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Abstract—In this paper, we consider the problem of multi-
functional compression with side information. The problem is
how we can compress a source X so that the receiver is able to
compute some deterministic functions f1 (X, Y1), w., fr(X,Ym),
where Y;, 1 < ¢ < m, are available at the receiver as side
information.

In [1], Wyner and Ziv considered this problem for the special
case of m =1 and f1(X,Y1) = X and derived a rate-distortion
function. Yamamoto extended this result in [2] to the case of
having one general function f1(X,Y1) . Both of these results
were in terms of an auxiliary random variable. For the case of
zero distortion, in [3], Orlitsky and Roche gave an interpretation
of this variable in terms of properties of the characteristic graph
which led to a particular coding scheme. This result was extended
in [4] by providing an achievable scheme based on colorings
of the characteristic graph. In a recent work, reference [5]
has considered this problem for a general tree network where
intermediate nodes are allowed to perform some computations.

These previous works only considered the case where the
receiver only wants to compute one function (m=1). Here, we
want to consider the case in which the receiver wants to
compute several functions with different side information random
variables and zero distortion. Qur results do not depend on the
fact that all functions are desired in one receiver and one can
apply them to the case of having several receivers with different
desired functions (i.e., functions are separable). We define a new
concept named the multi-functional graph entropy which is an
extension of the graph entropy defined by Korner in [6]. We show
that the minimum achievable rate for this problem is equal to the
conditional multi-functional graph entropy of random variable
X given side informations. We also propose a coding scheme
based on graph colorings to achieve this rate.

Index Terms—Functional compression, graph Coloring, graph
entropy.

I. INTRODUCTION

In this paper, we consider the problem of functional com-
pression for the case of having different desired functions at
the receiver. While data compression problem considers the
compression of sources at transmitters and their reconstruction
at the receivers, functional compression does not consider
the recovery of whole sources, but maybe one or some
functions of sources are desired at the receiver(s). For instance,
consider a network with one transmitter and one receiver. A
sensor is measuring the temperature at the source node. The
receiver only wants to compare this temperature with two or
several thresholds. For instance, if the temperature is above
a certain threshold or under another threshold, the receiver
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may announce an alarm. So, the receiver does not need to
have the exact temperature of the source, and only some parts
of source information is useful for the receiver. If the source
node wants to send whole information without considering this
fact, it should send its information at a rate at least equal to its
entropy. But, considering this fact that the receiver only needs
some part of source information with respect to its desired
functions, we want to compute how much the source node
can compress its information to have a lossless computation
of functions at the receiver.

In the functional compression problem with side informa-
tion, as shown in Figure 2, the receiver wants to compute a
deterministic function of source random variable X. Another
random variable Y, possibly correlated with X, is available
at the receiver. First, Shannon considered this problem in [7]
for the case f(X,Y) = X and zero distortion. In [1], Wyner
and Ziv derived a rate-distortion function for this problem in
the case of f(X,Y) = X. Then, in [2], Yamamoto extended
this result to the case of having a general function. Both of
these results are in terms of an auxiliary random variable. In
[3], Orlitsky and Roche considered this problem for the case
of zero distortion and gave an interpretation of this variable
in terms of properties of characteristic graph which led to
a particular coding scheme. This result was extended in [4]
by providing an achievable scheme based on colorings of the
characteristic graph. In a recent work, [S] has considered this
problem for a general tree network where intermediate nodes
are allowed to perform some computations.

These previous works only considered the case that the
receiver only wants to compute one function (m=1). Here,
we want to consider the case that the receiver wants to com-
pute several functions with different side information random
variables and zero distortion (Figure 1). It is worthwhile to
mention that our results do not depend on the fact that all
functions are desired in one receiver. In other words, one
can apply them to the case of having several receivers with
different desired functions (i.e., functions are separable). We
define a new concept named the multi-functional graph entropy
which is an extension of the graph entropy. We show that
the minimum achievable rate for this problem is equal to the
conditional multi-functional graph entropy of random variable
X given the side informations. We also propose a coding
scheme based on graph colorings to achieve this rate.

The rest of the paper is organized as follows. Section II
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Fig. 1. General multi-functional compression problem with side information

sets up the problem statement, presents the necessary technical
background and expresses previous results. Section III presents
our main results and contributions. Conclusions are given in
Section IV.

II. FUNCTIONAL COMPRESSION BACKGROUND

In this section, after giving the problem statement, we
express necessary preliminaries to explain the used framework.
We also state previous results.

A. Problem Setup

Consider two discrete memoryless sources (i.e., {X*}52,
and {Y;}?°, ) and assume that these sources are drawn
from finite sets X’ and ) with a joint distribution pg(z, yx).
We express n-sequence of these RVs as X = {X?}=i+n—1
and Yy = {V;}'=0*"! with joint probability distribution
pr(X,yr). Assume k = 1,...,m (we have m random variables
as side information at the receiver).

The receiver wants to compute m deterministic functions
fo : XXV — Zpor fr, - X" x Y — ZJ, its vector
extension. Without loss of generality, we assume [ = 1 and to
simplify the notations, n will be implied by the context. So, we
have one encoder e, and m decoders rq, ..., 7,, (one for each
function and its corresponding side information). Encoder e,

maps

ep: X" —{1,.., 2"} (1)
and, each decoder r; maps
e {1, 2"l x {1, 2) — 2 (2)
The probability of error in decoding fj is,
Pl = Pr{(x,y&) : fr(X,¥k) # rr(ex(x),y2)] ()
and, total probability of error is,
pr=1-JJa-Pn) (4)

k

In other words, we declare an error when we have an error in
computation of at least one function. A rate 12, is achievable if
P — 0 when n — oco. Our aim here is to find the minimum
achievable rate.

B. Definitions and Prior Results

In this part, first we briefly explain some definitions used
in formulating our results. Following definitions are for the
case of considering having only one function at the receiver
(i.e., m = 1). In the next section, we shall state some new

ex(X)
X——»| ENCODER | DECODER |—— f(X,Y)
Y
Fig. 2. Functional compression problem with side information, having one

desired function at the receiver

concepts for the case of having several functions . To simplify
notations, for the case of having one function, let us use Y,
f(X,Y) and p(x,y) instead of Y7, f1(X,Y1) and py(z,y1)
defined in the previous section.

Definition 1. The characteristic graph G, = (V,, E;) of
X with respect to Y, p(x,y), and f(x,y) is defined as
follows: V, = X and an edge (v1,12) € X? is in E, iff
there exists a y € Y such that p(xz1,y)p(x2,y) > 0 and
f@y,y) # fla2,y).

In other words, in order to avoid confusion about the
function f(z,y) at the receiver, if (z1,22) € E,, then the
descriptions of x; and z must be different. Shannon first
defined this when studying the zero error capacity of noisy
channels [7]. Witsenhausen [8] used this concept to study a
simplified version of our problem where one encodes X to
compute f(X) with zero distortion.

The n-th power of a graph G, is a graph G} = (V*, E?)
such that V) = & and two sequences x; and Xy are
connected iff at least one of their coordinates is connected

in G.

Definition 2. Given a graph G = (V, E) and a distribution
on its vertices V, Korner [6] defines the graph entropy as
follows:

min

Ha(X) =
G( ) XeWel'(GQ)

I(W; X), (5)

where T'(G) is the set of all independent sets of G.

The notation X € W € I'(G) means that we are minimizing
over all distributions p(w, z) such that p(w,z) > 0 implies
x € w where w is an independent set of the graph G. Witsen-
hausen [8] showed that the graph entropy is the minimum rate
at which a single source can be encoded such that a function
of that source can be computed with zero distortion.

Orlitsky and Roche [3] defined an extension of Korner’s
graph entropy, the conditional graph entropy.

Definition 3. The conditional graph entropy is
Ho(X|Y) = I(W; X|Y).

min

XeWel'(Q)
W-X-Y

Notation W — X — Y indicates a Markov chain.

A vertex coloring of a graph is a function cg : V — N of
a graph G = (V, E) such that (z1,22) € E implies cg(z1) #
¢ (x2). The entropy of a coloring is the entropy of the induced
distribution on colors. Here, p(cg(z)) = p(cg'(cq(z))) and

(6)



cg'(x) = {7 : cg(T) = cq(z)} is called a color class. A
valid coloring which has the minimum entropy among other
valid colorings is called the minimum entropy coloring.

Definition 4. Given A C X x ), define p(z,y) =
p(z,y)/p(A) when (z,y) € A and p(x,y) = 0 otherwise. In
other words, p is the distribution over (x,y) conditioned on
(z,y) € A. Denote the characteristic graph of X with respect
t10Y, p,and f as Gy = (Vy, E,) and the characteristic graph
of Y with respect to X, p, and f as G, = (V,, E,). Note that
Em C E, and Ey C Ey. Finally, we say that cg, and cg, are
e-colorings of G and G, if they are valid colorings of G, and
éy defined with respect to some set A for which p(A) > 1—e.

In [9], the Chromatic entropy of a graph G is defined as
Definition 5.

Hg(X) = H(cg(X)).

cq is an e-coloring of G
It means that the chromatic entropy is a representation of
the chromatic number of high probability subgraphs of the
characteristic graph. In [10], the conditional chromatic entropy
is defined as

Definition 6.
Hy(X[Y) =

min
cg is an e-coloring of G

H(ca(X)[Y).

The above optimizations are minima, not infima. It is
because that there are finitely many subgraphs for any fixed G
and thus, there are only finitely many e-colorings regardless
of €. There are some recent works considering the problem
of finding the minimum entropy coloring of a graph which in
general is NP-hard (e.g., [11]).

Korner proved in [6] that in the limit of long sequence
length, the chromatic entropy approaches the graph entropy.

Theorem 7.

Jim Y, (X) = He(X). %)
This result says that one can compute a function of a discrete
memoryless source with vanishing probability of error by first
coloring a sufficiently large power graph of the characteristic
graph of the source with respect to the function, and then,
encoding the colors using any code that achieves the entropy
bound of the coloring random variable such as Slepian-Wolf
code.
The conditional version of the above theorem was proved
in [4].

Theorem 8.

lim nggn(Xw) = He(X|Y). (8)

n—oo n

Now, consider the network shown in Figure 2 in which the
receiver wants to compute a deterministic function of source
random variable X'; while another random variable Y, possibly
correlated with X, is available at the receiver as the side
information. First, Shannon considered this problem in [7] for
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Fig. 3. Simple example of multi-functional compression problem

the case f(X,Y) = X and zero distortion. In [1], Wyner and
Ziv derived a rate-distortion function for this problem for the
case f(X,Y) = X. Then, in [2], Yamamoto extended this
result to a general function. Both of these results are in terms
of an auxiliary random variable. In [3], Orlitsky and Roche
considered this problem for the case of zero distortion. They
gave an interpretation of this variable in terms of properties
of the characteristic graph which led to a particular coding
scheme. In particular, they proved that the optimal achievable
rate for this problem is Hg(X|Y'). This result was extended
in [4] considering Theorem 8. An achievable encoding scheme
was proposed in [4] which was based on colorings of the
characteristic graph of X. It was shown that any colorings of
high probability subgraphs of characteristics graph of X leads
to an achievable encoding-decoding scheme. It is worthwhile
to mention that although finding minimum entropy colorings
required to achieve the optimal rate is NP-hard [11] but the
simplest colorings will improve over the bound H(X|Y)
which arises when trying to completely recover X at the
decoder. In a recent work, [5] has considered this problem for
a general tree network where intermediate nodes are allowed
to perform some computations.

III. MAIN RESULTS

The previous works only considered the case that the
receiver only wants to compute one function (m=1). Consider
the network shown in Figure 1. The receiver wants to compute
m functions with different side information random variables.
We want to compute the minimum achievable rate for this
case. Note that our results do not depend on the fact that
all functions are desired in one receiver. In other words, one
can apply them to the case of having several receivers with
different desired functions (functions are separable). First, let
us consider the case m = 2 (i.e., the receiver has two different
functions to compute). Then, we extend results to the case of
arbitrary m.

Consider Figure 3. In this problem, the receiver wants to
compute two deterministic functions f1(X,Y7) and fo(X,Y3);
while, Y; and Y, are available at the receiver as the side
information. We want to find the minimum achievable rate
in which the source node X may encode its information so
that the decoder be able to compute its desired functions.

Let us call Gy, = (Vx,EJfl) the characteristic graph of
X with respect to Y7, p1(z,y1) and f1(X,Y7), and Gy, =
(V*,Ef,) the characteristic graph of X with respect to Yo,
p2(z,y2) and fo(X,Y>). Now, define Gy, p, = (V¥ EY 1)
such that £ , = E |JE%,. In other words, Gy, , is the or
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Fig. 4. Source coding scheme for multi-functional compression problem
with side information

function of G4, and Gy,. We call Gy, ¢, the multi-functional
characteristic graph of X.

Definition 9. The multi-functional characteristic graph
Gpyp, = (V5 Ef ) of X with respect to Y1, Ya, p1(z,41),
p2(x,y2) ,and f1(xz,y1), f2(x,y2) is defined as follows:

VT = X and an edge (v1,72) € X? is in ES 4, if there
exists a y1 € Y1 such that pi(x1,y1)p1(22,y1) > 0 and
fi(x1,y1) # fi(xe,y1) or if there exists a yo € Yo such
that pa(w1,y2)p2(z2,y2) > 0 and fao(x1,y2) # f2(z2,92) -

Similarly to Definition 7, we define the multi-functional
graph entropy as follows.

Theorem 10.
(X). 9

Similarly to Definition 8, the conditional multi-functional
graph entropy can be defined as follows.

Theorem 11.

.1
Hey,, (XIY) = lim —Hg, (X[Y). (10

where G, is the n-th power of Gy, s,. Now, we can state
"fif2 12
the following theorem.

Theorem 12. Hg, , (X|Y1,Y2) is the minimum achievable
rate for the network shown in Figure 3.

Proof: To show this, we first show that R, >
Hg, ,, (X|Y1,Y2) is an achievable rate (achievability), and
no one can outperform this rate (converse). To do this, first,
we show that any valid coloring of G?l s, for any n leads
to an achievable encoding-decoding scheme for this problem
(achievability). Then, we show that every achievable encoding-
decoding scheme performing on blocks with length n, induces
a valid coloring of G?l f, (converse).

Achievablity: According to [4], any valid coloring of G}Ll
leads to successfully computation of f;(X,Y) at the receiver.
If cay, is a valid coloring of G}Ll, there exists a function r;
such that rl(cG?1 (X),Y1) = f1(X,Y;), with high proba-
bility. A similar argument holds for Gs,. Now, assume that
G, is a valid coloring of G}Llh. Since, E}‘l - E}‘lf2
and ]_ff‘l’}‘2 - E;?l f,> any valid coloring of G?l 2 induces valid
colorings for G’ and G7,. Thus, any valid coloring of G ,
leads to successful computation of f1(X,Y7) and f5(X,Y32)
at the receiver. So, Gy, leads to an achievable encoding

scheme (i.e. there exist two functions r; and r, such that
T1 (CGvftlf2 (X), Yl) = fl (X, Yl) and TQ(CG}Llfz (X), YQ) =
f2(X,Y5)), with high probability.

For the case of having the identity function at the receiver
(i.e., the receiver wants the whole information of the source
node), Slepian and Wolf proposed a technique in [12] to
compress source random variable X up to the rate H(X|Y)
when Y is available at the receiver. Here, one can perform
Slepian-Wolf compression technique on the minimum entropy
coloring of large enough power graph and get the mentioned
bound.

Converse: Now, we show that any achievable encoding-
decoding scheme performing on blocks with length n, in-
duces a valid coloring of G;}l for In other words, we want
to show that if there exist functions e, r; and r, such that
rl(e(X),Yl) = fl(X7Y1) and T2(€<X),Y2) = fg(X,Yg),
e(X) is a valid coloring of G} /,.

Let us proceed by contradiction. If e(X) were not a valid
coloring of G}Ll 7, there must be some edge in £, , with both
vertices with the same color. Let us call these two vertices x;
and xo which take the same values (i.e., e(x1) = e(xz2)), but
also are connected. Since they are connected to each other,
by definition of G?l oo there exists a y; € JY; such that
p1(X1,y1)p1(x2,y1) > 0 and fi(x1,y1) # fi(x2,y1) or
there exists a yo € ) such that py(x1,y2)p2(X2,y2) > 0 and
fa(x1,y2) # f1(x2,y2). Without loss of generality, assume
that the first case occurs. Thus, we have a y; € ); such that
p1(x1,y1)p1(x2,y1) > 0 and fi(x1,y1) # fi1(x2,¥1)- So,
ri(e(x1),y1) # ri(e(x2),y1). Since e(x1) = e(xs2), then,
ri(e(x1),y1) # ri(e(x1),y1). But, it is not possible. Thus,
our contradiction assumption was not true. In other words,
any achievable encoding-decoding scheme for this problem
induces a valid coloring of G}Ll f, and it completes the proof.

|

Now, let us consider the network shown in Figure 1 where
the receiver wishes to compute m deterministic functions of
source information having some side informations.

Theorem 13. Hg, . (X|V1,..,Yy) is the minimum
achievable rate for the network shown in Figure 1.

The argument here is pretty similar to the case m = 2
mentioned in Theorem 12. So, for brevity, we only sketch the
proof. To show this, one may first show that any colorings
of multi-functional characteristic graph of X with respect to
desired functions (Gy, ... .) leads to an achievable scheme.
Then, showing that any achievable encoding-decoding scheme
induces a coloring on Gy, . 7, completes the proof.

IV. CONCLUSION

In this paper, we considered the problem of multi-functional
compression with side information. The problem is how we
can compress a source X so that the receiver is able to com-
pute some deterministic functions f1(X,Y7), ..., fi(X,Y}),
where Y is available at the receiver as the side information.

There are some works considered this problem for the case
of having one desired function at the receiver. In [1], Wyner



and Ziv considered this problem for the special case of m =1
and f1(X,Y7) = X and derived a rate-distortion function.
In [2], Yamamoto extended this result to the case of having
one general function f;(X,Y7). Both of these results were in
terms of an auxiliary random variable. For the case of zero
distortion, Orlitsky and Roche gave in [3] an interpretation
of this variable in terms of properties of characteristic graph
which led to a particular coding scheme. This results was
extended in [4] by providing an achievable scheme based on
colorings of the characteristic graph. Also, in a recent work,
reference [5] has considered this problem for a general tree
network where intermediate nodes allowed to perform some
computations.

Here, we considered the case that the receiver wants to
compute several deterministic functions with different side
information random variables and zero distortion. Our results
do not depend on the fact that all functions are desired in one
receiver and one can apply them to the case of having several
receivers with different desired functions (i.e., functions are
separable). We defined a new concept named the multi-
functional graph entropy which is an extension of the graph
entropy defined by korner in [6]. We showed that minimum
achievable rate for this problem is equal to the conditional
multi-functional graph entropy of random variable X given the
side informations. We also proposed a coding scheme based
on graph colorings to achieve this rate.
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