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1 Abstract—This paper develops a new physical layer frame-
work for secure two-way wireless communication in the presence
of a passive eavesdropper, i.e., Eve. Our approach achievesperfect
information theoretic secrecy via a novelrandomized scheduling
and power allocation scheme. The key idea is to allow Alice and
Bob to send symbols at random time instants. While Alice will
be able to determine the symbols transmitted by Bob, Eve will
suffer from ambiguity regarding the source of any particular
symbol. This desirable ambiguity is enhanced, in our approach,
by randomizing the transmit power level. Our theoretical analysis,
in a 2-D geometry, reveals the ability of the proposed approach
to achieve relatively high secure data rates under mild conditions
on the spatial location of Eve. These theoretical claims arethen
validated by experimental results using IEEE 802.15.4-enabled
sensor boards in different configurations, motivated by thespatial
characteristics of Wireless Body Area Networks (WBAN).

I. I NTRODUCTION

Recently, there has been a growing interest in the area of
physical layer security for wireless networking applications
(e.g., [1], [2], [3]). The underlying idea is to exploit the
characteristics of the wireless medium to develop commu-
nication protocols with provable information theoretic secu-
rity guarantees. The notion of information theoretic security
can be traced back to the pioneering work of Shannon [4]
which considered the basic model of a one-way point-to-
point communication link where both the sender and the
destination possess a common secret key (used to encrypt
and decrypt the message). This seminal work introduced the
perfect secrecy conditionI(M ;Z) = 0 implying that the
signalZ received by the eavesdropper does not provide any
additional information about the source messageM (i.e., zero
mutual information betweenM andZ). Under the assumption
that both the eavesdropper and legitimate destination receive
the transmitted message througha noiseless channel, Shannon
proved that the achievability of perfect secrecy requires the
entropy of the shared private keyK to be at least equal to
the entropy of the message itself (i.e.,H(K) ≥ H(M)).
The challenging task of distributing/updating secret keysin
wireless networks motivates thekey-lesssecurity approach
proposed in the sequel.

1This research is supported in part by a grant from the Egyptian National
Telecommunication Regularity Authority (NTRA) and in partby a grant from
British Petroleum.

The proposed scheme builds on the work of Laiet al. [5]
which developed an approach for using randomized feedback
to perform encryptionover modulo additive channels(e.g., bi-
nary channels) without sharing a secret keya priori. The basic
idea is to use the randomized feedback as a jamming signal for
the eavesdropper who, due to the modulo-additive nature of
the channel, can not differentiate between the corrupted and
non-jammed symbols. Interestingly, this scheme was shown
to achieve remarkable secrecy advantage even under the half-
duplex constraint whereby the transmission of one jamming
symbol results in an erasure at the legitimate receiver. Here, we
extend this scheme to the wireless two-way Gaussian channel.
The real-valued nature of the channel gives the eavesdropper
a certain ability to identify the corrupted symbols, perhaps
via a symbol power detector. We overcome this problem
via a novel randomized scheduling and power allocation
scheme. More precisely, in a two-way communication session,
the legitimate nodes pick the transmission times randomly
without any prior agreement. This results in a certain loss
of throughput, due to the half-duplex assumption, when both
nodes are transmitting (or not transmitting) simultaneously, but
creates asignificant advantage over the eavesdropper who will
find it rather difficult to associate the different symbols with
their source node. To further increase the ambiguity at the
eavesdropper, the power level used in each symbol is chosen
randomly according to a predetermined distribution (known
to all nodes). The overall effect is to guarantee provable
secrecy of the two transmitted messages at the expense of a
minimal loss in throughput. We argue in the sequel that Secure
Wireless Body Area Network (SW-BAN) is an ideal candidate
application for the proposed approach. The reason is that, in
this scenario, the distance between the eavesdropper and any
of the two legitimate nodes is expected to be much larger
than the inter-node distance; a property that results in maximal
ambiguity at the eavesdropper (as shown in the sequel).

The rest of the paper is organized as follows. Section II
details our system model and notations. In Section III, the
theoretical foundation of the proposed randomized scheduling
approach is developed. We report experimental results thatval-
idate our theoretical claims in Section IV-B. Finally, Section V
offers few concluding remarks.
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II. SYSTEM MODEL

We consider the basic three-terminal setup where two legiti-
mate nodes, i.e., Alice and Bob, wish to interchange messages
in the presence of a passive eavesdropper, Eve. Our focus will
be devoted to the symmetric case where the two messages have
the same rate. Alice and Bob are equipped with a single half-
duplex antenna implying that each node can either transmit or
receive (but not both) on the same degree of freedom. In our
analysis, we employ a2-D Geometric model where, without
any loss of generality, Alice and Bob are assumed to be located
on the x-axis at opposite ends of the origin. Motivated by
the Body Area Network (BAN) application, Eve is assumed
to be locatedoutside a circle centered around the origin of
radiusrE at an angleθ of the x-axis. Thiskey assumption
faithfully models the spatial separation, between the legitimate
nodes and eavesdropper(s), which characterizes BANs. The
performance of the proposed secure randomized scheduling
communication scheme will be obtained as a function ofrE
and the distance between Alice and Bob, i.e.,dAB . In our
discrete time model, the signals received by the three nodes
in the ith symbol interval are given by

YE(i) = GE(d
−α/2
AE XA(i)e

−jkdAE + (1)

d
−α/2
BE XB(i)e

−jkdBE )

+NE(i)

YA(i) = (1− I(XA(i)))

(GA(d
−α/2
AB XB(i)e

−jkdAB ) +NA(i))

YB(i) = (1− I(XB(i)))

(GB(d
−α/2
AB XA(i)e

−jkdAB +NB(i)),

wherek is the wave number,NA(i), NB(i), andNE(i) are
the unit-variance zero-mean additive white Gaussian noise
samples at Alice, Bob, and Eve respectively. Furthermore,GA,
GB andGE are propagation constants which depend on the
receive antenna gains, andα is the path loss exponent which
will be taken to2 as in the free space propagation scenario (one
can easily extend our results for other scenarios with different
path loss exponents.). For simplicity, we restrict ourselves to
binary encoding implying thatXA(i) ∈

{

√

ρ(i), 0,−
√

ρ(i)
}

,

whereρ(i) is the instantaneous signal to noise ratio atdAB = 1
in the ith symbol interval if Alice decides to transmit whereas
XA(i) = 0 if Alice decides not to transmit (the same applies
to XB(i)). ρ(i) is selected randomly in the range[ρmin, ρmax]
according to a distribution that is knowna priori to all nodes.
I (XA(i)) is the indicator function, i.e.,I (XA(i)) = 1 if
XA(i) 6= 0 and zero otherwise. Therefore,YA(i) = 0 if
XA(i) 6= 0 as dictated by the half-duplex assumption.

In order to invoke information theoretic arguments, we as-
sume an asymptotically long frame lengthT → ∞. Moreover,
in order to ensure the robustness of our results, we assume that
Eve employs a large enough receive antenna, i.e.,GE >> 1,
such that the additive noise effect inYE can be ignored. We

further assume a hard decision decoder at both the legitimate
receiver and the eavesdropper, and amemorylessstrategyC
is assumed to be used by the classifier employed at Eve to
identify the origin of each received symbol. i.e. the decision
is based only on the power level of the observed symbol in the
current time interval. Finally, we use the following notations:

[a]+ = max(a, 0), φ(x) =
x
∫

−∞
1√
2π

e
−t2

2 dt.

III. SECURE TWO-WAY COMMUNICATION

A. One-Way Communication with Feedback

Inspired by the earlier work of Laiet al [5], we first
consider aTime Division Multiplexing scheme whereby only
a single message transfer takes place in any time frame, and
the legitimate receiverjams the channel with random-content
feedback symbols at random time intervals. The receiver
will transmit a feedback symbol at any time interval with
probabilityβ. The randomized schedule of feedback will result
in erroneous outputs at the eavesdropper due to its inability
to identify the symbols corrupted by the random feedback
signal. As argued in [5], this scheme is capable of completely
impairing Eve in modulo-additive channels. In ourreal-valued
channel, however, a simple energy classifier based on the
average received signal power [6] can be used by Eve to
differentiate between corrupted and nonjammedsymbols. To
overcome this problem, we use predetermined distributionsfor
the transmit power of both the data symbols,f1, and feedback
symbols f2. This randomized power allocation strategy is
intended to increase the probability ofmisclassificationat Eve.
Assuming that the classifier task is todetectthe presence of the
feedback signal, we usePm andPf to represent the probability
of miss-detection and false alarm; respectively. Furthermore,
we usePe|m to denote the probability of symbol error given
occurrence of the miss-detection event. The following result
provides a lower bound on the achievable secrecy rate using
this protocol.

Theorem 1:Using the proposed one-way protocol with
randomized feedback and power allocation, the achievable
secrecy rate is lower bounded by:

Rs ≥ 0.5 max
β,f1,f2

(min
θ,C

([RM −RE ]
+)) (2)

where:

RM = (1− β)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

RE = (1− β (1− Pm)− (1 − β)Pf )
(

1−H
(

βPmPe|m

1−β(1−Pm)−(1−β)Pf

))

Proof: Let αM ,αE denote the fraction of symbols erased
at Bob and Eve, andPe

(M),P (E)
e denote the probability of

erroneously decoding a received symbol given that it was
not erased at Bob and Eve, respectively. By applying the
appropriate random binning scheme [7], the following secrecy
rate is achievable( [8], Theorem 3):

Rs = max
p(x)

([(I(X ;Y )− I(X ;Z))]+)



whereX denotes the input,Y andZ denote the outputs at
Bob and Eve respectively. Considering the transition model
for this channel, it is straightforward to see that:

H(Y |X) = H(αM ) + (1− αM )H(Pe
(M))

Now Let PX=1 = Π then

H(Y ) = H(αM ) + (1 − αM )H(Π(1 − Pe
(M)) + (1−Π)Pe

(M)),

and

max
Π

H(Y ) = H(αM ) + (1− αM ),

whenΠ = 0.5. This results in

max
p(x)

I(X ;Y ) = max
p(x)

(H(Y )−H(Y |X))

= (1− αM )(1 −H(Pe
(M)))

Similarly,

max
p(x)

I(X ;Z) = (1− αE)(1−H(P (E)
e ))

Following the half-duplex assumption, all data symbols trans-
mitted during the same time interval of a feedback transmis-
sion will be considered as erasures at the legitimate receiver’s
channel. Therefore, as the frame lengthT → ∞, αM = β.
For the rest of the symbols, the probability of symbol error
by the hard decision detector will be

Pe
(M)(i) = 1− φ





√

ρ(i)

dAB
α



 .

On the other hand, feedback transmissions will introduce
decoding errors at the eavesdropper. Noting that1 − Pm

of those corrupted symbols will be detected by the energy
classifier, we get

αE = β(1 − Pm) + (1− β)Pf

P (E)
e =

βPmPe|m
1− αE

.

Combining these results, we obtain

max
p(x)

I(X ;Y ) = max
p(x)

H(Y )−H(Y |X)

= (1 − αM )(1−H(Pe
(M)))

= (1 − β)

(

1−H

(

1

T

T
∑

i=1

Pe
(M)(i)

))

≥ (1 − β)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

= RM

max
p(x)

I(X ;Z) = max
p(x)

H(Z)−H(Z|X)

= (1− αE)(1 −H(P (E)
e ))

= (1− β(1 − Pm)− (1− β)Pf )
(

1−H

(

βPmPe|m
1− αE

))

= RE

Rs = max
p(x)

([I(X ;Y )− I(X ;Z)]+)

≥ ([max
p(x)

I(X ;Y )−max
p(x)

I(X ;Z)]+)

≥ ([RM −RE ]
+)

Finally, we consider amax-minstrategy whereby the legitimate
receiver assumes that the eavesdropper chooses its position
around the perimeter of the circle and the energy classifier’s
mechanismC to minimize the secrecy rateRs. Accordingly,
the legitimate receiver determines the probability of random
feedback transmissionβ and both the data and feedback signal
power distributionsf1, f2 to maximize this worst case value
(note that the rate is scaled by0.5 to account for the time
division between the two nodes):

Rsec = 0.5 max
β,f1,f2

(min
θ,C

Rs)

B. Two-Way Communication with Randomized Scheduling

Unlike the scheme described in section III-A where a prior
agreement on TDM frames is required, we now propose a
two-way communicationprotocol where both legitimate nodes
exchange messages via a randomized scheduling protocol. In
this scheme, each node will transmit its message in randomly
selected time intervals, where a single node’s transmitteris
active in any given time interval with probabilityPt, and the
transmit power level is randomly selected according to the
distribution f . Consequently, there are four possibilities for
the status of both transmitters in any particular time interval i.
Due to our noiseless assumption, the eavesdropper’s antenna
will easily identify silence intervals. The challenge, facing
the eavesdropper classifier, is to differentiate between the 3
other events. LetA andB represent the activation of Alice’s
and Bob’s transmitters; respectively,Ac andBc represent their
deactivation, andE1 → E2 represents the occurrence of event
E1 and its classification by Eve as eventE2. Moreover, we
let Pe|(A,B)→(A,Bc) denote the probability of error given that
the event(A,B) was mistaken for(A,Bc) by the classifier.
The following is our main result in this section

Theorem 2:Using the proposedrandomized scheduling
and power allocation protocol, the achievable secrecy rate
is lower bounded by:

Rsec ≥ max
Pt,f

(min
θ,C

([RM −max(REA, REB)]
+)) (3)



where:

RM = Pt (1− Pt)

(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

REA = DA

(

1−H

(

P
(EA)
e

DA

))

REB = DB

(

1−H

(

P
(EB)
e

DB

))

DA = P 2
t P(A,B)→(A,Bc) + Pt (1− Pt)P(Ac,B)→(A,Bc)

+ Pt (1− Pt)
(

1− P(A,Bc)→(Ac,B) − P(A,Bc)→(A,B)

)

DB = P 2
t P(A,B)→(Ac,B) + Pt (1− Pt)P(A,Bc)→(Ac,B)

+ Pt (1− Pt)
(

1− P(Ac,B)→(A,Bc) − P(Ac,B)→(A,B)

)

P
(EA)
e = P 2

t P(A,B)→(A,Bc)Pe|(A,B)→(A,Bc)

+ 0.5Pt (1− Pt)P(Ac,B)→(A,Bc)

P
(EB)
e = P 2

t P(A,B)→(Ac,B)Pe|(A,B)→(Ac,B)

+ 0.5Pt (1− Pt)P(A,Bc)→(Ac,B)

whereDA, DB represent the portion of symbols classified by
Eve as being transmitted by Alice or Bob respectively.

Proof: Due to symmetry, we only consider the secrecy
rate of Alice’s message to Bob. Following in the footsteps
of [7], one can argue that:

Rs = max
p(x)

(

[I(X ;Y )− I(X ;Z)]
+
)

≥

[

max
p(x)

I(X ;Y )−max
p(x)

I(X ;Z)

]+

= [(1− αM )(1 −H(Pe
(M)))

−(1− αE)(1−H(Pe
(E)))]+

whereαM ,αE ,Pe
(M), andP (E)

e are defined as in the proof of
Theorem 1. Using half-duplex antennas, each node will be able
to decode a symbol transmitted by the other node only when
its own transmitter is idle and the other node’s transmitteris
active. These two conditions are simultaneously satisfied with
probability Pt(1 − Pt) yielding αM = 1 − Pt(1 − Pt). It is
also straightforward to see that

Pe
(M)(i) = 1− φ





√

ρ(i)

dAB
α





The symbols classified by Eve as being transmitted
by Alice can belong to one of three categories.
The first, which takes place with probability
Pt (1− Pt)

(

1− P(A,Bc)→(Ac,B) − P(A,Bc)→(A,B)

)

,
represents the portion successfully detected and correctly
decoded by the eavesdropper. The second corresponds to
symbols transmitted by Bob and misclassified as belonging
to Alice; with probabilityPt (1− Pt)P(Ac,B)→(A,Bc). Those
symbols are independent from the ones transmitted by Alice,
and hence, have a probability0.5 of being different. The third
category, with probabilityP 2

t P(A,B)→(A,Bc), corresponds to

concurrent transmissions that are noterasedby Eve’s classifier
and misclassified as Alice’s symbols. The probability of error
in these symbols is denoted byPe|(A,B)→(A,Bc). Combining
these terms, we get

αE = 1−DA

P (E)
e =

P
(EA)
e

1− αE

Rs ≥ max
p(x)

I(X ;Y )−max
p(x)

I(X ;Z)

= [(1 − αM )(1−H(Pe
(M)))−

(1 − αE)
(

1−H
(

P (E)
e

))

]+

≥ [Pt(1− Pt)
(

1−H

(

1− φ

(√

ρmin

dAB
α

)))

−DA

(

1−H
(

P (E)
e

))

]+

Finally, we follow the same min-max strategy as the proof of
Theorem 1.

IV. N UMERICAL AND EXPERIMENTAL RESULTS

A. Numerical Results

In the following, we evaluate both schemes under selected
assumptions for the transmit signal power distribution and
Eve’s classifier. We assume the same uniform power distri-
bution for both Alice and Bob, and a threshold based energy
classifier with two limits, namelyT1 andT2, is used by Eve.
Using this classifier, a received symbol is erased if the received
signal power falls outside the interval betweenT1 and T2,
otherwise the received symbol is forwarded to the decoder. For
the randomized scheduling approach, the decoder is selected
according to the following decision rule:

D(Ri) =











A if Amin < Ri < min(Amax, Bmin)

B if Ri > Amax

A|B Otherwise
whereAmin and Amax are the minimum and maximum

received signal power values in dBm for Alice’s transmission,
Bmin and Bmax are the analogous values for Bob,Ri is
the observed RSSI value at Eve for theith symbol, A,B
denote classification decisions of the received symbol as
being transmitted by Alice or Bob respectively, andA|B
means choosing Alice or Bob with equal probabilities. The
shown rule is used for the case whendBE ≤ dAE . Our
noiseless assumption implies that Eve will decode the received
symbols, corresponding to concurrent transmissions, as the
symbols with the higher received signal power. To simplify
the presentation, we further assume that Alice and Bob use
sufficient error control coding to overcome the additive noise
effect. More precisely, Alice and Bob are assumed to use
asymptotically optimal forward error control coding and that
ρmin

dAB
2 is above the minimal power level required to achieve

arbitrarily vanishing probability of error at the legitimate
receivers.
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Fig. 1. Maximum achievable secrecy rate for different distance ratios between
Eve and each of the two communicating nodes.

Figure 1 reports the lower bounds, on the secrecy rateRsec,
of Theorems 1 and 2 at different values for the distance ratio
dmin

dmax
(dmin = min(dAE, dBE), dmax = max(dAE , dBE).).

The rates plotted for the one-way TDM scheme are obtained
assuming that the legitimate transmitter lies atdmin, i.e. Eve
is closer to the transmitter than the receiver. This configuration
was found to achieve lower secrecy rates, as alarger fraction
of the jammed symbols can be correctly decoded at Eve. A
few remarks are now in order

1) It is evident that our two-way randomization scheme
achieves higher rates than the TDM scheme. The rea-
son is the added ambiguity at Eve resulting from the
randomization in the scheduling algorithm.

2) The lower value ofRsec achieved for both schemes for
smaller values of the ratiodmin

dmax
is explained by Eve’s

higher chances of capturing the transmission of the node
lying at distancedmin.

3) The rates plotted in Figure 1 were found to be very close
to those of a classifier that does not erase any received
symbols, i.e. jammed symbols are always classified as
belonging to a single node and forwarded to Eve’s
decoder.

B. Experimental Results

We implemented our experiments on TinyOS [9] using
TelosB motes [10], which have a built-in CC2420 radio
module [11]. The CC2420 module uses the IEEE 802.15.4
standard in the 2.4GHZ band [12]. Our setup consists of four
nodes, equivalent to Alice, Bob, Eve, and a Gateway module.
Alice and Bob represent trusted nodes, while Eve represents
the untrusted node that runs an energy-based classifier. The
Gateway acts as a link between the sensor network and a
PC running a java program. Our experiment is divided into
cycles. During each cycle, the PC works as an orchestrator-
through the Gateway- that determines, using a special message
(TRIGGER-MSG), whether Alice should send alone, Bob
sends alone, or both send concurrently. It also determines the
power level used for transmission. These decisions are based
on a user input transmission probabilityPt. Upon receiving the
broadcast TRIGGER-MSG, each trusted node will transmit a
DATA-MSGwhile Eve will start to continuously read the value
in the Received Signal Strength Indicator (RSSI) register (the
RSSI value read by the CC2420 module is a moving average

of the last8 received symbols [11].). Eve will then transfer
the RSSI readings from the memory buffer to the Gateway
node which will forward them to the PC in anRSSI-MSG. For
each cycle, the java program stores the received RSSI readings
for further processing by the energy classifier (implemented
in MATLAB). When transmitting data messages (DATA-MSG)
from Alice or Bob, each node constructs a random payload
of 100 bytes Using the RandomMlcg component of TinyOS,
which uses the Park-Miller Minimum Standard Generator.
Each symbol isO-QPSKmodulated [12] representing4 bits
of the data. We also had to remove the CSMA-CA mechanism
from the CC2420 driver in order to allow both Alice and Bob
to transmit concurrently. Finally, it is worth noting that the or-
chestrator was used to overcome the synchronization challenge
in our experimental set-up. In practical implementations,Bob
(or Alice) could start jamming the channel upon receiving the
Start of Frame Delimiter (SFD).

In our implementation of the energy classifier, the discrete
nature of the transmit power levels was taken into considera-
tion. First, the eavesdropper was given the advantage of having
the classifier trained on a set of readings taken by running the
experiment in the same environment and at the same node
locations as those for which the classifier would be later used.
In the training phase, our classifier is given prior information
on the configuration, power levels selected for each node, and
the measured RSSI readings at each cycle. It then finds the
mean and variance of the measured RSSI values for each
transmitted power level for Alice and Bob when each of them
sends alone in a cycle. Any received symbol is classified as
being transmitted by either of the communicating nodes. This
choice is based on our third observation on the rates plotted
in Figure 1. When running the classifier, it uses amaximum
likelihood rule to determine the status of each transmitter in
each cycle, i.e., the following expression is evaluated:

maxi fAi
(y)

maxi fBi
(y)

A

≷
B
1

and the symbol is classified accordingly, wherefXi
(y) is the

value of the approximated Gaussian distribution of measured
RSSI values when sourceX is the only transmitter and with
power leveli. In a practical implementation, the length of a
cycle is the duration of a single symbol, hence, in our setup,
the classifier bases its decision on a single RSSI reading. When
evaluating our classifier, we use the transmission scenario
indicating the actual status of the transmitters in each cycle
and compare them with the classification results to obtain
the probability of each possible misclassification event. We
also assume that, in case of concurrent transmission, Eve can
correctly decode the symbol received with higher signal power,
as suggested in [13]. This assumption is used to calculate
the values ofPe|(A,B)→(A,Bc) andPe|(A,B)→(Ac,B). We also
use the same set of data to train and run a classifier for the
one-way TDM protocol described in section III-A. Here, we
only consider cycles when Alice’s transmitter was active and
consider Bob’s concurrent transmission asjamming. Finally,
we evaluate it by findingPm andPe|m.
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Fig. 3. β vs. Rs in different configurations for the one-way TDM scheme,
Rs = 0.5[RM − RE ]+, we consider the case when Alice is the transmitter
and Bob is the legitimate receiver.

We tested our scheme in a hallway environment, where
only few scatterers exist (only the wall structure). We train,
run, and evaluate our energy classifier, then use the resulting
probabilities in the maximum rate expressions of section III
to find the maximum achievable secrecy rate for different
probability of transmissionPt in case of the randomized
scheduling communication scheme and probability of feed-
back transmissionβ for the TDM scheme. Figures 2 and 3
show the maximum secrecy rate achieved for each of our two
schemes. In Configuration1, we set one of the Alice and Bob
telosb nodes on top of each other, and setdAE = dBE = 20ft.
In Configuration2, we setdAE = 1ft and dBE = 20ft.
We note that the measured difference of received signal
power values from both transmitting nodes was found to be
2dB and19dB for Configurations1 and 2 respectively. This
implies that the maximum rates in Figures 2 and 3 should be
compared to the value ofRs in Figure 1 at dmin

dmax
= 0.79

and0.11 respectively. We believe that this difference between
the theoretical and experimental results can be attributedto
hardware differences and the deviation of the actual channel
from the simplistic free space model used in our derivations.
More specifically, we observe that the maximum secrecy rates
for the randomized scheduling scheme in our experimental

results is slightly lower than those calculated in Section IV-A
at the mentioned distance ratios. The reason is Eve’s enhanced
ability to distinguish between the two sources of transmission
due to the discrete nature of the selected transmit power values.
Nevertheless, the experimental results establish the ability of
our randomized scheduling and power allocation scheme for
achieving perfect secrecy in practical scenarios akin to Body
Area Networks where the distance between Eve and legitimate
nodes will be larger than the inter-node distanceeven if Eve
is equipped with a very large receive antenna.

V. CONCLUSIONS

This paper developed a novel physical layer approach for
securing communication over two-way Gaussian channels in
the presence of an eavesdropper with a very capable receive
antenna. The underlying idea is to create an eavesdropper-
ambiguity about the source of each symbol by randomizing
the transmission schedule and power level. Our theoretical
analysis revealed the ability of the proposedrandomization
approach to achieve relatively highsecuretransmission rates
under mild conditions on the eavesdropper location. Our theo-
retical claims were further validated by extensive experimental
results using IEEE 802.15.4-enabled sensor boards. Finally, we
identified secure wireless body area networking (SW-BAN) as
a natural candidate application for the proposed randomized
scheduling and power allocation approach.
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