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Abstract—In orthogonal frequency-division multiplexing (OFDM)
systems operating over rapidly time-varying channels, theorthogonality
between subcarriers is destroyed leading to inter-carrier interference
(ICI) and resulting in an irreducible error floor. In this pap er, a new
and low-complexity maximum a posteriori probability (MAP) detection
algorithm is proposed for OFDM systems operating over rapidly
time-varying multipath channels. The detection algorithm exploits
the banded structure of the frequency-domain channel matrix whose
bandwidth is a parameter to be adjusted according to the speed of the
mobile terminal. Based on this assumption, the received signal vector
is decomposed into reduced dimensional sub-observations in such a
way that all components of the observation vector contributing to the
symbol to be detected are included in the decomposed observation
model. The data symbols are then detected by the MAP algorithm
by means of a Markov chain Monte Carlo (MCMC) technique in an
optimal and computationally efficient way. Computational complexity
investigation as well as simulation results indicate that this algorithm
has significant performance and complexity advantages overexisting
suboptimal detection and equalization algorithms proposed earlier in
the literature.

Index Terms- OFDM, MAP detection, Monte carlo technique, Gibbs
sampling. Intercarrier interference, fast time-varying channels.

I. I NTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has been
shown to be an effective method to overcome inter-symbol inter-
ference (ISI) caused by frequency-selective fading with a simple
transceiver structure, and is consequently used in severalexisting
wireless local and metropolitan area standards such as the IEEE
802.11 and IEEE 802.16 families. IEEE 802.11 wireless LAN
(WLAN) technology has become very popular for providing data
services to Internet users although its overall design and feature set
are not well suited for outdoor broadband wireless access (BWA)
applications [1]. Therefore, IEEE 802.16 has been developed as a new
standard for BWA applications [2]. Recently, the much-anticipated
Worldwide Interoperability for Microwave Access (WiMAX) tech-
nology was introduced to promote the 802.16 standards whilein-
troducing features to enable mobile broadband services at vehicular
speeds beyond 120 km/h.

OFDM eliminates ISI and simply uses a one-tap equalizer to
compensate multiplicative channel distortion in quasi-static channels.
However, in fading channels with very high mobility, the time
variation of the channel over an OFDM symbol period results
in a loss of subchannel orthogonality which leads to inter-carrier
interference (ICI). A considerable amount of research on OFDM
receivers for quasi-static fading has been conducted, but amajor
hindrance to such receivers is the lack of mobility support [3]. Since
mobility support is widely considered to be one of the key features
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in wireless communication systems, and in this case ICI degrades
the performance of OFDM systems, OFDM transmission over very
rapidly time varying multipath fading channels has been considered
recently in a number of recent works [4–15].

The techniques proposed in these works range from linear equal-
izers, based on the zero-forcing (ZF) or the minimum mean-squared
error (MMSE) criterion [4–13], to nonlinear equalizers based on
decision-feedback or ICI cancelation [9–14]. Also near maximum-
likelihood approaches have been proposed [16]. It has been shown
that nonlinear equalizers based on ICI cancelation generally out-
perform linear approaches [10–13]. However, linear equalizers still
preserve their importance mainly because they are less complex.

In [12], performances of Matched Filter (MF), Least Squares(LS),
Minimum Mean Square Error (MMSE) and MMSE with Successive
Detection (SD) techniques with optimal ordering have been investi-
gated. However, since the number of subcarriers is usually very large
in high speed wide-band wireless standards, even the linearMMSE
equalizer considered in [12] demands very high computational load.

The specific structure of the Doppler-induced ICI in OFDM
systems operating over highly mobile channels presents a distinctive
feature of limited support of the Doppler spread that can be exploited
by the receiver. References [6–10] exploit the banded character of the
frequency-domain channel matrix to reach a complexity thatis only
linear in the number of subcarriers. In a certain sense, the assumption
of a banded frequency-domain channel matrix is a natural extension
of the time-invariant channel case, in which the frequency-domain
channel matrix is diagonal and hence banded with the smallest
possible bandwidth.

In [7], using the banded structure of the channel matrix, a simple
frequency domain equalizer has been proposed that can compensate
for the loss of subchannel orthogonality due to ICI. However, the
detection performance of the technique degrades substantially, since
the data to be detected cannot fully use the contributing observation
elements. The work presented in [13] combined [7] and [10] toderive
a recursive decision feedback equalizer receiver for ICI suppression.
The iterative MMSE serial linear equalizer (SLE) of [10], which takes
the banded structure of the channel matrix into account, seems to be
one of the most promising approaches to compensate for ICI. Iterative
MMSE is then applied to estimate frequency-domain symbols.In [8],
a block MMSE equalizer for OFDM systems operating over time-
varying channels is presented. By exploiting the banded structure of
the frequency-domain channel matrix, the complexity of theresulting
algorithm turns out to be smaller than that of [10].

In this paper, a new computationally feasible, maximuma pos-
teriori probability (MAP)-based data symbol detection algorithm is
proposed for OFDM systems operating over highly mobile channels,
as an alternative to the existing suboptimal equalization/detection
techniques summarized in the above paragraphs. The proposed de-
tection algorithm exploits the banded structure of the frequency-
domain channel matrix whose bandwidth is a parameter to be adjusted
according to the speed of the mobile terminal. This assumption
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enables us to decompose the main received signal vector intofinite
numbers of reduced-dimensional, sub-received signal vectors from
which the data symbols can be detected by the MAP algorithm in
an optimal and computationally efficient way. The decomposition
is achieved in such a way that all the components of the received
vector that contribute to the symbol to be detected are included in the
decomposed observation model. Data symbols in each sub-received
signal model are then detected successively by a MAP detection
algorithm. To implement MAP symbol detection in a computationally
efficient way, we employ a Markov Chain Monte Carlo (MCMC)
technique based on Gibbs sampling, which is a powerful statistical
signal processing tool to estimatea posteriori probability (APP)
values.

The resulting detection algorithm is compared with previously
proposed algorithms in terms of both bit error rate (BER) and
complexity requirements. Computational complexity investigation as
well as simulation results indicate that our algorithm has significant
performance and complexity advantages over the existing suboptimal
detection and equalization algorithms.

II. SYSTEM MODEL

Let us consider an OFDM system withN subcarriers and available
bandwidthB = 1/Ts where Ts is the sampling period. A given
sampling period is divided intoN subchannels by equal frequency
spacing∆f = B/N . At the transmitter, information symbols are
mapped into possibly complex-valued transmitted symbols according
to the modulation format employed. The symbols are processed
by anN−length Inverse Fast Fourier Transform (IFFT) block that
transforms the data symbol sequence into the time domain. The time-
domain signal is extended by a guard interval containingG samples
whose length is chosen to be longer than the expected delay spread
to avoid ISI. The guard interval includes a cyclically extended part
of the OFDM block to avoid ICI. Hence, the complete OFDM block
duration isP = N +G samples. The resulting signal is converted to
an analog signal by a digital-to-analog (D/A) converter. After shaping
with a low-pass filter (e.g. a raised-cosine filter) with bandwidth B,
it is transmitted through the transmit antenna with the overall symbol
duration ofPTs.

Let h(m, l) represent thelth path (multipath component) of the
time-varying channel impulse response at time instantt = mTs. The
discrete-time received signal can then be expressed as follows:

y(m) =
L−1
X

l=0

h(m, l)d(m− l) + w(m), (1)

where the transmitted signald(m) at discrete sampling timem is
given by

d(m) =
1√
N

N−1
X

k=0

s(k)ej2πmk/N , (2)

L is the total number of paths of the frequency selective fading
channel, andw(m) is additive white Gaussian noise (AWGN)
with zero mean and varianceE{|w(m)|2} = σ2

w. The sequence
s(k), k = 0, 1, · · · , N − 1, in (2) represent either quadrature-
amplitude modulation (QAM) or phase-sift-keying (PSK) modulated
data symbols withE{|s(k)|2} = 1.

At the receiver, after passing through the analog-to-digital (A/D)
converter and removing the cyclic prefix (CP), a fast Fouriertrans-
form (FFT) is used to transform the data back into the frequency
domain. Lastly, the binary data is obtained after demodulation and
channel decoding.

The fading channel coefficientsh(m, l) can be modeled as zero-
mean complex Gaussian random variables. Based on the wide-
sense stationary uncorrelated scattering (WSSUS) assumption, the

fading channel coefficients in different paths are uncorrelated with
each other. However, these coefficients are correlated within each
individual path and have a Jakes Doppler power spectral density
having an autocorrelation function given by

E{h(m, l)h∗(n, l)} = σ2
hl
J0(2πfdTs(m− n)), (3)

where σ2
hl

denotes the power of the channel coefficients of the
lth path. fd is the Doppler frequency in Hertz so that the term
fdTs represents the normalized Doppler frequency of the channel
coefficients.J0(.) is the zeroth order Bessel function of the first kind.

By using (2) in (1), the received signal can be written as

y(m) =
1√
N

N−1
X

k=0

s(k)
L−1
X

l=0

h(m, l)ej
2πk(m−l)

N + w(m), (4)

which upon defining the time-varying channel transfer function

H(k,m) ,
XL−1

l=0
h(m, l)e−j2πlk/N , (5)

becomes

y(m) =
1√
N

N−1
X

k=0

s(k)H(k,m)ej2πmk/N + w(m). (6)

The FFT output at thekth subcarrier, after excluding the guard
interval, can be expressed as

Y (k) =
1√
N

N−1
X

m=0

y(m)e−j2πmk/N

= s(k)G(k, k) + I(k) +W (k), (7)

whereI(k) is ICI caused by the time-varying nature of the channel
given as

I(k) =

N−1
X

i=0,i6=k

s(i)G(k, i). (8)

G(k, i) in (8) represents the average frequency domain time-
varying channel response, defined as

G(k, i) , (1/N)
N−1
X

m=0

H(i,m)ej2πm(i−k)/N . (9)

Similarly, the termG(k, k) , 1
N

PN−1
m=0 H(k,m) in (9) represent

the portion of the average frequency domain channel response at the
kth subcarrier andW (k) denotes discrete Fourier transform of the
white Gaussian noisew(m):

W (k) =
1√
N

N−1
X

m=0

w(m)e−j2πmk/N . (10)

Because of the termI(k) in (7), there is an irreducible error floor
even in the training sequences since pilot symbols are also corrupted
by ICI, arising from the fact that the time-varying channel destroys
the orthogonality between subcarriers. Therefore, channel estimation
should be performed either jointly with data or before the FFT block
in order to compensate for the ICI. Note that if the channel is
static or very slowly time-varying, that isH(k,m) ≈ H(k), then
it can be easily shown thatG(k, k) = H(k) and I(k) = 0 for
k = 0, 1, · · · , N − 1, resulting in a received signal at the output of
the FFT processor corresponding to thekth OFDM symbol given by

Y (k) = H(k)s(k) +W (k).

From (6) and (7), the FFT output received signal can be expressed
in vector form as

Y = Gs +W (11)
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whereY = [Y (0), Y (1), ..., Y (N−1)]T , s = [s(0), s(1), ..., s(N−
1)]T and W = [W (0),W (1), ...,W (N − 1)]T . For k, i =
0, 1, · · · , N − 1, the (k, i)th element of the matrixG = [G(k, i)] ∈
CN×N representing the time-varying channel is given by (9).

Under the assumption that the channel matrixG in (11) is per-
fectly known at the receiver, the maximum likelihood (ML) detector
performs an exhaustive search over the entire set of signal vectors
whose components are selected from the signal constellation formed
by the modulation scheme chosen. Especially in IEEE 802.16 based
systems, the lengthN of each OFDM symbol is very large; it can
take values as large asN = 1024 or evenN = 2048 especially for
high mobility applications. In this case an exhaustive search for the
ML solution would be very complex since the search space has an
extremely large number of constellation points, (|S|N , where|S| is
the cardinality of the signal constellation). On the other hand, all of
the lower complexity linear detectors given in Table 1 are suboptimal
since they do not take into account the correlation of the components
of the transformed noise and yield noise enhancement. Recently, a
nonlinear recursive detection technique using the decision-feedback
principle, namely the MMSE-SD algorithm (VBLAST), has been
proposed [12]. The performance of VBLAST depends critically on
the order in which the data vector components are processed.To
minimize error propagation effects and to improve the detection of
unreliable components, more reliable data vector components should
be detected first. Therefore, the algorithm depends on calculation
of the post-detection signal-to-interference-plus-noise ratio (SINR)
based upon MMSE detection as a measure of reliability, and sothe
calculation of SINR is compulsory at each iteration. Therefore this
algorithm is computationally intensive as a number of pseudo inverse
operations need to be performed. Moreover, its complexity grows
exponentially with the total number of subcarriers.

TABLE I
L INEAR DETECTIONMETHODS

Method Solution
Matched Filter (MF) ŝ = Q{G†

Y}
Zero Forcing (ZF) ŝ = Q{(G†G)−1G†Y}

MMSE ŝ = Q{(G†G+ INσ
2
w)−1G†Y}

whereIN is theN -by-N identity matrix.

III. MAP D ETECTIONALGORITHM

The necessity of detecting large numbers of symbols in OFDM
systems employed especially in highly mobile and wide-bandwireless
systems represents a significant computational burden as well as
creating some convergence problems. However, as is known [9],
time-varying channels produce a nearly-banded channel matrix G

whose only main diagonal,Q subdiagonals andQ superdiagonals are
nonzero. The bandwidth2Q+1, which is defined as the total number
of non-zero diagonals inG, is a parameter to be adjusted according
to the mobility-rate of the channel. The significant coefficients of
G thus are confined to the2Q+1 central diagonals. The parameter
Q ∈ {0, 1, · · ·N/2−1} controls the target ICI response length; larger
Q corresponds to a longer ICI span and, thus, increased estimation
complexity. In general,Q should be chosen proportional to the width
of the Doppler spectrum of the channel.

We now present an optimal low-complexity MAP detection algo-
rithm to detect the data symbolss from Y taking into account the
banded structure of the channel matrixG. From the observationY
in (11), the receiver attempt to detect the OFDM output symbol s,
assuming thatG is completely known by the receiver. The banded
structure of the channel matrixG implies that the data symbol

s(k), k = 0, 1, · · · , N − 1, contributes to a maximum of2Q + 1
observation elements as follows:

Yk = [Y (jk), Y (jk + 1), · · · , Y (ik)]
T , for (12)

jk = max{0, k −Q} and ik = min{N − 1, k +Q}.

Based on this observation, the received signal in (11) can bede-
composed intoN reduced-dimensional sub-observations from which
the data symbols can be detected in an optimal and computationally
efficient way. For a given indexk = 0, 1, · · · , N − 1 andQ, it can
be easily shown from (11) and (12) that

Yk = Gksk +Wk (13)

where,sk = [s(jk)], Wk = [W(jk)], Gk = [G(ik, jk)], for

ILk
, max{0, k −Q} ≤ ik ≤ IUk

, min{N − 1, k +Q} (14)

and

JLk
, max{0, k−2Q} ≤ jk ≤ JUk

, min{N−1, k+2Q}. (15)

Note that due to the banded structure ofG, some elements of the
matricesGk are zero and dim(Gk) ≤ (2Q+1)× (2(2Q+1)− 1).
The Gk ’s reach their maximum dimension when2Q + 1 ≤ k ≤
(N − (2Q+ 1)).

For k = 0, 1, · · · , N − 1, the MAP estimate of the data symbol
s(k) givenYk is

bsMAP (k) ≡ bs(k) = arg max
s(k)∈S

P (s(k)|Yk), (16)

whereS denotes the set of signal constellation points from which
s(k) takes values. Based on this approach,s(k) can be detected
sequentially fork = 0, 1, · · · , N − 1, incorporating the outcomes of
the previous estimates in a decision-feedback mode as follows.

� For k = 0, determine the estimatebs(0) from (16).
� For k = k+1 modify the observation vectorYk by subtracting

the terms coming from the contributions of the estimated data
symbolsbs(0), bs(1), · · · , bs(k − 1) as

eYk , Yk −
k−1
X

l=JL
k

g
(l)
k bs(l) (17)

whereg(l)
k is the lth column ofGk andJLk

andJUk
are defined in

(15).
� Determine the MAP estimate ofbs(k) from

eYk = eGkesk +Wk (18)

as
bs(k) = arg max

es(k)∈S
P (es(k)|eYk), (19)

where
eGk , Gk −

h

g
(0)
k ,g

(1)
k , · · · ,g(k−1)

k

i

, (20)

andesk is the vector obtained by removing the firstk − 1 elements
of sk.
� END IF k = N − 1.

The major problem is finding the values ofŝMAP (k) in a com-
putationally efficient manner. To see this difficulty we assume that
the data symbols are independent and identically distributed binary
phase shift keying (BPSK), taking values of+1 and−1. Note that
higher dimensional signal constellations can be treated similarly with
a straightforward extension. The conditional probabilityof es(k) given
the observation vectoreYk can be expressed as
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P (es(k) = +1|eYk) =
X

es
k

P (es(k) = +1,esk|eYk)

=
X

es
k

P (es(k) = +1|esk, eYk)P (esk| eYk) (21)

where the second identity follows by applying the chain ruleof
probability. The vectores

k
in (21) is obtained by canceling the

componentes(k) in esk and the summation is over all possible values
of es

k
. The number of combinations thates

k
takes grows exponentially

with the dimension ofesk and thus becomes prohibitive for large
values of the size of this vector. Thus, we resort to the Gibbssampler,
a Monte Carlo method to calculate thea posteriori probabilities of
the unknown symbols.

A. MAP Detection Based on Gibbs Sampling

The Gibbs sampler is an MCMC sampling method for numerical
evaluation of multidimensional integrals. Its popularityis gained from
the facts that it is capable of carrying out many complex Bayesian
computations. In this section we briefly explain the application of the
Gibbs sampling technique to our symbol detection problem where the
observation process is given by (18). For notational convenience we
drop the indexk and the ”tilde” from all the involved variables, e.g.
Y,G are shorthand notations foreYk, eGk, respectively. (21) can then
be expressed as

P (s(k) = +1|Y) =
X

s
k

P (s(k) = +1|sk,Y)P (sk|Y)

= Es
k
|Y {P (s(k) = +1|sk,Y)} . (22)

According to the Gibbs sampling based statistical Monte Carlo
estimation technique, an estimate of (22) can be evaluated by taking
the empirical average

P (s(k) = +1|Y) =
1

Ns

Ns
X

n=1

P (s(k) = +1|s(n)

k
,Y) (23)

where s
(n)

k
for n = 1, 2, · · · , Ns are samples drawn from the

conditional distributionP (sk|Y). There is a substantial body of
literature concerning the Monte Carlo Gibbs sampling technique; see,
e.g., [17], [18]. One possible version of the Gibbs sampler suitable for
calculating thea posteriori probabilities in (21) may be summarized
as follows.

Let s = [s(0), s(1), · · · , s(N − 1)]T be a vector of unknown data
symbols. LetY be the observed signal. To generate random samples
from the distributionP (s|Y), given the samples from the(n− 1)th
iterations(n−1) = [s(n−1)(0), s(n−1)(1), · · · , s(n−1)(N − 1)]T , the
Gibbs algorithm iterates at thenth iteration as follows to generate
the sampless(n) = [s(n)(0), s(n)(1), · · · , s(n)(N − 1)]T :
� Initialize s(0) randomly;
� for n = 1, 2, · · · , NT and fork = 0, 1 · · · , N − 1,

draw samples(n)
k fromP

“

s(k)|s(n)
0 , · · · , s(n)

k−1, s
(n−1)
k+1 , · · · , s(n)

N−1

”

.

Note that to ensure convergence, the Gibbs iteration is usually
carried out forNT = Nb + Ns iterations. The firstNb iterations
of the loop is called theburn-in period which is necessary for the
Monte Carlo simulation to reach its stationary distribution. Only the
sampless(n) = [s

(n)
0 , s

(n)
1 , · · · , s(n)

N−1]
T , n = Nb+1, · · · , NT , from

the lastNs iterations are used to calculate the expectation.
It is known that under regularity conditions [18, 19],

(i) the distribution ofs(n) converges toP (s|y), asn → ∞.
(ii) (1/Ns

PNs

n=1 P (s(k) = +1|s(n)

k
,Y) =

P

s
k

P (s(k) =

+1|sk,Y)P (sk|Y), asn → ∞.

B. Implementation of the Symbol Detector

From the previous section, we recall that to computeP (s(k) =
+1|Yk) =

P

s
k

P (s(k) = +1, sk|Yk), we need to perform the
summation on the right-hand side of (22). Whens has a large
dimension, the exact evaluation of this summation may not be
feasible and other more efficient techniques must be adopted. In this
section the Gibbs sampling-based Monte Carlo method summarized
in the previous section will be applied to develop a computationally
efficient algorithm for calculation of thea posteriori probabilities
P (s(k)|Y). From (23), it follows that we need to evaluateP (s(k) =

+1|s(n)

k
,Y), for n = 1, 2, · · · , NT . For this we define

λ
(n)
k , ln

P (s(k) = +1|s(n)

k
,Y)

P (s(k) = −1|s(n)

k
,Y)

, (24)

from which it can be easily seen that

P (s(k) = +1|s(n)

k
,Y) =

1

1 + exp
“

−λ
(n)
k

” . (25)

λ
(n)
k can be computed by expandingP (s(k) = +1|s(n)

k
,Y) as

P
“

s(k) = +1|s(n)

k
,Y

”

= (26)

p
“

Y|s(k) = +1, s
(n)

k
)P (s(k) = +1, s

(n)

k

”

P

s(k)∈{+1,−1} p
“

Y|s(k) = +1, s
(n)

k

”

P
“

s(k) = +1, s
(n)

k

” .

The data symbols are assumed to be independent and equally likely,
Therefore, it follows from (26) and (24) that

λ
(n)
k , ln

p(Y|s(k) = +1, s
(n)

k
)

p(Y|s(k) = −1, s
(n)

k
)
. (27)

Sincep(Y|s) ∼ exp(−|y −Gs|2), after some algebra, (27) can be
expressed as

λn(sk) =
1

σ2
w

ℜ
n

g
†
k(Y −Gk sk)

o

, (28)

where (·)† denotes the conjugate transpose andℜ{·} denotes the
real part of its argument.Gk is G with its kth columngk removed.
In summary, fork = 0, 1, · · · , N − 1, to estimate thea posteriori
probabilitiesP (s(k)|Y) in (21), the Gibbs sampler runs over all

symbolsNs times to generate a collection of vectors
n

s
(n)

k

oNT

n=Nb+1
which are used in (23) to compute the desired quantities.

C. Complexity Requirements

The computational complexity of the MAP symbol detector based
on Gibbs sampling proposed in this work is determined by the
parametersNs, Q,N and the constellation size of the transmitted data
symbols. The computation ofeYk in (18) for k = 0, 1, · · · , N − 1
requires a maximum of(4Q2+2Q)N complex multiplications (CMs)
and(4Q2+2Q)N complex additions (CAs) per data block. Assuming
BPSK signaling, the computation of thea posteriori probabilities
in (22) requires a maximum of(8Q2 + 2Q + 1)NNs CMs and
(8Q2+2Q−1)NNs CAs and computation of the empirical average
of a posteriori probabilities of the data symbols in (23) requiresNNs

CSs. Therefore, the whole algorithm requires of maximumN(4Q2+
2Q + (4Q2 + 2Q)Ns) CMs andN(4Q2 + 2Q + (4Q2 + 2Q)Ns)
CAs, leading to a total of2N(4Q2+2Q+(4Q2+2Q)Ns) complex
operations.

Several low complexity equalization algorithms have been de-
veloped recently, of which several are worth mentioning here to



5

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB)

B
E

R

 

 
ZF
MMSE
VBLAST
MAP−GS−Q=6,
MAP−Exact−Q=6

Fig. 1. BER comparison of various detection algorithms for OFDM systems;
TU Channel (6 taps), 420 km/h

compare their computational complexities with that of the Gibbs-
based algorithm.

Ruguni et al. [8] proposed a block MMSE technique based on
exploiting the banded structure of the channel matrixG. The matrix
inversion was obtained using a low-complexity decomposition such
as Cholesky or theLDL† decomposition. The algorithm requires
a total of (8Q2 + 22Q + 4)N complex operations. Schniter [10]
proposed a linear serial equalizer also based on exploitingthe banded
structure of the channel matrix. This algorithm requires a total of
(8/3Q3 +2Q2 +5/3Q+4)N complex operations. The complexity
of the serial MMSE equalizer is higher than that of the block MMSE
equalizer.

In the VBLAST algorithm, matrix inversion is needed of dimension
equal to the number of OFDM subcarriers. As a result, the compu-
tational complexity of the VBLAST receiver increases rapidly with
the number of subcarriers, which makes its real-time implementation
prohibitive for large numbers of subcarriers.

As can be seen easily, the complexity of our algorithm is of the
same order of the above equalization algorithms and is lowerthan the
VBLAST algorithm. However, as remarked earlier, these algorithms
are suboptimal as opposed to our optimal MAP detection algorithm
and perform poorly especially when the ICI is high. It is alsoworth
mentioning that our algorithm can be easily extended to an iterative
multiuser MAP detection scheme for OFDM systems.

IV. SIMULATION RESULTS

This section presents computer simulation results of the proposed
detection methods for rapidly varying mobile radio channels. The
system operates with a 5 MHz bandwidth and is divided into 512
tones (N = 512) with a total symbol period (Ts) of 115 µs, of
which 12.8µs constitute the CP. One OFDM symbol thus consists
of 576 samples, sixty-four of which constitute the CP. The normalized
Doppler frequencies arefd1 ∗ Ts = 0.0307 andfd2 ∗ Ts = 0.1075,
corresponding to an IEEE 802.16e mobile terminal moving with
speeds of 120 km/h and 420 km/h, respectively, for a carrier
frequency of 2.4 GHz. The wireless channels between the mobile
antenna and the receiver antenna are modeled based on a realistic
channel model determined by the COST-207 project in which Typical
Urban (TU) and Bad Urban (BU) channel models are considered.For
each OFDM symbol, Gibbs sampling is performed for 30 iterations,
with the first 10 iterations as the burn-in period.
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Fig. 2. BER comparison of various detection algorithms for OFDM systems;
TU Channel (6 taps), 120 km/h
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Sampling for the TU channel as a function of Q values
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The information symbols are BPSK modulated to yieldS = {±1}.
Figs.1-3 compare the BER performance of the proposed Gibbs-
based MAP detection algorithm, an equalization technique based on
zero forcing (ZF) proposed in [7], linear MMSE, and the VBLAST
algorithm proposed in [12], as a function of energy per bit tonoise
power ratio (Eb/N0) whereN0 is equal toσ2

w.
ZF causes noise enhancement while it eliminates the ICI. There-

fore, it is seen that ZF performance is the worst. The reason for this
can also be explained by the ill-conditioned matrix(G†G) to be
inverted. This problem can be solved with MMSE, which provides
a good trade-off between ICI cancellation and noise elevation by
using the knowledge of the noise level. In other words, the noise
enhancement can be reduced by the insertion of the noise power in
the inverse matrix that given in Table 1.

We note that linear equalization of the received signal is suboptimal
as mentioned in Section II and hence Gibbs-based MAP detection
algorithm (MAP-GS) is proposed in Section III. It is observed that
MAP-GS outperforms both ZF and MMSE receivers while it has
similar performance to VBLAST. Moreover, the exact MAP perfor-
mance is also included to benchmark the proposed algorithms. It can
be concluded from these figures that the compared algorithmshave
similar performance for the speed of 120 km/h while the performance
difference is obvious for the speed of 420 km/h. Moreover, itis seen
that the BER performance of all algorithms has slightly decreased for
the BU channel. In particular, it is observed that a savings in about 2
dB is obtained atBER = 10−3, as compared with MMSE detection
for the TU channel.

It has been shown that when a proper detection technique is
adopted, the time-varying nature of the channel can be exploited
as a provider of time diversity [12]. In [12], it was demonstrated
that VBLAST fully utilizes the time diversity while suppressing
the residual interference and the noise enhancement. Similarly to
VBLAST, we have seen that MAP-GS is also a useful detection
technique for time-varying channels while having lower complexity.
Therefore, in particular, it is not surprising that in simulations the
performance at 420km/h is better than that at 120km/h.

Finally, the BER performance of the proposed algorithm is pre-
sented as a function ofQ in Fig. 4. The parameterQ can be chosen
to trade off performance versus complexity. As a rule of thumb, we
have seen thatQ = ⌊fdmax

/∆f⌋+1, wherefdmax
is the maximum

Doppler frequency and∆f is the subcarrier spacing, is an appropriate
choice for Rayleigh fading [10]. In this paper,fdmax

/∆f values are
given as the normalized Doppler frequencies. It is concluded from
these curves that the selection of theQ value is highly dependent on
SNR values. In particular, forEb/N0 = 20dB, different Q values
show similar performance because the effects of ICI are not very
obvious relative to the effects of the additive Gaussian noise. The
Q value has a greater role forEb/N0 above 25dB because ICI is
dominant. We note thatQ = 3 is sufficient for SNRs below 20dB.

V. CONCLUSION

Conventional detection methods such as ZF and MMSE have
irreducible error floors at high normalized Doppler frequency fdTs

since ICI corrupts the orthogonality among subcarriers. Onthe other
hand, more sophisticated methods such as VBLAST require toomuch
complexity, especially for large numbers of subcarriers. Therefore,
we have proposed a new low-complexity maximuma posteriori
probability (MAP) detection algorithm that provides excellent per-
formance with manageable complexity for OFDM systems via the
Gibbs sampling technique. In the simulation section, a comparison
with other previously known receiver structures has been made and it
has been demonstrated that MAP detection based on Gibbs sampling

provides performance that is close to that of the optimal MAP
detection algorithm for realistic fading conditions.
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