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Abstract—Routing in delay tolerant networks (DTN) have
attracted a great interest recently. Increasingly popular type
of DTNs are mobile social networks (MSN) also called pocket
switched networks. Hence, analyzing accurately social network
properties has become an important issue in designing efficient
routing protocols for MSNs. In this paper, we first introduce a
new metric for detecting the quality of friendships accurately.
Using the introduced metric, each node defines its friendship
community as the set of nodes having close friendship with itself
either directly or indirectly. Then, we present Friendship Based
Routing in which temporally differentiated friendships are used
to make the forwarding decisions of messages. Real trace-driven
simulation results show that the introduced algorithm achieves
better delivery rate while forwarding fewer messages than the
existing algorithms.

I. I NTRODUCTION

Delay Tolerant Networks (DTN) [1][2], are sparse mobile
wireless networks in which the connection between nodes
changes over time and it is usually not possible to find a path
from source to destination at any time instance. Among many
real life examples of such networks, mobile social networks
(MSN) (called also pocket switched networks) are of growing
significance as a result of the rapid and wide spread usage of
different kinds of devices (e.g., cell phones, GPS devices)with
wireless capabilities among people and their surroundings.

Since mobile social networks has the potential of collabora-
tive data gathering via already deployed and human maintained
devices, opportunistic routing of messages in these networks
has attracted a great interest recently. However, due to the
intermittent connectivity and lack of continuous end-to-end
path between the nodes, routing is a challenging problem in
these networks. To ease these difficulties and enable nodes
to give better forwarding decisions through routing, inherent
social network properties of these networks have been utilized.
The connectivity (opportunity for message transfers) between
human-carried devices is achieved when they get into the range
of each other. Thus, the relationship defining the frequencyand
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duration of the connectivity between nodes has to be analyzed
to route messages efficiently. For example, consider a high
school network. Students in the same class have higher chance
to see (so also to transfer data to) each other than the students
from other classes that can meet only during breaks.

In this paper, utilizing the social network features of an
MSN, we presentFriendship Based Routing. To analyze social
relations between nodes (i.e. people), we need to define their
friendshipsin terms of their behavior. For this purpose, we
define a new metric measuring different aspects of friendship
behavior recorded in the history of their encounters with other
nodes. We consider both direct and indirect friendship. We
also differentiate friendships according to time of day and
propose to use different friendship communities in different
time periods.

The rest of the paper is organized as follows. In Section II
we present a brief overview of previous work. In Section III
we give the detailed design of proposed algorithm. In Sec-
tion IV, we talk about our simulation model and its results.
In Section V, we discuss the presented algorithm and outline
the future work. Finally, we offer conclusion in Section VI.

II. RELATED WORK

In the previous studies, several routing algorithms have been
introduced for DTNs based on different techniques (multi-
copy based [3]-[5], single-copy based [6]-[8], erasure coding
based [9]-[11]). Besides these studies, most of which assume
simplistic random mobility models (such as random walk) for
the movement of nodes, many recent studies have focused
on DTNs consisting of human-carried devices (we call them
MSN) and tried to analyze the social network properties of
these networks to aid the design of efficient routing algorithms.

In [12], Daly et al. use both the betweenness and the
similarity metric to increase the performance of routing. In
each contact of two nodes, the utility function containing
these two metrics is calculated for each destination, then the
node having higher utility value for a destination is given the
messages. In [13], each node is assumed to have two rankings:
global and local. While the former denotes the popularity
(i.e. connectivity) of the node in the entire society, the latter
denotes its popularity within its own community. Messages
are forwarded to nodes having higher global ranking until
a node in the destination’s community is found. Then, the
messages are forwarded to nodes having higher local ranking
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Fig. 1. Six different encounter history between nodesi and j in the time
interval [0, T ]. Shaded boxes show the encounter durations during which the
nodes are within their communication ranges.

within destination’s community. A distinction between local
community members and others is also made in [14] and
the forwarding is optimally balanced between these two kinds
of encountered nodes. In [15], a community-based epidemic
forwarding scheme is presented. First, it efficiently detects the
community structure using local information of nodes. Then,
it forwards the message to each community through gateways.

In some other studies several interesting properties of social
networks are considered. In [16], irregular deviations from
the habitual activities of nodes are addressed and it is shown
that worst-case performance of routing can be improved by
scattering multiple copies of a message in the network such
that even deviant (less frequently encountered) nodes willbe
close to at least one of these copies. In [17], the effect of
socially selfish behavior of nodes on routing is studied.

In this paper, we introduce a new routing algorithm different
from all above studies. First, we define a new metric to
understand relations between nodes more accurately. Second,
we propose a local community formation based on this new
friendship detection metric. We use not only direct relations
but also indirect ones in a different way than it was considered
previously. Third, we introduce a new approach to handle
temporal differentiations of node relations. Throughout the
presentation of all these features of our design, we show in
detail how they differ from the previous work.

III. T HE PROPOSEDSCHEME

A. Analysis of Node Relations

Since the nodes in an MSN encounter intermittently, the
link quality between each pair of nodes needs to be estimated
to learn about the possible forwarding opportunity between
nodes. Then, the temporal encounter information between
nodes can be condensed to a single link weight and the
neighboring graphs of nodes can be constructed.

Previously, several metrics, including encounter frequency,
total or average contact period and average separation pe-
riod [15] were used to extract the quality of links between pairs
of nodes. However, all these metrics have some deficiencies in
the accurate representation of forwarding opportunity between
nodes. For example, consider the six different encounter
histories of two nodes,i and j in Figure 1. Shaded boxes
show the encounter durations between these nodes in the time

intervalT . In casesa andb, the encounter frequencies are the
same but the contact between the nodes lasts longer in case
b than in casea. Therefore encounter patternb offers better
forwarding opportunities thana does. Comparing casesb and
c, we notice that the contact durations are the same but the
encounter frequencies are different. Since frequent encounters
enable nodes to exchange messages more frequently, casec
is preferable tob for opportunistic forwarding. Among the
previously proposed metrics, encounter frequency fails (to
represent the stronger link) in the comparison of casesa and
b, and total contact duration fails in the comparison of casesb
and c. Although average separation period can assign correct
link weights representing the forwarding opportunity in cases
a, b and c, it fails in other cases. When we compare casesc
and d, both the contact durations and encounter frequencies
are the same. However, casec is preferred tod due to the
even distribution of contacts. In [15], preference of casec
is achieved by utilizing irregularities in separation period as
penalty factor. However, deciding on how much it will affect
the link quality in different cases is still difficult. Moreover,
for the cases such ase an f , average separation period
fails to assign accurate link weights. Ift1 = t2, average
separation period can not differentiate casesb ande but case
e is preferable due to its longer contact duration (average
separation period can even give preference to caseb if t1 is
slightly less thant2). Similarly, if t1 = t3, average separation
period can not differentiate casesb andf even though caseb
offers better forwarding opportunity.

To find a better link metric that reflects the node relations
more accurately, we have considered the following three be-
havioral features of close friendship: high frequency, longevity,
regularity. That is, to be considered friends of each other,two
nodes need to contact frequently, their contacts must be long-
lasting and regular. Note that frequency and regularity are
different. Two nodes may meet infrequently but regularly (for
example, once a week) and still be considered friends.This is
of course a weaker friendship than the one with contacts both
frequent and regular. The previous metrics take into account
some of these features but not all of them at the same time.
To account these properties in one metric, we introduce a
new metric calledsocial pressure metric(SPM) that may be
interpreted as a measure of a social pressure that motivates
friends to meet to share their experiences. In our setting, this
amounts to answering the question ‘what would be the average
message forwarding delay to nodej if node i has a new
message destined to nodej at each time unit?’. Then, we
define the link quality (wi,j) between each pair as the inverse
of this computed value. More formally:

SPMi,j =

∫ T

t=0
f(t)dt

T
andwi,j =

1

SPMi,j

wheref(t) returns the remaining time to the first encounter of
these nodes after timet (if they are currently in contactf(t) =
0). The bigger the value ofwi,j , the closer the friendship (the
higher the forwarding opportunities) between the nodesi and
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Fig. 2. Encounter history between nodei and j (upper) and between node
j andk (lower) in the same time interval [0, T ].

j. Note that, when we evaluate all cases in Figure 1,wi,j gives
preference to cases which offer more forwarding opportunities.

B. Friendship Community Formation

Each node can compute its link qualities (wi,j) with other
nodes from its contact history. Then, it can define its friendship
community as a set of nodes having a link quality larger
than a threshold (τ ) with itself. But this set will include only
direct friends. However, two nodes that are not close friends
directly (they even may not have contacts at all) still can
be close indirect friends. This happens if they have a very
close friend in common so that they can contact frequently
through this common friend. To find such indirect friendships
between nodes, we propose to useconditionalSPM (or sim-
ply CSPM ) between nodes. Consider the sample encounter
history in Figure 2. While the upper one shows the contacts
between nodesi and j, the lower one shows the contacts
between nodesj andk. We defineCSPMj,k|i as the average
time it takes nodej to give nodek the message received
from node i. That is, for the contact history in Figure 2,
nodej computesCSPMj,k|i = (

∫ td1

s=0
s +

∫ td2

s=0
s)/T instead

of SPMj,k = (
∫ td3

s=0
s +

∫ td4

s=0
s)/T .

Each node can detect its direct friendships from its own
history. To detect indirect friendships, a node needsCSPM
values of its friends for its non-contact nodes. Once such
CSPM values are received periodically, each node can form
its community using the following definition:

Fi = {j | wi,j > τ and i 6= j} ∪

{k | wi,j,k > τ andwi,j > τ and i 6= j 6= k}

where, to simplify the data collection and computation, we
approximate1 the indirect link weight aswi,j,k = 1/(SPMi,j+
CSPMj,k|i). The above equation enables nodes to detect
their one-hop direct and two-hop indirect friends. Indirect
friendship can easily be generalized to friends more than two
hops away. We have not included such extension because [15]
demonstrated that nodes in the same community are usually
at most two hops away from each other.

Note that the introduced method for detecting the indi-
rect strong links between nodes is different than previous
approaches (based on transitivity) which basically consider the

1For lack of space, a more complex but precise formula based on computing
the delay of messages accumulated during the indirect transfer is omitted here;
it is included in the extended version of the paper.
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Fig. 3. Encounter distributions of node 28 (left) and 56 (right) in MIT traces.

links between node pairs separately and assume a virtual link
between nodei andk if wi,jwj,k > τ . However, in our model
we can detect indirect relations more accurately. For example,
if node j has a weak link with nodek, wi,jwj,k may be less
than τ . However, if nodej usually meets nodek in a short
time right after its meeting with nodei, our metric can still
consider nodek as a friend of nodei.

When we analyzed a long-period and commonly used social
network data (MIT Reality dataset [21], see Section IV for
details), we have also noticed temporal but regular [18] differ-
entiations in node relations. Consider the Figure 3 illustrating
the distribution of contact times of two different nodes (28
and 56)2 with other nodes (with ids [0-96]) in MIT traces.
Clearly, nodes encounter other nodes in some specific periods
of the day. For example, node28 meets with node38 usually
between 9am to 7pm while it meets with node48 usually
between 1pm to 7pm.

It is reasonable to expect similar behavior in other mobile
social networks. For example,i can be a school, work or
home friend of a nodej and the encounter times can differ
accordingly. Moreover,i can be both school and home friend
of j so that they stay together during the day. Previously some
aging mechanisms [6] [20] were used to reflect this feature of
node relations. However, the most significant drawback of such
models is their slow reaction for periodically changing quality
of node’s links. For example, around 7pm, the link quality
of node 56 with node 38 (see Figure 3) starts to decrease
with aging effect3 and still keeps a high value for some time,
however node 56 usually does not meet with node 38 until
10am next day. Therefore, forwarding a message considering
an aged but still strong link quality may cause high delays
when the link is already in its periodic low.

To reflect this differentiation in the strength of friendships
properly, we propose to use temporal friendship communities.
That is, each nodei will compute itsFi for different periods
of the day and will have different friendship communities in
different periods. For example, if we divide a day into periods
of three hour duration, according to Figure 3 node 85 can be
the only friend of node 56 in period 3am-6am, whereas nodes
28, 85 and 95 can be friends of node 56 in period 9pm-12am.

2We selected these nodes since they are the top two nodes having the most
encounters with other nodes.

3wi,j = wi,jαt wheret is the time since the last encounter and0 < α < 1

is aging parameter.
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Fig. 4. Simulation Results: Delivery Ratio (Left), Average Cost (Middle), Efficiency (Right)

C. Forwarding Strategy

Once each node constructs its friendship community for
each period, the forwarding algorithm works as follows. If
a nodei having a message destined tod meets with nodej,
it forwards the message toj if and only if nodej’s current
friendship community (in the current period) includes noded
and nodej is a stronger friend of noded than nodei is. It
should be noted that even if nodej has a better link with node
d than nodei’s has, if nodej does not included in its current
friendship community, nodei will not forward the message to
nodej.

We also need to handle period boundary cases which arise
when the encounter of two nodes is close to the end of the
current period. In such a case, nodes use their friendship
communities in the next period. For example, if we use three
hour periods for community formation and nodei meets
node j at 2:45pm, it would be better if the nodes use their
communities in the next three hour period (3pm − 6pm) to
check whether the destination is included. Since the time
remaining in the current period is very limited, using the
current communities may lead to make wrong forwarding
decisions. In our algorithm, we use thresholdtb and let the
nodes use next period’s community information if remaining
time to the end of current period is less thantb.

IV. EVALUATIONS

A. Simulation Setup

To evaluate our algorithm, we used real trace-driven simula-
tions based on MIT Reality data [21]. This data consists of the
traces of 97 Nokia 6600 smart phones which were carried by
students and staff at MIT over nine months. The phones run
Bluetooth device discovery every five minutes and log contacts
(i.e. start and end time) with other nodes in their proximity.
In our simulations, we used the contacts logged during a three
month period from the beginning of February to the end of
April. This is the time of the second academic semester, so
human relationships are relatively stable and the participants
are active on the campus [18].

In the simulations, we generate 5000 messages, each from
a random source node to a random destination node4 at every

4Since some nodes do not have any contacts with others in the selected three
month period, we did not assign those nodes as either source ordestination
to prevent meaningless messages.

two minutes. All messages are assigned a TTL value represent-
ing the delay requirement. To form friendship communities,
we used three hour periods and setτ = 1/80 min−1 and tb =
15 min. We repeated each simulation 10 times with different
random seeds and took the average of each run as result.

B. Algorithms in Comparison and Performance Metrics

In simulations, we compare our algorithm with two other
benchmark algorithms, PROPHET [6] and SimBet [12]. In the
former, each node calculates its delivery predictability using its
contact history along with transitivity and aging featuresand
relays a packet to a node with higher delivery predictability.
In the latter, each node calculates a simbet metric using
two social measures (similarity and betweenness) and the
messages are forwarded to nodes with higher simbet metric.
For both algorithms we use the same parameters presented
in [6] and [12]. To show the highest delivery ratio that couldbe
achieved with current setting in the network, we also present
the results of epidemic routing [3].

For the comparison of our algorithm to these existing algo-
rithms, we use the following three metrics: message delivery
ratio, average cost, and routing efficiency. Delivery ratiois the
proportion of messages that are delivered to their destinations
among the total messages generated. Average cost is the
average number of forwards done per message during the
simulation. Finally, routing efficiency [19] is defined as the
ratio of delivery ratio to the average cost.

C. Simulation Results

In Figure 4, we show comparison of all algorithms in terms
of the three aforementioned metrics. As it is seen in the left
graph, while our algorithm achieves 72% of delivery ratio,
Prophet and SimBet could only deliver 60% and 58% of all
messages, respectively. Moreover, as the middle graph shows,
our algorithm achieves this higher delivery ratio with almost
the same average cost as SimBet, and with less than half
of Prophet’s average cost. As a result, the routing efficiency
achieved by our algorithm is 20% higher than the efficiency
of SimBet and 170% higher than the efficiency of Prophet.
Note that epidemic routing achieves the optimal delivery but
it achieves the highest cost and the lowest efficiency.



V. D ISCUSSIONS ANDFUTURE WORK

A. Complexity of Introduced Algorithm

Since in the introduced algorithm each node determines its
friendship community in each period using mainly its own
history, there is no much control message or system mainte-
nance transfers occurring between nodes. The only information
(to decide its indirect close friends) that a node needs from
its contacts is their CSPM values with its non-contact nodes.
However, this information is requested from only close friends
of nodes and performed with small size messages compared
to data messages. On the other hand, the control message
overhead in Prophet and SimBet is significantly higher than in
our algorithm, because nodes change their summary vectors
during contact times.

B. Number of Periods vs. Performance

Obviously, increasing the number of periods that a day is
divided into (thus the local friendship communities each node
has) will enable the node to make better forwarding decisions.
On the other hand, the cost of computing the friendship
communities in each period and also the space required to
hold different communities will increase as well. However,as
long as this cost could be handled and there is enough space
at nodes, better results could be achieved.

C. The Effect of Thresholds

Each node forms its friendship community from nodes with
strong links (i.e., with weights larger than a threshold) with
itself. Clearly, as the threshold increases (decreases), friend
lists of nodes get smaller (bigger) and routing performanceof
our algorithm changes. Similarly using differenttb values can
change the routing performance. Therefore, in future work we
will look at this issue and try to find optimum values ofτ and
tb.

D. Possible Extensions

We believe that the performance of the introduced algorithm
can be improved by using transitive friendship behaviors of
different nodes in consecutive periods of the day. For example,
when nodei has a close friendj in period12pm−3pm of the
day, and nodej has a close friendk in 3pm − 6pm period,
then when nodes meets nodei and has a message destined
to nodek in period12pm−3pm, it can forward this message
to nodei (even though nodei has no direct or indirect close
friendship with nodek in the current period). This is because
with high probability the message will be forwarded fromi to
j and then fromj to k. However, such a solution will increase
the maintenance cost of the algorithm. We will study this issue
in our future work and analyze the cost-benefit tradeoff.

VI. CONCLUSION

In this paper, we studied the routing problem in mobile
social networks. First, we introduced a new metric to detect
contact relations between nodes accurately based on friend-
ships. Then, we introduced a new routing algorithm in which
each node forwards their messages to nodes that contain the

destination node in their friendship communities. We differ-
entiate those friendship communities depending on the period
of the day in which forwarding is done. We evaluated the
introduced algorithm through trace driven simulations using
MIT data and demonstrated that it performs better than two
benchmark algorithms proposed previously.
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