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Abstract—In this paper, we propose a distributive queue-
aware intra-cell user scheduling and inter-cell interference (ICI)
management control design for a delay-optimal celluar downlink
system with M base stations (BSs), andK users in each cell.
Each BS has K downlink queues for K users respectively
with heterogeneous arrivals and delay requirements. The ICI
management control is adaptive to joint queue state information
(QSI) over a slow time scale, while the user scheduling control
is adaptive to both the joint QSI and the joint channel state
information (CSI) over a faster time scale. We show that the
problem can be modeled as an infinite horizon average cost
Partially Observed Markov Decision Problem (POMDP), which
is NP-hard in general. By exploiting the special structure of the
problem, we shall derive an equivalent Bellman equation to solve
the POMDP problem. To address the distributive requirement
and the issue of dimensionality and computation complexity, we
derive a distributive online stochastic learning algorithm, which
only requires local QSI and local CSI at each of theM BSs. We
show that the proposed learning algorithm converges almost-
surely (with probability 1) and has significant gain compared
with various baselines. The proposed solution only has linear
complexity order O(MK).

Index Terms—multi-cell systems, delay optimal control, par-
tially observed Markov decision problem (POMDP), interference
management, stochastic learning.

I. I NTRODUCTION

It is well-known that cellular systems areinterference
limited and there are a lot of works to handle theinter-cell
interference(ICI) in cellular systems. Specifically, the optimal
binary power control (BPC) for the sum rate maximization
has been studied in [1]. They showed that BPC could provide
reasonable performance compared with the multi-level power
control in the multi-link system. In [2], the authors studied a
joint adaptive multi-pattern reuse and intra-cell user scheduling
scheme, to maximize the long-term network-wide utility. The
ICI management runs at a slower scale than the user selection
strategy to reduce the communication overhead. In [3] and the
reference therein, cooperation or coordination is also shown to
be a useful tool to manage ICI and improve the performance
of the celluar network.

However, all of these works have assumed that there are
infinite backlogs at the transmitter, and the control policyis
only a function of channel state information (CSI). In practice,
applications are delay sensitive, and it is critical to optimize
the delay performance in the cellular network. A systematic
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approach in dealing with delay-optimal resource control in
general delay regime is via Markov Decision Process (MDP)
technique. In [4], [5], the authors applied it to obtain the
delay-optimal cross-layer control policy for broadcast channel
and point-to-point link respectively. However, there are very
limited works that studied the delay optimal control problem
in the cellular network. Most existing works simply proposed
heuristic control schemes with partial consideration of the
queuing delay [6]. As we shall illustrate, there are various
technical challenges involved regarding delay-optimal cellular
network.

• Curse of Dimensionality: Although MDP technique
is the systematic approach to solve the delay-optimal
control problem, a primal difficulty is the curse of dimen-
sionality [7]. For example, a huge state space (exponential
in the number of users and number of cells) will be
involved in the MDP and brute force value or policy
iterations cannot lead to any implementable solution1 [8],
[9]. Furthermore, brute force solutions require explicit
knowledge of transition probability of system states,
which is difficult to obtain in the complex systems.

• Complexity of the Interference Management:Jointly
optimal ICI management and user scheduling requires
heavy computation overhead even for the throughput
optimization problem [2]. Although grouping clusters of
cells [1] and considering only neighboring BSs [10] were
proposed to reduce the complexity, complex operations
on a slot by slot basis are still required, which is not
suitable for the practical implementation.

• Decentralized Solution: For delay-optimal multi-cell
control, the entire system state is characterized by the
global CSI (CSI from any BS to any MS) and the global
QSI (queue length of all users). Such system state infor-
mation are distributed locally at each BS and centralized
solution (which requires global knowledge of the CSI and
QSI) will induce substantial signaling overhead between
the BSs and the Base Station Controller (BSC).

In this paper, we consider the delay-optimal inter-cell ICI
management control and intra-cell user scheduling for the
cellular system. For implementation consideration, the ICI
management control is computed at the BSC at a longer time
scale and it is adaptive to the QSI only. On the other hand, the

1For a celluar system with 5 BSs, 5 users served by each BS, a buffer size
of 5 per user and 5 CSI states for each link between one user andone BS, the
system state space contains(5 + 1)5×5 × 55×5×5 states, which is already
unmanageable.
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intra-cell user scheduling control is computed distributively at
the BS at a smaller time scale and hence, it is adaptive to both
the CSI and QSI. Due to thetwo time-scalecontrol structure,
the delay optimal control is formulated as an infinite-horizon
average cost Partially Observed Markov Decision Process
(POMDP). Exploiting the special structure, we propose an
equivalent Bellman Equationto solve the POMDP. Based on
the equivalent Bellman equation, we propose a distributive
online learning algorithm to estimate a per-user value function
as well as a per-userQ-factor2. Only the local CSI and
QSI information is required in the learning process at each
BS. We also establish the technical proof for the almost-sure
convergence of the proposed distributive learning algorithm.
The proposed algorithm is quite different from the iterative
update algorithm for solving the deterministic NUM [12],
where the CSI is always assumed to be quasi-static during
the iterative updates. However, the delay-optimal problemwe
considered is stochastic in nature, and during the iterative
updates, the system state will not be quasi-static anymore.
In addition, the proposed learning algorithm is also quite
different from conventional stochastic learning [11], [13]. For
instance, conventional stochastic learning requires centralized
update and global system state knowledge and the convergence
proof follows from standardcontraction mappingarguments
[7]. However, due to the distributive learning requirementand
simultaneous learning of the per-user value function andQ-
factor, it is not trivial to establish the contraction mapping
property and the associated convergence proof. We also illus-
trate the performance gain of the proposed solution against
various baselines via numerical simulations. Furthermore, the
solution has linear complexity orderO(MK) and it is quite
suitable for the practical implementation.

II. SYSTEM MODEL

In this section, we shall elaborate the system model, as
well as the control policies. We consider the downlink of a
wireless celluar network consisting ofM BSs, and there are
K mobile users in each cell served by one BS. Specifically,
let M = {1, ...,M} andKm = {1, ...,K} denote the set of
BSs and the set of users served by the BSm respectively.
k ∈ Km denotes thek-th user served by BSm. The time
dimension is partitioned intoscheduling slots(every slot lasts
for τ seconds). The system model is illustrated in Fig.1.

A. Source Model

In each BS, there areK independent application streams
dedicated to theK users respectively. LetA(t) =
{Am(t)}Mm=1 andAm(t) = {A(m,k)(t)}

K
k=1, whereA(m,k)(t)

represents the new arrivals (number of bits) for the user
k ∈ Km at the end of the slott.

Assumption 1 (Assumption on Source Model):We assume
that the arrival processA(m,k)(t) is i.i.d over the scheduling
slot t according to a general distributionPr{A(m,k)} with

2The Q-factor Q(s, a) is a function of the system states and the control
actiona, which represents thepotential costof applying a control actiona at
the current states and applying the actiona′ = argmina Q(s′, a) for any
system states′ in the future [11].

Fig. 1. Physical layer and queueing model of celluar network.

average arrival rateλ(m,k) = E[A(m,k)], and the arrival
processes for all the users are independent with each other,
i.e.,Pr{A(m,k)A(n,l)} = Pr{A(m,k)}Pr{A(n,l)} if m 6= n or
k 6= l.

Let Q(t) = {Qm(t)}Mm=1 ∈ Q denote the global QSI in
the system, whereQ is the state space for the global QSI.
Qm(t) = {Q(m,k)(t)}

K
k=1 denotes the QSI in the BSm, where

Q(m,k)(t) represents the number of bits for userk ∈ Km at
the beginning of the slott, andNQ denotes the maximal buffer
size (bits). When the buffer is full, i.e,Q(m,k) = NQ, new bits
arrivals will be dropped. The cardinality of the global QSI is
IQ = (1 +NQ)

MK .

B. Channel Model and Physical Layer Model

Let Hn
(m,k)(t) and Ln

(m,k) denote the small scale channel
fading gain and the path loss from then-th BS to the user
k ∈ Km respectively, andH(m,k)(t) = {Hn

(m,k)(t)}
M
n=1 is the

local CSI states for userk. Hm(t) = {H(m,k)(t)}
K
k=1 denotes

the local CSI states for BSm, and the global CSI is denoted
asH(t) = {Hm(t)}Mm=1 ∈ H, whereH is the state space for
the global CSI.

Assumption 2 (Assumption on Channel Model):We
assume that the globalH is quasi-static in each slot.
Furthermore,Hn

(m,k)(t) is i.i.d over the scheduling slott
according to a general distributionPr{Hn

(m,k)} and the small
scale channel fading gains for all users are independent with
each other. The path lossLn

(m,k) remains constant for the
duration of the communication session.

The cellular system shares a single common channel with
bandwidthWHz (all the BSs use the same channel). At the
beginning of each slot, the BS is either turned on (with trans-
mit powerPm

max) or off (with transmit power 0)3, according
to a ICI management control policy, which is defined later.
At each slot, a BS can select only one user for its data
transmission. Specifically, letp = {pm}Mm=1 ∈ P denotes
an ICI management control pattern, wherepm = 1 denotes
BS m is active,pm = 0 otherwise, andP denotes the set of
all possible control patterns. Furthermore, letMp ∈ M be
the set of BSs activated by the patternp andPm ∈ P be the
set of patterns that activate the BSm. The signal received by

3Note that the on-off BS control is shown to be close to optimalin [1],
[2]. Moreover, the solution framework can be easily extended to deal with
discrete BS power control.
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the userk ∈ Km at slot t, when patternp ∈ Pm is selected,
is given by

y(m,k)[t] =
√
Hm

(m,k)L
m
(m,k)xm[t]+

∑
n6=m,n∈Mp

√
Hn

(m,k)L
n
(m,k)xn[t] + z[t]

(1)

wherexm[t] is the transmit signal from them-th BS to the
k-th user at slott, and{z[t]}∞t=1 is the i.i.dN (0, N0) noise.
The achievable data rate of userk can be expressed by

R(m,k) ={
W log2

(
1 +

ξPm
maxH

m
(m,k)L

m
(m,k)

I(m,k)+N0W

)
s(m,k) if p ∈ Pm

0 otherwise
(2)

where I(m,k) =
∑

n6=m,n∈Mp

Pn
maxH

n
(m,k)L

n
(m,k), s(m,k) ∈

{0, 1} is an indicator variable withs(m,k) = 1 when the user
k is scheduled.ξ ∈ (0, 1] is a constant can be used to model
both the coded and uncoded systems [5].

C. ICI Management and User Scheduling Control Policy

At the beginning of the slot, the BSC will decide which
BSs are allowed to transmit according to a stationary ICI
management control policy defined below.

Definition 1 (Stationary ICI Management Control Policy):
A stationary ICI management control policyΩp : Q → P is
defined as the mapping from current global QSI to an ICI
management patternΩp(Q) = p.

Let χ(t) = {H(t),Q(t)} to be the global system state at
the beginning of slott. The active user at each cell is selected
according to a user scheduling policy defined below.

Definition 2 (Stationary User Scheduling Policy):A
stationary user scheduling policyΩs : {Q,H} → S is defined
as the mapping from current global system stateχ to current
user scheduling actionΩs(χ) = s ∈ S. The scheduling action
s is a set of all the users’ scheduling indicator variable, i.e.,
s = {s(m,k), ∀k ∈ Km, ∀m}. It represents which users are
scheduled and which users are not in any given slot.S is the
set of all user scheduling actions.

For notation convenience, letΩ = {Ωp,Ωs} to be the joint
control policy, andΩ(χ) = {p, s} be the control action under
stateχ.

III. PROBLEM FORMULATION

In this section, we will first elaborate the dynamics of
system state under a control policyΩ. Based on that, we shall
formally formulate the delay-optimal control problem.

A. Dynamics of System State

Given the new arrivalA(m,k)(t) at the end of the slott, the
current system stateχ(t) and the control actionΩ(χ(t)), The
queue evolution for userk ∈ Km is given by:

Q(m,k)(t+1) =
[(
Q(m,k)(t)−U(m,k)(t)

)+
+A(m,k)(t)

]
∧

NQ

(3)
whereU(m,k)(t) = ⌊R(m,k)(χ(t),Ω(χ(t)))τ⌋ is the number
of bits delivered to userk at slott, andR(m,k)(χ(t),Ω(χ(t))),

given by (2), is the achievable data rate under the con-
trol action Ω(χ(t)). ⌊x⌋ denotes the floor ofx, (x)+ =
max(x, 0), and (x)∧NQ

= min(x,NQ). Let U(t) =
{Um(t)}Mm=1, and Um(t) = {U(m,k)(t)}

K
k=1, U(m,k)(t) =

R(m,k)(χ(t),Ω(χ(t)))τ for the userk ∈ Km, andQ̂(t+1) =[(
Q(t) − U(t)

)+
+ A(t)

]
∧

NQ
. Therefore, given a control

policy Ω, the random process{H(t),Q(t)} is a controlled
Markov chain with transition probability

Pr{χ(t+ 1)|χ(t),Ω(χ(t))} ={
Pr{H(t+ 1)}Pr{A(t)} if Q(t+ 1) = Q̂(t+ 1)
0 otherwise

(4)

B. Delay Optimal Control Problem Formulation

Given a stationary control policyΩ, the average cost of the
userk ∈ Km is given by:

T (m,k)(Ω) = lim sup
T→∞

1

T

∑T

t=1
E[f(Q(m,k)(t))] (5)

wheref(Q(m,k)) is a monotonic increasing cost function of
Q(m,k). For example, whenf(Q(m,k)) = Q(m,k)/λ(m,k),
using Little’s Law [4], [14],T (m,k)(Ω) is an approximation4 of
the average delay of userk. Whenf(Q(m,k)) = 1{Q(m,k)≥NQ}

andA(m,k) follows the bernoulli process,T (m,k)(Ω) is thebit
dropping probability(conditioned on bit arrival). Note that,
the MK queues in the celluar system are coupled together
via the control policyΩ. In this paper, we seek to find an
optimal stationary control policyΩ to minimize the average
cost in (5). Specifically, we have:

Problem 1 (Delay Optimal Multi-cell Control Problem):5

For some positive constantsβ = {β(m,k), , ∀k ∈ Km, ∀m},
finding a stationary control policyΩ that minimizes:

min
Ω

JΩ
β =

∑
m,k

β(m,k)T (m,k)(Ω) (6)

= lim sup
T→∞

1

T

∑T

t=1
EΩ[g(χ(t),Ω(χ(t)))]

whereg(χ(t),Ω(χ(t)) =
∑

m,k β(m,k)f(Q(m,k)) is the per-
slot cost, andEΩ denotes the expectation w.r.t. the induced
measure (induced by the control policyΩ and the transition

4Strictly speaking, the average delay is given byT (m,k)(Ω) =

lim supT→∞

1
T

∑T
t=1 E[

Q(m,k)

λ(m,k)(1−PBD(m,k))
], where PBD(m,k)

is the bit dropping probability conditioned on bit arrival.
Since our target bit dropping probability PBD(m,k) ≪

1, T (m,k)(Ω) = lim supT→∞

1
T

∑T
t=1 E[

Q(m,k)

λ(m,k)
] ≈

lim supT→∞

1
T

∑T
t=1 E[

Q(m,k)

λ(m,k)(1−PBD(m,k))
].

5In fact, the proposed solution framework can be easily extended to
deal with a more general QoS based optimization. For example, say
we minimize the average delay subject to the constraints on average
data rate: R(m,k)(Ω) = lim supT→∞

1
T

∑T
t=1 E[R(m,k)(t)] ≥

Rk
T . The Lagrangian of such constrained optimization is:

minΩ JΩ
β

=
∑

m,k

[
β(m,k)T (m,k)(Ω) + µ(m,k)R(m,k)(Ω)

]
=

lim supT→∞

1
T

∑T
t=1 E

Ω[gµ(χ(t),Ω(χ(t)))], where
gµ(χ(t),Ω(χ(t))) =

∑
m,k β(m,k)f(Q(m,k)) + µ(m,k)R(m,k),

andµ(m,k) is the Lagrange multiplier corresponding to the QoS constraint
R(m,k)(Ω) ≥ Rk

T
. Note that it has the same form as (6) and the proposed

solution framework can be applied to the QoS constrained problem as well.
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kernel in (4)). The positive constantsβ indicate the relative im-
portance of the users and for a givenβ, the solution to (6) cor-
responds to a Pareto optimal point of the multi-objective opti-
mization problem given byminΩ T (m,k)(Ω), ∀m, k. Moreover,
a control policyΩ∗ is called Pareto optimal if for any control
policy Ω′ 6= Ω∗ such thatT (m,k)(Ω

′) ≤ T (m,k)(Ω
∗), ∀m, k, it

implies thatT (m,k)(Ω
′) = T (m,k)(Ω

∗), ∀m, k. In other words,
we cannot reduceT (m,k1) without increasing other component
(sayT (m,k2)) at Pareto optimal controlΩ∗ [15].

IV. GENERAL SOLUTION TO THE DELAY OPTIMAL

PROBLEM

In this section, we will show that the delay optimal problem
1 can be modeled as an infinite horizon average cost POMDP,
which is a very difficult problem. By exploiting the special
structure, we shall derive anequivalent Bellman equationto
solve the POMDP problem.

A. Preliminary on MDP and POMDP

An infinite horizon average cost MDP can be characterized
by a tuple of four objects:{S,A,Pr{s′|s, a}, g(s, a)}, where
S is a finite set of states andA is the action space.Pr{s′|s, a}
is the transition probability from states to s′, given that the
action a ∈ A is taken.g(s, a) is the per-slot cost function.
The objective is to find the optimal policya = {a(s)} so as
to minimize the average per-slot costθ as:

θ = min
a

lim
T→∞

sup
1

T

∑T

t=1
Ea[g(s(t), a(s(t)))] (7)

If the policy space consists ofunichain policiesand the
associated induced Markov chain is irreducible, it is well
known that there exist a uniqueθ for each starting state [7],
[11]. Furthermore, the optimal control policya can be obtained
by the following Bellman equation.

V (s) + θ = min
a(s)

{
g(s, a(s)) +

∑
s′
Pr{s′|s, a(s)}V (s′))

}

(8)
where V (s) is called the value function. General offline
solutions,value or policy iteration, can be used to find the
value functionV (s) iteratively, as well as the optimal policy
[7].

POMDP is an extension of MDP when the control agent
does not have direct observation of the entire system state (and
hence it is called “partially observed MDP”). Specifically,an
infinite horizon average cost POMDP can be characterized by
a tuple [16], [17]: {S,A,Pr{s′|s, a}, g(s, a),O, O(z, s, a)},
where {S,A, P (s′|s, a), g(s, a)} characterize a MDP andO
is a finite set of observations.O(z, s, a) is the observation
function, which gives the probability (or stochastic relation-
ship) between the partial observationz, the actual system
states and the control actiona. Specifically,O(z, s, a) is the
probability of getting a partial observation “z” given that the
current system state iss and the actiona was taken in the
previous slot. A PODMP is a MDP where current system state
and the actions are based on the observationz. The objective
is to find the optimal policya = {a(z)} so as to minimize the
average per-slot costθ in (7). However, in general, it is aNP-
hard problem and there are various approximation solutions

proposed based on the special structure of the studied problems
[18].

B. Equivalent Bellman Equation and Optimal Control Policy

In this subsection, we shall first illustrate that the optimiza-
tion problem 1 is an infinite horizon average cost POMDP. We
shall then exploit some special problem structure to simplify
the complexity and derive anequivalent Bellman equationto
solve the problem. For instance, in the delay optimal problem
1, the ICI management control policyΩp is adaptive to the
QSIQ, while the user scheduling policyΩs is adaptive to the
complete system state{Q,H}. Therefore, the optimal control
policy Ω∗ cannot be obtained by solving a standard Bellman
equation from conventional MDP6. In fact, problem 1 is a
POMDP with the following specification.

• State Space:The system state is the global QSI and CSI
χ = {Q,H} ∈ {Q,H}.

• Action Space:The action is ICI management pattern and
user scheduling{p, s} ∈ {P ,S}.

• Transition Kernel: The transition probability
Pr{χ′|χ,p, s} is given in (4).

• Per-Slot Cost Function: The per-slot cost function is
g(χ,p, s) =

∑
m,k β(m,k)f(Q(m,k)).

• Observation: The observation for ICI management con-
trol policy is global QSI, i.e.,zp = Q, while the
observation for User scheduling policy is the complete
system state, i.e.,zs = χ.

• Observation Function: The observation function for
ICI management control policy isOp(zp,χ,p, s) = 1,
if zp = Q, otherwise 0. Furthermore the observation
function for user scheduling policy isOs(zs,χ,p, s) = 1,
if zs = χ, otherwise 0.

While POMDP is a very difficult problem in general, we
shall utilize the notion ofaction partitioningin our problem to
substantially simplify the problem. We first definepartitioned
actionsbelow.

Definition 3 (Partitioned Actions):Given a control policy
Ω, we defineΩ(Q) = {(p, s) = Ω(χ) : χ = (Q,H)∀H ∈
H} as the collection of actions under a givenQ for all possible
H ∈ H. The complete policyΩ is therefore equal to the union
of all partitioned actions, i.e.,Ω =

⋃
Q Ω(Q).

Based on the action partitioning, we can transform the
POMDP problem into a regular infinite-horizon average cost
MDP. Furthermore, the optimal control policyΩ∗ can be
obtained by solving anequivalent Bellman equationwhich
is summarized in the theorem below.

Theorem 1 (Equivalent Bellman Equation):The optimal
control policyΩ∗ = (Ω∗

p,Ω
∗
s) in problem 1 can be obtained

by solving theequivalent Bellman equationgiven by:

V (Q)+θ = min
Ω(Q)

[
ĝ(Q,Ω(Q))+

∑

Q′

Pr{Q′|Q,Ω(Q)}V (Q′)
]

(9)
where ĝ(Q,Ω(Q)) =

∑
m,k β(m,k)f(Q(m,k)) is the per-

slot cost function, and the transition kernel is given

6The policy will be a function of the complete system state by solving a
standard bellman equation.
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by Pr{Q′|Q,Ω(Q)} = EH [Pr{Q′|Q,H,Ω(χ)}], where
Pr{Q′|Q,H,Ω(χ)} is given by

Pr{Q′|Q,H,Ω(χ)} ={
Pr{A} if Q′ =

[(
Q−U

)+
+A

]
∧

NQ

0 otherwise

(10)

where U = {Um}Mm=1, and Um = {U(m,k)}
K
k=1, and

U(m,k) = R(m,k)(χ,Ω(χ))τ for k ∈ Km. SupposeΩ∗(Q) =
{p∗(Q),

⋃
H s∗(Q,H)} is a solution that solves the Bellman

equation in (9), the optimal control policy for the original
Problem 1 is given by:Ω∗

p =
⋃

Q{p∗(Q)} and Ω∗
s =⋃

Q,H{s∗(Q,H)}. The value functionV (Q) that solves (9)
is a component-wise monotonic increasing function.

Proof: Please refer to Appendix A.
Note that solving (9) will obtain an ICI management policy

Ω∗
p that is a function of QSIQ and a user scheduling policy

Ω∗
s that is a function of the QSI and CSI{Q,H}. We shall

illustrate this with a simple example below.
Example 1:Suppose there are two BSs with equal transmit-

ting power (Pm
max = P, ∀m), and there are three ICI manage-

ment control patterns inP , given byp1 = {p1 = 1, p2 = 0}
(BS 1 is active),p2 = {p1 = 0, p2 = 1} (BS 2 is active)
andp3 = {p1 = 1, p2 = 1} (both BSs are active). Assume
deterministic arrival where one bit will always arrive at each
slot, i.e.,Pr{A(m,k) = 1} = 1. The number of users served
by each BS isK = 2. The path lossLn

(m,k) = 1 for all
{k, n,m}, and the small scale fading gain is chosen from
two values{Hg, Hb} with equal probability. As a result, the
global CSI state space7 is H = {Hg, Hb}M

2K . Note that the
cardinality of CSI state spaceH is |H| = 2M

2K = 256. Given
a realization of the global QSIQ, the partitioned actions
(following Definition 3) is given by:

Ω(Q) = {p(Q), s(Q,H(1)), · · · , s(Q,H(256))} (11)

Using Theorem 1, the optimal partitioned actionΩ∗(Q) is
given by solving the right hand side (RHS) of (9):

Ω∗(Q) = argmin
{p(Q),{s(Q,H(i))}256

i=1}

∑
Q′

∑
H(i)∈H

[
Pr{H(i)}Pr{Q′|Q,H(i),p(Q), s(Q,H(i))}V (Q′)

]

(12)
where

Pr{Q′|Q,H(i),p(Q), s(Q,H(i))} ={
1 if Q′ =

[(
Q−U

)+
+ 1

]
∧

NQ

0 otherwise

(13)

and U = {U(1,1), U(1,2);U(2,1), U(2,2)} is the number of
departure bits. For a given ICI management controlp(Q) = p,
the optimal user scheduling policy{s∗(Q,H(i))} is

{s∗(Q,H(i))} = argmin
{s(Q,H(i))}256

i=1

∑
Q′

∑
H(i)∈H

[
Pr{H(i)}Pr{Q′|Q,H(i),p, s(Q,H(i))}V (Q′)

] (14)

7For the sake of easy discussion, we consider discrete state space in this
example. Yet, the proposed algorithms and convergence results in the paper
work for general continuous state space as well.

Observe that the RHS of (14) is a decoupled objective func-
tion w.r.t. the variables{s(Q,H(i))}256i=1 and hence, applying
standard decomposition theory,

s∗(Q,H(i)) =

argmin
s(Q,H(i))

∑
Q′

Pr{Q′|Q,H(i),p, s(Q,H(i))}V (Q′) (15)

As a result, the optimal ICI management control policyp∗(Q)
is given by:

p∗(Q) = argminp(Q)

∑
Q′

∑
H(i)∈H[

Pr{H(i)}Pr{Q′|Q,H(i),p(Q), s∗(Q,H(i))}V (Q′)
]

(16)
wheres∗(Q,H(i)) given in (15) is the optimal user schedul-
ing policy under the ICI management control policyp(Q).
Using Theorem 1, the optimal ICI management control and
user selection control of the original Problem 1 for a CSI
realizationH(i) and QSI realizationQ are given byp∗(Q)
ands∗(Q,H(i)) respectively.

V. D ISTRIBUTIVE VALUE FUNCTION AND Q-FACTOR

ONLINE LEARNING

The solution in Theorem 1 requires the knowledge of the
value functionV (Q). However, obtaining the value function is
not trivial as solving the Bellman equation (9) involves solving
a very large system of the nonlinear fixed point equations
(corresponding to each realization ofQ in (9)). Brute-force
solution ofV (Q) require huge complexity, centralized imple-
mentation and knowledge of global CSI and QSI at the BSC.
This will also induce huge signaling overhead because the QSI
of all the users are maintained locally at theM BSs. In this
section, we shall propose a decentralized solution via distribu-
tive stochastic learning following the structure as illustrated in
Fig. 2. Moreover, we shall prove that the proposed distributive
stochastic learning algorithm will converge almost-surely.

A. Post-Decision State Framework

In this section, we first introduce the post-decision state also
used framework, also used in [19] and the references therein,
to lay ground for developing the online learning algorithm.
The post-decision state is defined to be the virtual system
state immediately after making an action but before the new
bits arrive. For example,χ = {Q,H} is the state at the
beginning of some time slot (also called thepre-decision
state), and making an actionΩ(χ) = {p, s}, the post-decision
state immediately after the action is̃χ = {Q̃,H}, where the
transition toQ̃ is given byQ̃ =

(
Q−U

)+
. If new arrivalsA

occur in the post-decision state, and the CSI changes toH′,
then the system reaches the next actual state, i.e., pre-decision
state,χ′ = {

[
Q̃+A

]
∧

NQ
,H′}.

Using the action partitioning and defining the value function
Ṽ on post-decision statẽQ (where pre-decision state is
{Q =

[
Q̃ + A

]
∧

NQ
,H}), Ṽ will satisfy the post-decision

state Bellman equation [19]

Ṽ (Q̃) + θ =
∑

A Pr{A}

{
minΩ(Q)

[
g̃(Q,Ω(Q))

+
∑

Q̃′
Pr{Q̃′|Q,Ω(Q)}Ṽ (Q̃′)

]} (17)
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where g̃(Q,Ω(Q)) =
∑

m,k β(m,k)f(Q(m,k)),

Pr{Q̃′|Q,Ω(Q)} = EH[Pr{Q̃′|Q,H,Ω(Q)}], and Q̃′

is the next post-decision state transited fromQ. As Theorem
1, Ṽ (Q̃) is also a component-wise monotonic increasing
function. The optimal policy is obtained by solving the RHS
of Bellman equation (17).

B. Distributive User Scheduling Policy on the CSI Time Scale

To reduce the size of the state space and to decentralize the
user scheduling, we approximatẽV (Q̃) in (17) by the sum of
per-user post-decision state value function8 Ṽ(m,k)(Q̃(m,k)),
i.e.,

Ṽ (Q̃) ≈
∑

m,k
Ṽ(m,k)(Q̃(m,k)) (18)

where Ṽ(m,k)(Q̃(m,k)) is defined as thefixed point of the
following per-user fixed point equation:

Ṽ(m,k)(Q̃(m,k)) + Ṽ(m,k)(Q̃
I
(m,k)) =∑

A(m,k)
Pr{A(m,k)}

[
β(m,k)f(Q(m,k))+

∑

Q̃′

(m,k)

Pr{Q̃′
(m,k)|Q(m,k), s(m,k) = 1, p̃I

m}Ṽ(m,k)(Q̃
′
(m,k))

]

(19)
whereQ(m,k) = Q̃(m,k) + A(m,k) is the pre-decision state,
s(m,k) = 1 means that the userk is scheduled to transmit
at BS m, Q̃I

(m,k) ∈ {0, · · · , NQ} is a reference state and
p̃I
m ∈ Pm is a reference ICI management pattern (with the

BS m active). The per-user value functioñV(m,k)(Q̃(m,k)) is
obtained by the proposed distributive online learning algorithm
(explained in section V-D). Note that the state space for
the value function ofṼ (Q̃) is substantially reduced from
(NQ + 1)MK (exponential growth w.r.t the number of all
mobile usersMK) to MK(NQ + 1) (linear growth w.r.t the
number of all mobile users).

Corollary 1 (Decentralized User Scheduling Actions):
Using the linear approximation in (18), the user scheduling
action of BSm ∈ Mp under any given ICI management
patternp (obtained by solving the RHS of Bellman equation
(17)) is given by:

sm = {sk∗ = 1, s(m,k) = 0, ∀k 6= k∗ andk, k∗ ∈ Km} (20)

where k∗ = argmaxk∈Km
δ̃(m,k)(Q(m,k)), and

δ̃(m,k)(Q(m,k)) = Ṽ(m,k)(Q(m,k)) − Ṽ(m,k)((Q(m,k) −

U(m,k))
+)9. U(m,k) = log2

(
1 +

ξφ(m,k)

ϕ(m,k)

)
τ , where

ϕ(m,k) =
∑

n6=m,n∈Mp

Pn
maxH

n
(m,k)L

n
(m,k) + N0W

is the power sum of interference and noise, and
φ(m,k) = Pm

maxH
m
(m,k)L

m
(m,k) is the signal power.

Proof: Please refer to Appendix B.

8Using the linear approximation in (18), we can address the curse of
dimensionality (complexity) as well as facilitate distributive implementation
where each BS could solve for̃V(m,k)(Q̃(m,k)) based on local CSI and QSI
only.

9 Note thatδ̃(m,k)(0) = 0, ∀k, and hence the users with empty buffer will
not be scheduled and the activated BSm will serve the users with non-empty
buffer (the chance for the buffer of allK users being empty at a given slot
is very small).

Fig. 2. The system procedure for distributive per-user value function and
per-userQ-factor online learning algorithm.

Remark 1 (Structure of the User Scheduling Actions):The
user scheduling action in (20) is both function of local CSI
and QSI. Specifically, the number of bits to be delivered
U(m,k) is controlled by the local CSIH(m,k), and local QSI
Q(m,k) will determine δ̃(m,k)(Q(m,k)). Each user estimates
ϕ(m,k) and φ(m,k) in the preamble phase, and sendsU(m,k)

to the associated BSm according to the process as indicated
in Fig.2.

C. ICI Management Control Policy on the QSI Time Scale

To determine the ICI management control policy, we define
theQ-factor as follows [11]:

Q(Q,p) =
∑

m,k β(m,k)f(Q(m,k))+∑
Q′ Pr{Q′|Q,p}minp′ Q(Q′,p′)− θ

(21)

wherePr{Q′|Q,p} is the transition probability from current
QSI Q to Q′, given current actionp, and θ is a constant.
Note that theQ-factorQ(Q,p) represents the potential cost of
applying a control actionp at the current QSIQ and applying
the actionargminp′ Q(Q′,p′) for any system stateQ′ in the
future. Similar to (18), we approximate theQ-factor in (21)
with a sum of per-userQ-factor, i.e,

Q(Q,p) ≈
∑

m,k
Q(m,k)(Q(m,k),p) (22)

whereQ(m,k) is defined as thefixed pointof the following
per-user fixed point equation:

Q(m,k)(Q(m,k),p) =
β(m,k)f(Q(m,k))−Q(m,k)(Q

I
(m,k),p

I
m) +

∑
Q′

(m,k)[
Pr{Q′

(m,k)|Q(m,k), s(m,k) = 1,p}min
p′

Q(m,k)(Q
′
(m,k),p

′)
]

(23)
where Pr{Q′

(m,k)|Q(m,k), s(m,k) = 1,p} =

EH(m,k)
[Pr{Q′

(m,k)|Q(m,k), s(m,k) = 1,H(m,k),p}].
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Fig. 3. Illustration of one possible way of local QSI partition. There are
K = 2 users with buffer sizeNQ = 9, where each user’s QSI is partitioned
into 4 regions, given by

{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
. Note that the

number of local QSI regions for one BS is largely reduced from(NQ+1)K =
100

(
R1 = {Q1 = 0, Q2 = 0}, · · · ,R100 = {Q1 = 9, Q2 = 9}

)
to

4K = 16
(
R1 = {Q1 ∈ {0, 1, 2}, Q2 ∈ {0, 1, 2}}, · · · ,R16 = {Q1 ∈

{8, 9}, Q2 ∈ {8, 9}}
)

after partition.

QI
(m,k) ∈ {0, · · · , NQ} is a reference state andpI

m ∈ P
is a reference ICI management control pattern. The
per-user Q-factor Q(m,k) is obtained by the proposed
distributive online learning algorithm (explained in
section V-D). The BSC collects the per-BSQ-information
Qt

m(p) =
∑

(m,k) Q
t
(m,k)(Q

t
(m,k),p) at the beginning of slot

t, and the ICI management control policy is given by:

pt = argminp
∑

m
Qt

m(p) (24)

In order to reduce the communication overhead between the
M BSs and the BSC, we could further partition the local QSI
space intoN regions10 (Qm =

⋃N
n=1 Rn) as illustrated in Fig.

3. At the beginning of thet-th slot, them-th BS will update
the BSC of the per-BSQ-information if its QSI state belongs
to a new region. Hence, the per-BSQ-information at the BSC
is updated according to the following dynamics:

Qt
m(p) ={ ∑
m,k

Qt
(m,k)(Q

t
(m,k),p) if Qt

m ∈ Rn,Q
t−1
m 6∈ Rn

Qt−1
m (p) otherwise

(25)
Remark 2 (Communication Overhead):The communica-

tion overhead between theM BS and the BSC is reduced
from O((NQ +1)MK +(NH)M

2K) (exponential growth w.r.t
the number of usersK) to O(M(α)|P|) for some constantα
(O(1) w.r.t.K), whereNH is the cardinality of the CSI state
space for one link.

D. Online Per-User Value Function and Per-UserQ-factor
Learning Algorithm

The system procedure for distributive online learning is
given below:

• Initialization : Each BS initiates the per-user value
function and Q-factor for its K users, denoted as

10For example, one possible criteria is to partition the localQSI space so
that the probability ofQm belonging to any region is the same (uniform
probability partitioning).

{Ṽ 0
(m,k)} and {Q0

(m,k)}, where Ṽ 0
(m,k)(Q

′
(m,k)) >

Ṽ 0
(m,k)(Q(m,k)), ∀Q

′
(m,k) > Q(m,k).

• ICI Management Control : At the beginning of thet-th
slot, the BSC updates theQ-informationQt

m(p) as (25)
and determines the ICI management pattern as (24).

• User Scheduling: If m ∈ Mpt , BS m is selected
to transmit. The user scheduling policy is determined
according to (20).

• Local Per-user Value Function and Per-userQ-factor
Update: Based on the current observations, each of the
M BSs updates the per-user value functionṼ(m,k) and
the per-userQ-factorQ(m,k) according to Algorithm 1.

Fig. 2 illustrates the above procedure by a flowchart. The
algorithm for the per-user value function and per-userQ-factor
update is given below:

Algorithm 1 (Online Learning Algorithm):Let Q̃m and
Qm be the current observation of post-decision and pre-
decision states respectively,Am be the current observation
of new arrival, {H(m,k)}

K
k=1 be the current observation of

the local CSI, andp is the realization of the ICI management
control pattern. The online learning algorithm for userk ∈ Km

is given by

Ṽ t+1
(m,k)(Q̃(m,k)) =




Ṽ t
(m,k)(Q̃(m,k)) + γ(t)

[
β(m,k)f(Q̃(m,k)+

A(m,k)) + Ṽ t
(m,k)(Q̃(m,k) +A(m,k) − U(m,k)) if p = p̃I

m

−Ṽ t
(m,k)(Q̃

I
(m,k))− Ṽ t

(m,k)(Q̃(m,k))
]

Ṽ t
(m,k)(Q̃(m,k)) otherwise

(26)
Qt+1

(m,k)(Q(m,k),p) = Qt
(m,k)(Q(m,k),p) + γ(t)

[
β(m,k)

·f(Q(m,k))−Qt
(m,k)(Q

I
(m,k),p

I
m)−Qt

(m,k)(Q(m,k),p)

+minp′ Qt
(m,k)(Q(m,k) − U(m,k) +A(m,k),p

′)
]

(27)
whereU(m,k) is the number of bits to be delivered for userk
(given in Corollary 1 and depends indirectly on the local CSI
observationsH(m,k)), {Q̃I

(m,k), p̃
I
m} and {QI

(m,k),p
I
m} are

the reference state and reference ICI management pattern for
the value functioñV(m,k) in (19) andQ-factorQ(m,k) in (23)
respectively.γ(n) is diminishing positive step size sequence
satisfying

∑
n γ(n) = ∞,

∑
n γ

2(n) < ∞.
Remark 3 (Complexity of the Learning Algorithm):The

proposed learning scheme only requires the observations
of the local QSI Q̃m and Qm. Furthermore, each users
only need to feedbackU(m,k) instead of the local CSIHm,
which is of similar feedback loading compared with HSDPA
systems.

E. Convergence Analysis

In this section we will establish the convergence proof of
the proposed per-user learning algorithm 1. We first define a
mapping on the post-decision statẽQ(m,k) as

T(m,k)(Ṽ(m,k), Q̃(m,k)) = g̃(m,k)(Q̃(m,k))+∑

Q̃′

(m,k)

Pr{Q̃′
(m,k)|Q̃(m,k), s(m,k) = 1, p̃I

m}Ṽ(m,k)(Q̃
′
(m,k))

(28)
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whereQ(m,k) = Q̃(m,k) + A(m,k) is the pre-decision state,
g̃(m,k)(Q̃(m,k)) = EA(m,k)

[
β(m,k)f(Q̃(m,k) + A(m,k))

]
,

and Pr{Q̃′
(m,k)|Q̃(m,k), s(m,k) = 1, p̃I

m} =

EH(m,k),A(m,k)
[Pr{Q̃′

(m,k)|Q(m,k),H(m,k), s(m,k) = 1, p̃I
m}].

The vector form of the mapping is given by:

T(m,k)(Ṽ(m,k)) = g̃(m,k) +P(m,k)Ṽm (29)

whereP(m,k) is (NQ + 1) × (NQ + 1) transition matrix for
the post-decision state queue of the userk. and Ṽ(m,k) are
(NQ + 1) × 1 vectors. Specifically, we have the following
lemma for the per-user value function learning in (26).

Lemma 1 (Convergence of Per-User Value Function):The
update of the per-user value functioñVt

(m,k) will converge
almost-surely in the proposed learning algorithm 1, i.e.,
limt→∞ Ṽt

(m,k) = Ṽ∞
(m,k), ∀k,m, and Ṽ ∞

(m,k)(Q̃(m,k)) is a
monotonic increasing function satisfying:

Ṽ∞
(m,k) + Ṽ∞

(m,k)(Q̃
I
(m,k))e = T(m,k)(Ṽ

∞
(m,k)) (30)

Proof: Please refer to Appendix C.
Note that (30) is equivalent to the per-user fixed point

equation in (19). This result illustrates that the proposedonline
distributive learning in (26) can converge to the target per-user
fixed point solution in (19). We define a mapping for the per-
userQ-factorQ(m,k) as

TQ

(m,k)(Q(m,k), Q(m,k),p) = β(m,k)f(Q(m,k)) +
∑

Q′

(m,k)[
Pr{Q′

(m,k)|Q(m,k), s(m,k) = 1,p}min
p′

Q(m,k)(Q
′
(m,k),p

′)
]

(31)
Specifically, we have following lemma for theQ-factor online
learning in (27).

Lemma 2 (Convergence of the Per-UserQ-factor):
The update of per-userQ-factor Q(m,k) will converge
almost-surely in the proposed learning algorithm 1, i.e.,
limt→∞ Qt

(m,k) = Q∞
(m,k), ∀k,m, where the steady state

Q-factor {Q∞
(m,k)} satisfy:

Q∞
(m,k)(Q(m,k),p) =

TQ

(m,k)(Q
∞
(m,k), Q(m,k),p)−Q∞

(m,k)(Q
I
(m,k),p

I
m)

(32)
Proof: Please refer to Appendix D.

Note that (32) is equivalent to the per-user fixed point
equation forQ(m,k) in (23). This result illustrates that the
proposed online distributive learning in (27) can convergeto
the target per user fixed point solution in (23).

Lemma 1 and 2 only established the convergence of the
proposed online learning algorithm. Strictly speaking, the
converged result is not optimal due to the linear approximation
of the value functioñV (Q̃) and theQ-factorQ(Q,p) in (18)
and (22) respectively. The linear approximation is needed for
distributive implementation. As illustrated in Fig. 4, thepro-
posed distributive solution has close-to-optimal performance
compared with brute-force centralized solution of the Bellman
equation in (9).
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Proposed Scheme
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Fig. 4. Average delay per user versus per user loadingλ(m,k) in the Example
1 with the source arrival model is given byPr{A(m,k) = 1} = λ(m,k) and
Pr{A(m,k) = 0} = 1 − λ(m,k) for all m, k, and the buffer sizeNQ = 3.
Centralized optimal solution refers to the brute-force centralized solution of
the Bellman equation in (9). Baseline 1 refers to theCSIT only scheme,
where the user scheduling are adaptive to the CSIT only. Baseline 2 refers to
the Dynamic Backpressurescheme [20]. Baseline 3 refers to thetime-scale
decompositionscheme proposed in [2].

VI. SIMULATION AND DISCUSSION

In this section, we shall compare the proposed distributive
queue-aware intra-cell user scheduling and ICI management
control scheme with three baselines. Baseline 1 refers to the
CSIT only scheme, where the user scheduling are adaptive
to the CSIT only so as to optimize the achievable data rate.
Baseline 2 refers to a throughput optimal policy (in stability
sense) for the user scheduling, namely theDynamic Back-
pressurescheme [20]. In both baseline 1 and 2, the traditional
frequency reuse scheme (frequency reuse factor equals 3) is
used for inter-cell interference management. Baseline 3 refers
to thetime-scale decompositionscheme proposed in [2], where
the sets of possible ICI management patternsP is the same as
the proposed scheme. In the simulation, we consider a two-
tier celluar network composed of 19 BSs as in [2], each has a
coverage of 500m. Channel models are implemented according
to the Urban Macrocell Model in 3GPP and Jakes’ Rayleigh
fading model. Specifically, the path loss model is given by
PL = 34.5 + 35 log10(r), where r (in m) is the distance
from the transmitter to the receiver. The total BW is 10MHz.
We consider Poisson packet arrival with average arrival rate
E[A(m,k)] = λ(m,k) (packets/slot) and exponentially dis-
tributed random packet sizeN (m,k) with E[N (m,k)] = 5Mbits.
The scheduling slot durationτ is 5ms. The maximum buffer
sizeNQ is 9 (in packets), where each user’s QSI is partitioned
into 4 regions, given by

{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
.

The cost function is given byf(Q(m,k)) =
Q(m,k)

λ(m,k)
for all the

users in the simulations.

A. Performance w.r.t. Transmit Power

Fig.5 and Fig.6 illustrate the performance of average de-
lay and packet dropping probability (conditioned on packet
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Fig. 5. Average delay per user versus transmit powerPm
max. The number of

users per BS isK = 3. The average arrival rateλ(m,k) = 1 (packets/slot).
The maximum buffer sizeNQ is 9, where each user’s QSI is partitioned into
4 regions, given by

{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
.
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Fig. 6. Packet dropping probability (conditioned on packetarrival) per user
versus transmit powerPm

max. The number of users per BS isK = 3. The
average arrival rateλ(m,k) = 1 (packets/slot). The maximum buffer size
NQ is 9, where each user’s QSI is partitioned into 4 regions, given by{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
.

arrival) per user versus transmit powerPm
max respectively. The

number of users per BSK = 3, and the average arrival rate
λ(m,k) = 1. Note that the average delay and packet dropping
probability of all the schemes decreases as the transmit power
increases, and there is significant performance gain of the
proposed scheme compared to all baselines. This gain is
contributed by the QSI-aware user scheduling as well as ICI
management control.

B. Performance w.r.t. Loading

Fig.7 illustrates the average delay versus per user loading
(average arrival rateλ(m,k)) at transmit power ofPm

max =
30dBm and the number of users per BSK = 3. It can also be
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Fig. 7. Average delay per user versus per user loadingλ(m,k). The transmit
power Pm

max = 30dBm. The number of users per BS isK = 3. The
maximum buffer sizeNQ is 9, where each user’s QSI is partitioned into
4 regions, given by

{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
.
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Fig. 8. Cumulative Distribution Function (CDF) of the queuelength per
user with transmit powerPm

max = 25dBm. The number of users per BS
is K = 3. The average arrival rateλ(m,k) = 1. The maximum buffer
size NQ is 9, where each user’s QSI is partitioned into 4 regions, given
by

{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
.

observed that the proposed scheme achieved significant gain
over all the baselines across a wide range of input loading.

C. Cumulative Distribution Function (CDF) of the Queue
Length

Fig.8 illustrates the Cumulative Distribution Function (CDF)
of the queue length per user with transmit powerPm

max =
25dBm. The number of users per BS isK = 3 and the average
arrival rateλ(m,k) = 1. It can be also be verified that the
proposed scheme achieves not only a smaller average delay
but also a smaller delay percentile compared with the other
baselines.
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Ṽ(1,1) (1)
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Fig. 9. Convergence property of the proposed distributive stochastic learning
algorithm via stochastic learning. The transmit powerPm

max = 35dBm. The
number of users per BS isK = 3. The average arrival rateλ(m,k) = 1.5.
The maximum buffer sizeNQ is 9, where each user’s QSI is partitioned
into 4 regions, given by

{
{0, 1, 2}; {3, 4, 5}; {6, 7}; {8, 9}

}
. The figure

illustrates instantaneous per-user value functionṼ(1,1)(Q̃(1,1)) andQ-factor
Q(1,1)(Q(1,1),p

I
1) versus instantaneous slot index. The boxes indicated the

average delay of various schemes at three selected slot indices.

D. Convergence Performance

Fig.9 illustrates the average delay per user versus the
scheduling slot index with transmit powerPm

max = 35dBm.
The number of users per BS isK = 3 and the average arrival
rateλ(m,k) = 1.5. It can be observed that the convergence rate
of the online algorithm is quite fast. For example, the delay
performance of the proposed scheme already out-performs
all the baselines at the400-th slot. Furthermore, the delay
performance at400-th slot is already quite close to the con-
verged average delay. Finally, unlike the conventional iterative
NUM approach where the iterations are done offline within the
coherence time of the CSI, the proposed iterative algorithmis
updated over the same time scale of the CSI and QSI updates.
Moreover, the iterative algorithm is online, meaning that useful
payload are transmitted during the iterations.

VII. SUMMARY

In this paper, we study the design of a distributive queue-
aware intra-cell user scheduling and inter-cell interference
management control design for a delay-optimal celluar down-
link system. We first model the problem as an infinite horizon
average reward POMDP, which is NP-hard in general. By
exploiting special problem structure, we derive an equivalent
Bellman equation to solve the POMDP problem. To address
the distributive requirement and the issue of dimensionality
and computation complexity, we derive a distributive online
stochastic learning algorithm, which only requires local QSI
and local CSI at each of theM BSs. We show that the
proposed learning algorithm converges almost-surely and has
significant gain compared with various baselines. The pro-
posed algorithm only has linear complexity orderO(MK).

APPENDIX A: PROOF OFTHEOREM 1

Based on the action partitioning, we can associate the MDP
formulation in our delay-optimal control problem as follows:

• State Space:The system state of the MDP is global QSI
Q ∈ Q.

• Action Space: The action on the system stateQ is the
partitioned actionΩ(Q) given in Definition 3, and the
action space is{P ,S}.

• Transition Kernel: The transition kernel is
Pr{Q′|Q,Ω(Q)} = EH [Pr{Q′|Q,H,Ω(χ)}], where
Pr{Q′|Q,H,Ω(χ)} is given by (4).

• Per-Slot Cost: The per-slot cost function
is ĝ(Q,Ω(Q)) = EH[g(Q,H,Ω(χ))] =∑

m,k β(m,k)f(Q(m,k)).
Therefore, the optimal partitioned actionΩ∗(Q) can be

determined from the equivalent Bellman equation in (9).
Next, we shall prove thatV (Q) is a monotonic increasing

function w.r.t. its component. Given theV l(Q) is the result of
l-th iteration,V l+1(Q) is given by:

V l+1(Q) = TΩ(V
l,Q)− TΩ(V

l,QI) (33)

where TΩ(V
l,Q) = min

Ω(Q)

[
g̃(Q,Ω(Q)) +

∑
Q′ Pr{Q′|Q,Ω(Q)}V l(Q′)

]
, and QI is a reference

state. Becauseliml→∞ V l(Q) = V (Q) [7], it is
sufficient to proveV l(Q), ∀l is component-wise monotonic
increasing. Using the induction method, we start from
V 0(Q) = 0, ∀Q. In the induction step, we assume that
∀Q1 ≻ Q2, V l(Q1) > V l(Q2), we get

V l+1(Q1) + TΩ(V
l,QI)

= min
Ω(Q1)

[
g̃(Q1,Ω(Q1)) +

∑
Q′

Pr{Q′|Q1,Ω(Q1)}V l(Q′)

]

>
∑
m,k

β(m,k)f(Q
2
(m,k)) +

∑
A

Pr{A}EH[V (Q2 −U∗ +A)]

≥ min
Ω(Q2)

[
g̃(Q2,Ω(Q2)) +

∑
Q′

Pr{Q′|Q2,Ω(Q2)}V l(Q′)

]

= V l+1(Q2) + TΩ(V
l,QI)

(34)
whereU∗ is the delivered bits under the conditional action
Ω∗(Q1) = {p∗, s∗} for all users. Specifically,U(m,k)(t) =
R(m,k)(H,p∗, s∗)τ .

APPENDIX B: PROOF OFCOROLLARY 1

Using the linear approximation in (18), and the given ICI
management patternp, the optimal user scheduling actions
(obtained by solving the RHS of Bellman equation (17)) is:

mins(Q,H)∈S

[
g̃(Q,P, s(Q,H))+

∑
Q̃′

Pr{Q̃′|Q,p, s(Q,H)}Ṽ (Q̃′)
]

⇒ mins(Q,H)∈S

[∑
m,k

(
Ṽ(m,k)(Q(m,k))(1 − s(m,k))+

Ṽ(m,k)((Q(m,k) − U(m,k))
+)s(m,k)

)]

⇒ maxsm∈Sm

∑
k∈Km

(
Ṽ(m,k)(Q(m,k))−

Ṽ(m,k)((Q(m,k) − U(m,k))
+)

)
s(m,k), ∀m ∈ Mp

(35)
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whereSm = {sm :
∑

k∈Km
s(m,k) = 1, s(m,k) ∈ {0, 1}} is

the set of all the possible user scheduling policy for BSm.
As a result, Corollary 1 is obvious from the above equation.

APPENDIX C: PROOF OFLEMMA 1

From the definition of mappingT(m,k) in (28), the conver-
gence property of the per-user value function update algorithm
in (26) is equivalent to the following update equation [21]:

Ṽ t+1
(m,k)(Q̃(m,k)) =

Ṽ t
(m,k)(Q̃(m,k)) + γ(t)

[
T(m,k)(Ṽ

t
(m,k), Q̃(m,k))−

Ṽ t
(m,k)(Q̃

I
(m,k))− Ṽ t

(m,k)(Q̃(m,k)) + Zt+1
(m,k)(Q̃(m,k))

]

(36)
where Z̃t+1

(m,k)(Q̃(m,k)) = β(m,k)f(Q̃(m,k) + A(m,k)) +

Ṽ t
(m,k)(Q

′
(m,k)) − T(m,k)(Ṽ

t
(m,k), Q̃(m,k)), and Q′

(m,k) =

Q̃(m,k) + A(m,k) − U(m,k). U(m,k) is determined by
the ICI management control patterñpI

m and local CSI
H(m,k). Let Ft = σ(Ṽl

(m,k), Z̃
l
(m,k), l ≤ t) be the

σ-algebra generated by{Ṽl
(m,k), Z̃

l
(m,k), l ≤ t}, It can

be verified that E{H(m,k),A(m,k)}[Z̃
t+1
(m,k)|Ft] = 0, and

E{H(m,k),A(m,k)}[||Z̃
t+1
(m,k)||

2|Ft] ≤ C1(1 + ||Ṽt
(m,k)||

2) for
a suitable constantC1. Therefore, the learning algorithm in
(36) is a standard stochastic learning algorithm with the
Martingale difference noisẽZt+1

(m,k). We use the ordinary differ-
ential equation (ODE) to analyze the convergence probability.
Specifically, the limiting ODE associated for (36) to track
asymptotically is given by:

˙̃
V(m,k)(t) = T(m,k)(Ṽ(m,k)(t)) − Ṽ(m,k)(t)−

Ṽ(m,k)(Q̃
I
(m,k), t)e = h(Ṽ(m,k)(t))

(37)

Note that there is a unique fixed point̃V∗
(m,k) that satisfies

the Bellman equation

T(m,k)(Ṽ
∗
(m,k))− Ṽ∗

(m,k) − Ṽ ∗
(m,k)(Q̃

I
(m,k))e = 0 (38)

and it is proved in [22] that Ṽ∗
(m,k) is the glob-

ally asymptotically stable equilibrium for (37). Further-
more, definehr(Ṽ(m,k)) = h(rṼ(m,k))/r, ∀r > 0 and
h∞(Ṽ(m,k)) = limr→∞ hr(Ṽ(m,k)) = P(m,k)Ṽ(m,k) −

Ṽ(m,k) − Ṽ(m,k)(Q̃
I
(m,k))e. The origin is the globally asymp-

totically stable equilibrium point of the ODE˙̃V(m,k)(t) =

h∞(Ṽ(m,k)(t)) (This is merely a special case by setting
g̃(m,k) = 0 in the T(m,k)(Ṽ(m,k))). By theorem 2.2 of
[23], the iteratesṼt

(m,k) remains bounded almost-surely. By
the ODE approach [21, Chap.2], we can conclude that the
iterates of the updatẽVt

(m,k) → Ṽ∗
(m,k) almost-surely, i.e.,

converging to the globally asymptotically stable equilibrium
of the associated ODE.

Finally the proof of Ṽ ∞
(m,k)(Q̃(m,k)) = Ṽ ∗

(m,k)(Q̃(m,k))
being a monotonic increasing function can be derived in the
same way as Theorem 1.

APPENDIX D: PROOF OFLEMMA 2

From the definition of mappingTQ

(m,k)(Q(m,k), Q(m,k),p)

in (31), defining the vector form mappingTQ

(m,k)(Q(m,k)) :

R(1+NQ)×|P| → R(1+NQ)×|P| where each elements is given
by TQ

(m,k)(Q(m,k), Q(m,k),p). The convergence property of
the per-userQ-factor update algorithm in (27) is equivalent
to the following update equation [21]:

Qt+1
(m,k) = Qt

(m,k) + γ(t)
[
T

Q

(m,k)(Q
t
(m,k))−

Qt
(m,k)(Q

I
(m,k),p

I
m)e−Qt

(m,k) + Zt+1
(m,k)

] (39)

where Zt+1
(m,k) is the vector form of Zt+1

(m,k)(Q(m,k),p),
Zt+1
(m,k)(Q(m,k),p) = β(m,k)f(Q(m,k)) + Qt

(m,k)(Q
′
(m,k)) −

TQ

(m,k)(Q
t
(m,k), Q(m,k),p), and Q′

(m,k) = Q(m,k) −
U(m,k) + A(m,k). U(m,k) is determined by the ICI
management control patternp and local CSI H(m,k).
Let Ft = σ(Ql

(m,k),Z
l
(m,k), l ≤ t) be the σ-

algebra generated by{Ql
(m,k),Z

l
(m,k), l ≤ t}, It can

be verified that E{H(m,k),A(m,k)}[Z
t+1
(m,k)|Ft] = 0, and

E{H(m,k),A(m,k)}[||Z
t+1
(m,k)||

2|Ft] ≤ C1(1 + ||Qt
(m,k)||

2) for a
suitable constantC1. Therefore, the learning algorithm in
(39) is also a standard stochastic learning algorithm with
the Martingale difference noiseZt+1

(m,k). The limiting ODE
associated to track asymptotically is given by:

Q̇(m,k)(t) = T
Q

(m,k)(Q(m,k)(t))−

Q(m,k)(t)−Q(m,k)(Q
I
(m,k),p

I
m, t)e

(40)

Furthermore, there is a unique fixed pointQ∗
(m,k) satisfying

the following equation [24]:

T
Q

(m,k)(Q
∗
(m,k))−Q∗

(m,k) −Q∗
(m,k)(Q

I
(m,k),p

I
m)e = 0 (41)

and it is proved in [24] thatQ∗
(m,k) is the globally asymp-

totically stable equilibrium for (40). As a result, following
the same argument in the convergence proof of per-user value
function in Lemma 1, we can conclude that the iterates of the
updateQt

(m,k) → Q∗
(m,k) almost-surely.
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