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Abstract—We propose a new method for calculating a tight
approximation to the distribution of the sum of independent
lognormal random variables. We make use of a three–parameter
modified–power–lognormal distribution function as the approxi-
mating distribution. We use theoretical results from our previous
work on the tails of the distribution of the sum of lognormals
to match the slope of the modified–power–lognormal function at
both tails. This would not have been possible with many of the
recently–proposed distribution functions, which do not behave
properly in the tails. We then also use moment–matching to
find the best curve match. Our method is mostly closed–form,
requiring only one simple numerical integral.

We compare our method with those in literature in terms
of complexity and accuracy. We conclude that our method is
more accurate than the simple (closed–form) methods, and much
simpler to understand and implement than the more accurate
methods which rely heavily on numerical integration.

Index Terms—sum of lognormals, interference analysis

I. INTRODUCTION

The mathematical problem of the sum of lognormals (SLN)

arises in wireless communications, in particular when one

analyses the total power received from several interfering

sources [1]–[3]. It has been the object of many papers, also in

other scientific fields [4]–[8].

The problem can be mathematically stated as follows: let

{Yi}N

i=1 be a set of lognormal random variables such that

Yi ∼ fi (x;µi, σi) =
1√

2πxσi

e
− 1

2

(

ln x−µi
σi

)

2

=
∂

∂x
Fi (x;µi, σi) =

∂

∂x
Φ

(

lnx − µi

σi

)

, x > 0,

(1)

where Φ(x) is the standard normal cumulative distribution

function (cdf ). We have, for any real number n [9]:

E {Y n
i } = enµi+

1
2n2σ2

i . (2)

We then say that

X =

N
∑

i=1

Yi ∼ f(x) =
∂

∂x
F (x), x > 0 (3)
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follows the SLN distribution, which has no known closed

form. When the summands Yi are independent, f(x) is found

by convolution of the marginal densities:

f(x) = f1(x) ⊗ f2(x) ⊗ · · · ⊗ fN (x). (4)

An exact closed–form method for performing even one of

these convolutions is not known.

There exist, however, many approximate methods for find-

ing the SLN distribution [9]–[24]. These methods can be cat-

egorised by their scope into three classes: generally correlated

[9]–[15], independent [16]–[21], independent and identically

distributed [22]–[24] Yi’s. We can also categorise the methods

based on their complexity: most methods require extensive nu-

merical integration, and many are iterative. Only [9], [10], [16]

are closed–form, and [18] is mostly closed–form, similarly to

our method.

In this paper we analyse the sum of independent lognormal

random variables with arbitrary parameters. The input to the

problem is thus the set of pairs
{(

µi, σ
2
i

)}N

i=1
. The goal of our

work is to develop a distribution function that can approximate

the SLN distribution well over the entire range of values.

The approximating distribution function should be explicitly

described by only a few parameters, which need to be found

for each set of input parameters according to a given algorithm,

which should be simple. Thus any parametric method for

solving the SLN problem consists of two parts: finding an

adequate analytical form for the distribution function, and

evaluating that function’s parameters for each particular case.

We use the 3–parameter Modified–Power–Lognormal

(MPLN) distribution as our approximating function, which

has been previously proposed for approximating the SLN cdf

in various ways [3], [5], [13], [16], [22]. In Section II, we

summarise the many arguments, some novel, for the choice

of this particular distribution. In Section III, we introduce

a simple new, mostly closed–form method for obtaining the

three MPLN parameters a priori (without prior knowledge

of the SLN cdf ). In Section IV, we compare our method

against other closed–form methods, as well as against Monte–

Carlo simulations and argue that our method is of practical

use, because it outperforms the existing closed–form methods,

and is much simpler than all existing numerical methods. We

conclude in Section V.



II. CHOICE OF THE MPLN DISTRIBUTION

A. A Note on Nomenclature

To the best of our knowledge, the distribution given by

fPLN(x) =
t√

2πxs
e−

1
2 ( ln x−m

s )
2

Φt−1

(

m − lnx

s

)

,

FPLN(x) =1 − Φt

(

m − lnx

s

)

, x ≥ 0, s > 0, t > 0

(5)

has always been called the power–lognormal (PLN) distribu-

tion [25], [26]. The distribution we use to approximate the

SLN will be

fMPLN(x) =
t√

2πxs
e−

1
2 ( ln x−m

s )
2

Φt−1

(

lnx − m

s

)

,

FMPLN(x) =Φt

(

lnx − m

s

)

, x ≥ 0, s > 0, t > 0.

(6)

We refer to this distribution as the modified–power–lognormal

(MPLN) distribution, though it has been inconsistently called

PLN in the past both by us [3] and in [13]. It could be

argued that the name “power–lognormal” is more natural for

the distribution in (6) than the one in (5). However, we decided

on the current nomenclature for consistency with the majority

of past literature.

B. Historical Motivation

This function has been proposed by Farley [22] for

analysing the SLN distribution in the independent and iden-

tically distributed case. We then have s = σ = σ1 = σ2 =
. . . = σN , m = µ = µ1 = µ2 = . . . = µN , t = N . In this

case, our method essentially reduces to Farley’s method for

finding s (12), and t (13), but m is found differently (17) so

as to match the first moment of X . Our method simply shifts

the curve a little downwards to balance out the error in the

different parts of the cdf.

Farley’s method was extended by Ben Slimane [16] to

include non–identical independent summands. Like Farley’s, it

is based on the fact that the sum of positive random variables

is always greater or equal than the greatest of these random

variables. For lognormal random variables, which have very

large spreads, this approximation tends to be quite good, and

is tight in the upper tail (as x → +∞). This leads to the bound

(which is also often a good approximation)

X & max
i

Yi ⇒ F (x) .

N
∏

i=1

Fi(x). (7)

The difficulty with this method is that it is non–parametric:

in general, in needs to be expressed as a function of 2N
parameters and therefore does not lead to simple subsequent

analytical treatment.

Our method can be considered a synthesis of both Farley’s

and Ben Slimane’s approximations. We only use 3 parame-

ters, but we consider the sum of any independent lognormal

distributions.

This choice of the MPLN form is also motivated by [5],

which suggests that the SLN distribution could be expressed

as a sum of products of lognormal distributions, of which the

MPLN distribution is a particular case.

The MPLN distribution was proposed again in [13] for

approximating the SLN distribution, including the correlated

case. However, it gave an a posteriori method for finding the

MPLN parameters, by fitting the MPLN cdf to a pre–computed

SLN cdf. Obtaining the exact cdf requires lengthy Monte–

Carlo simulations, or advanced slowly–converging numerical

methods [19], and then a numerical solver is also required

for the curve–fitting, making the method in [13] complex and

numerically intensive.

C. Working on Lognormal Paper

It is convenient to analyse some cdf ’s on lognormal paper

[19], i.e., under the transformation T

T : F (x) 7→ Φ−1 (F (ey)) . (8)

Under this transformation, each lognormal distribution is

mapped onto a linear equation with positive slope, and vice

versa. Also, when plotted on lognormal paper, the SLN

distribution has linear asymptotes: certainly in the +∞ tail,

and probably in the −∞ tail as well [27].

We thus consider the MPLN cdf on lognormal paper:

T : FMPLN(x) 7→ F̃MPLN(y), (9)

where T is defined in (8).

D. Tail Properties on Lognormal Paper

We proved in [27] that, when plotted on lognormal paper,

the independent SLN distribution has linear asymptotes with

simple closed–form expressions: certainly in the +∞ tail, and

probably (we could not prove it formally) in the −∞ tail

as well. It is therefore interesting to use an approximating

function that also has linear asymptotes in its tails.

Thus, we also chose the MPLN distribution for its tail

behaviour. Under the transformation T , the MPLN distribution

has a linear asymptote in the upper limit with slope

lim
y→+∞

∂

∂y
F̃MPLN(y) =

1

s
, (10)

In the lower limit, it has no linear asymptote, but does have a

limiting slope

lim
y→−∞

∂

∂y
F̃MPLN(y) =

√
t

s
. (11)

These results are proved in Appendix A. Therefore, it will be

easy to match the tail slopes of the MPLN with those of the

SLN distribution to solve for the MPLN parameters.

This would not be possible with many new proposed

distributions [11], [21], [23], [24], which although they may

approximate the SLN distribution very well, were showed

in [27] not to have linear asymptotes on lognormal paper

at either tail. Therefore the closed–form results from [27]

on the SLN tails cannot be exploited. Two recent papers

[17], [18] proposed new distribution functions. We show in

Appendices B and C why we cannot apply tail–matching for

those distributions either.



In general, we propose that this approach be used to solve

the SLN problem in closed–form: find a distribution with

lognormal tails, and fit them to the tails of the SLN distribution

[4], [27]. So far, we were the only ones to take this approach,

and only with the MPLN distribution, but perhaps other

(better) distribution functions exist that are amenable to this

approach.

III. PARAMETER MATCHING

We successively match the s, t, and m parameters in that order.

The first two parameters are found in closed form, and only

the m parameter requires some simple numerical integration.

A. Upper Tail Slope

We first obtain the s parameter. The slope in the +∞ tail of

the SLN cdf on lognormal paper is known to be 1/max
i

σi

[4], [27]. We equate this slope with (10):

1

max
i

σi

=
1

s
⇒ s = max

i
σi. (12)

B. Lower Tail Slope

Now, having the s parameter, we find t. In [27] we argued

that the slope in the −∞ tail of the SLN distribution (for

independent summands) is

√

∑N

i=1 σ−2
i . We match this slope

with that of the MPLN distribution, given in (11):

√
t

s
=

√

√

√

√

N
∑

i=1

σ−2
i ⇒ t = s2

N
∑

i=1

σ−2
i . (13)

In the special case of σ1 = σ2 = ... = σN = σ, we obtain

simply s = σ and t = N .

C. Moment–Matching

Having obtained s and t, we may next find m. However, this

requires a numerical integral,

Λ(s, t) =

∫ +∞

−∞
esx− 1

2x2

Φt−1(x)dx, (14)

which is well approximated by a Riemann sum. This is

substantially simpler to understand and implement than other

numerical methods [11], [12], [17], [19]–[21], [23], [24]. The

first moment of the MPLN distribution can be written as
∫ +∞

0

xfMPLN(x)dx = tem(2π)−
1
2 Λ(s, t). (15)

The first moment of the SLN can be found directly,

E {X} =

N
∑

i=1

E {Yi} =

N
∑

i=1

eµi+
1
2σ2

i . (16)

Equating (15) with (16) we obtain

m = ln

N
∑

i=1

eµi+
1
2σ2

i − ln Λ(s, t) − ln t + 1
2 ln 2π. (17)

Thus our method can be summarised by the following steps:

obtain s from (12), t from (13) and m from (14) and (17),

then substitute these into the distribution function (6).

D. Closed–Form Case

The integral (14) is of course solvable for t = 1. It is also

separable for t = 2, which corresponds to the case where

there are only two summands, with σ1 = σ2 = s = σ. The

integral then has solution

Λ(s, 2) =

∫ +∞

−∞
esx− 1

2x2

Φ(x)dx =
√

2πΦ

(

s√
2

)

e
1
2 s2

,

(18)

which can be solved by rewriting Φ(x) as an integral, and

performing a change of variables. This integral is known: it

is the same as the moment–generating function of the skew–

normal distribution [28], when the skew parameter is 1.

Then m can be found in closed form:

m = ln (eµ1 + eµ2) − ln 2 − ln Φ

(

σ√
2

)

. (19)

And, if both summands have identical distribution, that is µ1 =
µ2 = µ, then

m = µ − ln Φ

(

σ√
2

)

. (20)

Solving (14) for higher (and non–integer) values of t remains

an open problem.

IV. SIMULATIONS AND COMPARISONS

In Figures 1–3, we present Monte–Carlo simulations of the

SLN cdf, along with three methods for approximating it:

the proposed MPLN method, moment–matching [2], [9], [29]

(using the first and second moments), and Ben Slimane’s

method (7) [16]. In the context of inter–cell co–channel

interference, typical values of σi are between 6 and 12 dB.

The equivalent σi in natural units is found according to

σi[ nat] = σi[ dB] × 0.1 ln 10. We do not show the method

in [10], which performs very poorly for values of σi of more

than 4 dB, and is designed to analyse intra–cell interference

in CDMA systems. We make the following observations:

1) In the case of identically distributed terms (Figure 1), the

MPLN method is nearly identical to the bound method

(which is equivalent to Farley’s method in this case).

Both these methods outperform moment–matching, par-

ticularly in the lower tail.

2) In the case of different µi’s (Figures 2 and 3), the MPLN

method usually outperforms the other methods.

3) A few tests with widely different σi’s (not shown here)

did not yield good performance in any of the three

methods. This is not a very bad thing in the wireless

communications context, since shadowing spread is usu-

ally constant within a particular situation, while it is only

the average gains that will significantly differ.

Now there exist several numerical methods that could per-

form better than our MPLN method in many cases. We should,

however, make the following comments:

1) Several numerical methods approximate the SLN by

another lognormal [1], [12], [19]. From Figures 1–3

and from literature, it is becoming evident that in many

cases of interest this cannot possibly be accurate, since
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the SLN distribution is very non–linear on lognormal

paper. This has lead to the recent proposal of several

new approximating functions [11], [17], [21], [23], [24]

and also to a piecewise–lognormal solution [20].

2) Most numerical SLN methods proposed involve iteration

and complex numerical techniques [1], [11], [17], [19]–

[21]. While the execution of these algorithms on a

computer may be quasi–instantaneous, they still require

significant human investment to understand and imple-

ment the method. Method [12] is perhaps not very

complicated. However our method is much simpler to

understand and can be implemented quickly with only

a simple Riemann sum.

3) Some methods [23], [24] apply to sums of identically

distributed lognormals only, and are essentially tabula-

tions of function parameters for a necessarily limited set

of cases.

Lastly, we must examine the method in [18]. It is very

comparable to ours, in that it is closed–form apart from

a simple numerical integration, and that it applies to any

independent summands. Unfortunately, we did not have the

time to implement their method to compare their exactness.

However, there are a few qualitative factors that favour our

method over theirs:

1) The lower tail of their method necessarily diverges from

the true solution because the distribution has some mass

at negative values, while X is by definition positive (see

Appendix C).

2) The solution might not exist for some combinations of

parameters (specifically, low N with high σi [18]).

3) Their cdf is not known in closed form.

4) Our equations for identifying the parameters are still

many times shorter than theirs.

V. CONCLUSION

The MPLN method introduced here seems to perform no

worse, and often better, than the existing closed–form methods

[9], [10], [16], while being of comparable complexity. Its

performance is particularly good for cases where the σ2
i ’s are

all the same while the µi’s differ. This case is particularly

interesting in wireless cellular communications, where both

strong and weak interferers suffer shadowing with constant

logarithmic variance. Our method is significantly simpler than

the available numerical techniques, and if the integral (14)

could be solved exactly or well approximated, our method

would be entirely closed–form.



APPENDIX A

We begin by showing that the MPLN distribution has a best

lognormal fit [27] at +∞. We use l’Hospital’s rule to find

lim
x→+∞

1 − FMPLN(x)

1 − Φ
(

ln x−m
s

)

= lim
x→+∞

fMPLN(x)

1√
2πxs

exp
(

− 1
2

(

ln x−m
s

)2
)

= lim
x→+∞

tΦt−1

(

lnx − m

s

)

= t.

(21)

Because this ratio converges to a finite non–zero value, we

may conclude from [27, Lemma 2] that Φ
(

ln x−m
s

)

is a best

lognormal fit to FMPLN(x) at +∞. The corresponding slope

is 1
s

on lognormal paper, which proves (10).

In order to prove the lower tail slope, we first need a couple

of approximations. A well–known approximation for Φ(x) is

Φ(x) ≈ 1

−
√

2πx
e−

1
2x2

, x → −∞. (22)

We also use an approximation from [30], after some manipu-

lation:

Φ−1(x) ≈ −
√

−2 ln (2x) − ln (−π ln (2x)), x → 0+. (23)

We may then write

lim
y→−∞

∂

∂y
F̃MPLN(y) =

1

s
lim

y→−∞

∂

∂y
Φ−1

(

Φt(y)
)

= − 1

s
lim

y→−∞

∂

∂y

√

ty2 + O(ln (−y))

= − 1

s
lim

y→−∞

2ty

2
√

ty2
=

√
t

s
.

(24)

This proves (11).

APPENDIX B

In [17], a mixture of two lognormal distributions (M2LN) was

proposed for approximating the SLN distribution

FM2LN(x) = γΦ

(

lnx − µ1

σ1

)

+ (1 − γ)Φ

(

lnx − µ2

σ2

)

,

(25)

with x > 0 and five parameters 0 ≤ γ ≤ 1, µ1, σ1 >
0, µ2, σ2 > 0.

We will prove that this distribution has a linear asymptote

in both tails on lognormal paper. However, both asymptotes

have the same slope, and thus this distribution cannot be

matched to the asymptotic results in [27]. This is evident for

γ = 0, 1 because the M2LN distribution then reduces to a

simple lognormal. To prove this for 0 < γ < 1, let us take

an arbitrary lognormal distribution with parameters µ, σ2 and

show that it can be an asymptote to the M2LN distribution

on lognormal paper. For the upper tail, it is sufficient [27] to

show that the following quantity converges to a finite non–zero

value:

L+ = lim
x→+∞

1 − FM2LN(x)

1 − Φ
(

ln x−µ

σ

)

= lim
x→+∞

γ
σ

σ1
e

1
2 (σ−2−σ

−2

1 )x2+(µ1σ
−2

1
−µσ−2)x+O(1)

+(1 − γ)
σ

σ2
e

1
2 (σ−2−σ

−2

2 )x2+(µ2σ
−2

2
−µσ−2)x+O(1).

(26)

From this we see that a necessary condition for L+ ∈ (0,+∞)
is σ = σ+ = max (σ1, σ2), and hence, from [27, Lemma 2],

it follows that the M2LN distribution has a linear asymptote

at +∞ on lognormal paper corresponding to a lognormal

distribution with log–variance σ2
+.

Likewise, for the lower tail [27]

L− = lim
x→−∞

FM2LN(x)

Φ
(

ln x−µ

σ

)

= lim
x→−∞

γ
σ

σ1
e

1
2 (σ−2−σ

−2

1 )x2+(µ1σ
−2

1
−µσ−2)x+O(1)

+(1 − γ)
σ

σ2
e

1
2 (σ−2−σ

−2

2 )x2+(µ2σ
−2

2
−µσ−2)x+O(1).

(27)

Again we see that a necessary condition for L− ∈ (0,+∞)
is σ = σ− = max (σ1, σ2), and hence, from [27, Lemma 2],

it follows that the M2LN distribution has a linear asymptote

at −∞ on lognormal paper corresponding to a lognormal

distribution with log–variance σ2
−.

Now σ+ = σ− while the slopes at both tails of the SLN

distribution on lognormal paper [27] for N > 1 are different,

and thus the M2LN distribution is not adequate for tail–

matching.

APPENDIX C

In [18], a Pearson IV is proposed as an SLN approximation,

with pdf

fZP(x) = ν

(

1 +

(

x − µ4

µ3

)2
)−µ1

e
−µ2 arctan

(

x−µ4

µ3

)

, (28)

with x ∈ R and no general closed form for the cdf. Note that

the pdf will not be valid unless µ1 > 1
2 .

To analyse the tails of this distribution, we first notice that

the distribution does not stop at x = 0, but can take negative

values. For this reason, it is impossible to match the lower tail

with that of an SLN, which forcibly takes positive values only.

This is seen in the figures of [18], where the lower tails totally

diverge. The same symptom is observed in the distribution of

[11].

As for the upper tail, the analysis is as follows:

fZP(x) ≈ νµ2µ1

3 e−
π
2

µ2x−2µ1 = O
(

x−2µ1

)

, x → +∞. (29)

The corresponding cdf will behave as

FZP(x) = 1 −O
(

x1−2µ1

)

, x → +∞. (30)



Now let

T :FZP(x) 7→ F̃ZP(y) = Φ−1(FZP(ey))

= −Φ−1
(

O
(

ey(1−2µ1)
))

, y → +∞,
(31)

where we have made the transformation onto lognormal pa-

per. Now, we use (23), which applies because the argument

O
(

ey(1−2µ1)
)

→ 0+ as y → +∞ for µ1 > 1
2 . We then have

F̃ZP(y) ≈
√

−2 ln
(

2O
(

ey(1−2µ1)
))

= O(
√

y), y → +∞.
(32)

Thus the cdf will behave as a square root function for high

values, on lognormal paper. The limiting slope at +∞ is then

lim
y→+∞

∂

∂y
F̃ZP(y) = lim

y→+∞

1

2
√

y
= 0. (33)

Since the limiting slope is a constant, no tail–fitting can be

made at the upper tail either.
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