following transformation that mapsx̃ to elements
of the set{−1, 0, +1} [3] given by:

x̂i,j =







1 if x̃i,j ≥ t
−1 if x̃i,j ≤ −t

0 if − t < x̃i,j < t.

wheret ≥ 0. This way, we can transform the TDMR channel
into abinary error-erasure channel(BEEC) (where the symbol
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0 indicates an erasure). The probabilities of error (p), and the
probability of erasure (ε) of this BEEC is given by:

p =

∫

x̃≥t

p(x̃|x = −1) dx̃ +

∫

x̃≤−t

p(x̃|x = +1) dx̃ (1)

ε =

∫

|x̃|<t

p(x̃|x = −1) dx̃ +

∫

|x̃|<t

p(x̃|x = +1) dx̃

The regions of the histogram corresponding to each of the
regions is shown in Fig. 6. In the figure, the region marked
with filled circles and filled triangles denote bits detected
incorrectly. The region marked with grey squares denotes the
bits detected as erasures. It can be seen that for different values
of t, we get different values forp andε. For t = 0, the channel
is equivalent to a binary symmetric channel (BSC).

IV. LDPC CODES FORERRORS ANDERASURES

As seen before, the TDMR channel is easily transformed
into a binary error and erasure channel. However, in the
absence of demonstrable LDPC decoders capable of correct-
ing errors and erasures, such a transformation is of little
significance. LDPC decoding for BEEC was independently
conceived by Mitzenmacher [12] and Richardson et al. [13].
They proposed hard-input/hard-output message-passing algo-
rithm for this channel. Apart from this work, LDPC decoders
for BEEC have been largely unexplored. In this paper, we
apply LP decoding for the first time to BEEC. Before we
describe this, we briefly describe LP decoding [9]. we use
notations and explanation from [9].

Let C be a binary linear code with lengthn with its parity-
check matrixH . A binary word c = (c1, c2, . . . , cn) is a
codeword if and only ifcHT = 0. Define thecodeword
polytopepoly(C) to be the polytope whose vertices are the
codewords ofC. Assume thatc is transmitted through a
symmetric memoryless channel. Letĉ = (ĉ1, ĉ2, . . . , ĉn) be
the received vector. Then, ML decoding ofĉ is equivalent
to the calculation of the vectorf = (f1, f2, . . . , fn) which
minimizes

∑n
i=1 gifi, wheregi is the negative log-likelihood

ratio (LLR) of the ith variable and is given as:

gi = log

(

P (ĉi|ci = 0)

P (ĉi|ci = 1)

)

subject to the constraintf ∈ poly(C). However, this is
impractical as the number of constraints is exponential inn.
Hence, we define arelaxed polytope, which is an intersection
of local polytopes defined at each parity-check. For each
parity-checkj, let N(j), denote the set of variables connected
to j. Let E(j) = {S ⊆ N(j) : |S| even}. The local polytopes,
Qj , of thejth check is the set of points(f, w) that satisfy the
following constraints:

for 1 ≤ i ≤ n, 0 ≤ fi ≤ 1

∀S ∈ E(j), 0 ≤ wj,S ≤ 1
∑

S∈E(j)

wj,S = 1

∀i ∈ N(j), fi =
∑

S∈E(j)
S3i

wj,S

The relaxed polytope is defined asQ =
⋂

j Qj. The Linear
Code Linear Program decoder is the argument(f, w) that
solves the following linear program:

minimize
∑

i

gifi s.t. (f, w) ∈ Q (2)

For the BEEC with probability of errorp and probability of
erasureε, gi is defined as (henceforth, we refer to the input
and the output alphabet of the BEEC as{0, 1} and{0, e, 1},
respectively.):

gi =







−L if ĉi = 0
+L if ĉi = 1

0 if ĉi = e

where L = log(p/(1 − p)). By changing thegi thus, LP
decoding of errors and erasures can be performed. We note
here that for each integral solution(f, w), there exists a
codeword ofC. Hence, the decoding is said to be successful
whenever there is an integral solution. A decoder failure occurs
when one or more elements of(f, w) are non-integers. In our
experiments, we simply threshold the values offi to 0 or 1 in
the case of a decoder failure.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the performance of LDPC
codes under LP decoding for BEEC with some other well-
known decoding strategies, namely, LP decoding for BSC (as
explained above), and BP decoding for coninuous(soft)-output
channel [5], [8]. For our analysis, we chose a code of length
155 with girth 8 and rate0.4 constructed using a modified
version of the progressive edge-growth algorithm [14]. This
construction technique yields codes with guaranteed error-
correction performance under iterative decoding for BSC (see
[14] and reference therein for details). Such codes have been
well-studied theoretically and analytically, and their properties
well-understood. Also, choosing short-length codes helpsus in
identification and analysis of error-events in TDMR. We wish
to emphasize that that no attempt at optimizing the code for
the TDMR channel was made as the experiments are intended
only as proof of concept.

For our analysis, the pdfsp(x̃|x) were obtained experimen-
tally for eachγ. The probabilities of error (for LP decoding)
were obtained from the histograms by using the Eqn. 1. For
the BP decoder, the log-likelihood ratios were obtained from
the histograms aslog(p(x̃|x = +1)/p(x̃|x = −1)).

Fig. 8 shows the performance of LP decoding for BEEC for
various values of thresholdt in media withγ = 0 (i.e., media
with very high variance in grain area). Note that the BER for
t = 0 corresponds to decoding in BSC. It can be seen that
for values of t between0 and 0.35, the BER reduces with
increase int. This is because, for these values of threshold,
the BEEC detector benefits from the reduction in error-rate.
However, at high values oft, the average number of erasures
is very high, and hence is not corrected by the decoder. In
general, the values oft that yield the best results depend on
γ. We choose0.25 which is typically within this range.

Fig. 9 compares the performance of LP decoding for BEEC
in media with differentγ with those of LP decoding for BSC
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Fig. 8. BER for various values of threshold

and BP decoding. The number of decoding iterations for the
BP decoder is100. It can be seen that for small values of
γ, LP decoding for BEEC performs slightly worse than for
BP decoding. However, at higher values ofγ, it outperforms
BP decoding. We also observe that as in the case of uncoded
data, large improvements in performance of coded detectionis
possible through a very small reduction the variance of grain-
area. In particular, by reducing the variance in grain-areafrom
6.3% to 5.3%, the BERs of the decoding schemes improve by
about2 orders of magnitude.
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Fig. 9. Plot ofγ versus BER for various decoding schemes.

It must be noted that the BER plot for BP decoding indicates
the presence of an error-floor at a BER of around10−5.
However, performance of this code in AWGN does not suffer
from any error-floors, as is seen in Fig. 10. Although it is
not fully understood at this time, we hypothesize that the
degradation in the performance of BP in TDMR channel is
due to the high correlation among the noise samples, which
is not accounted for during detection/decoding.

VI. CONCLUSION

In this paper, we proposed an LP decoding architecture for
BEEC as an alternative to BP decoding in TDMR. Experi-
mentally, we showed that LP decoding for BEEC outperforms
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Fig. 10. Performance of the code on AWGN channel.

LP decoding for BSC. Their performance has been shown to
be comparable to that of BP decoding. Also, we showed that
by enforcing slight control over the regularity of the recording
medium, large improvements in BERs can be obtained. Future
work in this direction include analysis of error-events for
the LP decoder and code-design targetted at improving the
performance of LDPC codes in the TDMR channel.
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