Abstract:
We propose a method for detecting Distributed Denial of Service (DDoS) traffic in real-time inside the network. For this purpose, we borrow the concepts of Moving Average...Show MoreMetadata
Abstract:
We propose a method for detecting Distributed Denial of Service (DDoS) traffic in real-time inside the network. For this purpose, we borrow the concepts of Moving Average Convergence Divergence, Rate of Change, and Relative Strength Index, which are used for technical analysis in the stock market. Due to the fact that the method is based on a quantitative, rather than a heuristic, detection level, DDoS traffic can be detected with greater accuracy (by reducing the false alarm ratio). Through detection algorithm and simulation results, we show how the detection level is determined and demonstrate the degree to which the accuracy of detection is enhanced.
Date of Conference: 30 November 2009 - 04 December 2009
Date Added to IEEE Xplore: 04 March 2010
Print ISBN:978-1-4244-4148-8
Print ISSN: 1930-529X