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Abstract

We consider the Gaussian multiple-input multiple-output (MIMO) broadcast chan-

nel with common and private messages. We obtain the degrees of freedom (DoF)

region of this channel. We first show that a parallel Gaussian broadcast channel with

unmatched sub-channels can be constructed from any given Gaussian MIMO broadcast

channel by using the generalized singular value decomposition (GSVD) and a relax-

ation on the power constraint for the channel input, in a way that the capacity region

of the constructed parallel channel provides an outer bound for the capacity region of

the original channel. The capacity region of the parallel Gaussian broadcast channel

with unmatched sub-channels is known, using which we obtain an explicit outer bound

for the DoF region of the Gaussian MIMO broadcast channel. We finally show that

this outer bound for the DoF region can be attained both by the achievable scheme

that uses a classical Gaussian coding for the common message and dirty-paper cod-

ing (DPC) for the private messages, as well as by a variation of the zero-forcing (ZF)

scheme.

∗This work was supported by NSF Grants CCF 07-29127, CNS 09-64632, CCF 09-64645 and CCF 10-
18185, and presented in part at the IEEE Global Communications Conference, Miami, FL, December 2010.
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1 Introduction

We study the two-user Gaussian multiple-input multiple-output (MIMO) broadcast channel,

where each link between the transmitter and each receiver is a linear additive Gaussian

channel. We consider the scenario where the transmitter sends a private message to each

user in addition to a common message which is directed to both users. The capacity region

for this scenario, i.e., the capacity region of the Gaussian MIMO broadcast channel with

common and private messages, is unknown. However, when one of these three messages is

absent, the corresponding capacity region is known. In particular, the capacity region is

known when there is no common message, i.e., each user gets only a private message [1], and

for the degraded message set case, i.e., there is a common message directed to both users,

and only one of the users gets a private message [2, 3].

The first work that considers the Gaussian MIMO broadcast channel with common and

private messages is [4]. Reference [4] proposes an achievable scheme which uses a classical

Gaussian coding scheme for the common message, and dirty-paper coding (DPC) for the

private messages. The corresponding achievable rate region is called the DPC region. In

addition, [4] obtains the capacity region when the Gaussian MIMO broadcast channel is

equivalent to a set of parallel independent Gaussian channels by using the results from [5].

The Gaussian MIMO broadcast channel with common and private messages is further studied

in [2, 3], where the partial optimality of the DPC region [4] is shown. References [2, 3] first

propose an outer bound for the capacity region of the Gaussian MIMO broadcast channel

with common and private messages, and then prove that it is tight on certain sub-regions of

the capacity region by showing that it matches the DPC region given in [4]. Moreover, [2,3]

show that for a given common message rate, the private message sum capacity is attained

by the achievable scheme in [4]. Finally, [2, 3] show the optimality of the DPC region in [4]

when the common message rate is beyond a certain threshold.

A more recent work on the Gaussian MIMO broadcast channel is reported in [6]1. In [6],

we first obtain an outer bound for the capacity region of the two-user discrete memoryless

broadcast channel with common and private messages. We next show that if jointly Gaus-

sian random variables are sufficient to evaluate this outer bound for the Gaussian MIMO

broadcast channel, the DPC region is the capacity region of the Gaussian MIMO broad-

cast channel with common and private messages. However, we can evaluate only a loosened

version of this outer bound, which yields the result that extending the DPC region in the

common message rate direction by a fixed amount is an outer bound for the capacity region

of the Gaussian MIMO broadcast channel with common and private messages. However,

this fixed amount, i.e., the gap, does not have suitable scaling with the available power at

the transmitter to enable us to obtain the degrees of freedom (DoF) region of the Gaussian

MIMO broadcast channel with common and private messages.

1Some of the results in [6] are concurrently and independently obtained in [7].
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In this work, we follow a different approach and establish the DoF region of the Gaus-

sian MIMO broadcast channel with common and private messages. We first show that we

can construct a parallel Gaussian broadcast channel with unmatched sub-channels [5] from

any given Gaussian MIMO broadcast channel such that the capacity region of this parallel

Gaussian broadcast channel with unmatched sub-channels includes the capacity region of the

Gaussian MIMO broadcast channel. To construct such a parallel channel, we use the gener-

alized singular value decomposition (GSVD) [8] on the channel gain matrices of the Gaussian

MIMO broadcast channel and also relax the power constraint on the channel input. This

relaxation on the power constraint enlarges the capacity region during the transformation

of the Gaussian MIMO broadcast channel into a parallel Gaussian broadcast channel with

unmatched sub-channels. Consequently, the capacity region of the constructed parallel chan-

nel provides an outer bound for the capacity region of the Gaussian MIMO channel. Since

the capacity region of the parallel Gaussian broadcast channel with unmatched sub-channels

is known due to [5], we are able to characterize the DoF region of the parallel Gaussian

broadcast channel with unmatched sub-channels, which serves as an outer bound for the

DoF region of the Gaussian MIMO broadcast channel. We next show that this outer bound

for the DoF region of the Gaussian MIMO broadcast channel with common and private

messages can be attained by a proper selection of the covariance matrices involved in the

DPC region [4]. Moreover, we also show that, in addition to the DPC scheme, a variation

of the zero-forcing (ZF) scheme [9, 10] can attain the DoF region of the Gaussian MIMO

broadcast channel with common and private messages.

2 Channel Model and Definitions

The Gaussian MIMO broadcast channel is defined by

Y1 = H1X+N1 (1)

Y2 = H2X+N2 (2)

where the channel input X is a t×1 column vector, Hj is the jth user’s channel gain matrix

of size rj × t, Yj is the channel output of the jth user which is an rj × 1 column vector, and

the Gaussian random vector Nj is of size rj × 1 with an identity covariance matrix. The

channel input is subject to an average power constraint as follows

E
[

X⊤X
]

= tr
(

E
[

XX⊤
])

≤ P (3)

We study the Gaussian MIMO broadcast channel for the scenario where the transmitter

sends a common message to both users, and a private message to each user. We call the

channel model arising from this scenario the Gaussian MIMO broadcast channel with com-

mon and private messages. An (n, 2nR0, 2nR1, 2nR2) code for this channel consists of three
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message sets W0 = {1, . . . , 2nR0},W1 = {1, . . . , 2nR1},W2 = {1, . . . , 2nR2}, one encoder

fn : W0 ×W1 ×W2 → X n, one decoder at each receiver gjn : Yn
j → W0 ×Wj , j = 1, 2. The

probability of error is defined as P n
e = max{P n

e1, P
n
e2}, where Pej = Pr[gjn(fn(W0,W1,W2)) 6=

(W0,Wj)], j = 1, 2, and Wj denotes the message which is a uniformly distributed random

variable in Wj , j = 0, 1, 2. A rate triple (R0, R1, R2) is said to be achievable if there exists

a code (n, 2nR0, 2nR1 , 2nR2) which has limn→∞ P n
e = 0. The capacity region C(P ) is defined

as the convex closure of all achievable rate triples (R0, R1, R2).

Our main concern is to investigate how the capacity region C(P ) behaves when the avail-

able power at the transmitter P is arbitrarily large, i.e., P goes to infinity. This investigation

can be carried out by characterizing the DoF region of the Gaussian MIMO broadcast chan-

nel with common and private messages. A DoF triple (d0, d1, d2) is said to be achievable if

there exists a rate triple (R0, R1, R2) ∈ C(P ) such that

dj = lim
P→∞

Rj

1
2
logP

, j = 0, 1, 2 (4)

The DoF region D is defined as the convex closure of all achievable DoF triples (d0, d1, d2).

We conclude this section by presenting the achievable rate region, hereafter called the

DPC region, given in [4]. In the achievable scheme in [4], the common message is encoded

by a standard Gaussian codebook, and the private messages are encoded by DPC. Each user

decodes the common message by treating the signals carrying the private messages as noise.

Next, users decode their private messages. Since a DPC scheme is used to encode the private

messages, one of the users observes an interference-free link depending on the encoding order

at the transmitter. We next define

R0j(K0,K1,K2) =
1

2
log

|Hj(K0 +K1 +K2)H
⊤
j + I|

|Hj(K1 +K2)H⊤
j + I|

, j = 1, 2 (5)

R1(K1,K2) =
1

2
log

|H1(K1 +K2)H
⊤
1 + I|

|H1K2H⊤
1 + I|

(6)

R2(K2) =
1

2
log |H2K2H2 + I| (7)

where K0,K1,K2 denote the covariance matrices allotted for the common message, the first

user’s private message, and the second user’s private message, respectively. The DPC region

is stated in the following theorem.

Theorem 1 ([4]) The rate triples (R0, R1, R2) lying in the region

RDPC(P ) = conv
(

RDPC
1 (P ) ∪RDPC

2 (P )
)

(8)

are achievable, where conv is the convex hull operator, RDPC
1 (P ) consists of rate triples
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(R0, R1, R2) satisfying

R0 ≤ R0j(K0,K1,K2), j = 1, 2 (9)

R1 ≤ R1(K1,K2) (10)

R2 ≤ R2(K2) (11)

for some positive semi-definite matrices K0,K1,K2 such that tr(K0 +K1 +K2) ≤ P , and

RDPC
2 (P ) can be obtained from RDPC

1 (P ) by swapping the subscripts 1 and 2.

The DPC region is tight in several cases. The first one is the case where each receiver

gets only a private message, i.e., R0 = 0 [1]. The other case is the degraded message sets

scenario in which we have either R1 = 0 or R2 = 0 [2]. In both of these cases, there are only

two messages to be sent. The case when both private messages and a common message are

present is investigated in [2, 3]. In [2, 3], outer bounds on the capacity region with private

and common messages are given and these outer bounds are shown to match the DPC region

in certain regions. Furthermore, [2, 3] show that for a given common message rate R0, the

DPC region achieves the private message sum rate capacity, i.e., the maximum of R1 +R2.

Finally, [2,3] show that if the common message rate is beyond a certain threshold, the DPC

region matches the capacity region if the channel input is subject to a covariance constraint,

i.e., E
[

XX⊤
]

� S for some S � 0. In [6], we show that an outer bound for the capacity

region of the Gaussian MIMO broadcast channel with common and private messages can

be obtained by extending the DPC region in the common message rate direction by a fixed

amount. This fixed amount, i.e., the gap, depends on the channel gain matrices H1,H2, and

is not finite for all possible channel gain matrices H1,H2.

3 Main Result

We now present our main result which characterizes the DoF region of the Gaussian MIMO

broadcast channel with common and private messages. Our result shows that this DoF

region can be attained by using the achievable scheme in Theorem 1, i.e., the DPC region in

Theorem 1 is asymptotically tight. Moreover, we also show that in addition to the achievable

scheme in Theorem 1, a variation of the ZF scheme [9,10] can achieve the DoF region as well.

Before stating our main result, we introduce the GSVD [8, 11] which plays a crucial role in

the proof of our main result, and provides the necessary notation to express this result.

Definition 1 ([8], Theorem 1) Given two matrices H1 ∈ R
r1×t and H2 ∈ R

r2×t, there

exist orthonormal matrices Ψ1 ∈ R
r1×r1 ,Ψ2 ∈ R

r2×r2 ,Ψ0 ∈ R
t×t, a non-singular, lower
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triangular matrix Ω ∈ R
k×k, and two matrices Σ1 ∈ R

r1×k,Σ2 ∈ R
r2×k such that

Ψ⊤
1 H1Ψ0 = Σ1

[

Ω−1 0k×t−k

]

(12)

Ψ⊤
2 H2Ψ0 = Σ2

[

Ω−1 0k×t−k

]

(13)

where Σ1 and Σ2 are given by

Σ1 =







Ik−p−s×k−p−s

D1,s×s

0r1+p−k×p






(14)

Σ2 =







0r2−p−s×k−p−s

D2,s×s

Ip×p






(15)

and the constants k, p are given as

k = rank

([

H1

H2

])

(16)

p = dim
(

Null(H1) ∩Null(H2)
⊥
)

(17)

and s depends on the matrices H1,H2. The matrices D1,D2 are diagonal with the diagonal

elements being strictly positive.

We define the sets S1,Sc,S2 as follows

S1 = {1, . . . , k − p− s} (18)

Sc = {k − p− s+ 1, . . . , k − p} (19)

S2 = {k − p+ 1, . . . , k} (20)

Our main result is stated in the following theorem.

Theorem 2 The DoF region of the Gaussian MIMO broadcast channel with common and

private messages is given by the union of DoF triples (d0, d1, d2) satisfying

d0 ≤ |Sc| − α1 − α2 + β (21)

d1 ≤ α1 + |S1| − β (22)

d2 ≤ α2 + |S2| − β (23)

for some non-negative α1, α2, β such that α1 + α2 ≤ |Sc|, β ≤ min{|S1|, |S2|}. The DoF

region of the Gaussian MIMO broadcast channel with common and private messages can be

attained by the DPC region given in Theorem 1 as well as by a variation of the ZF scheme.
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This theorem states that, if the available power P is sufficiently large, the Gaussian

MIMO broadcast channel behaves as if it is a parallel Gaussian broadcast channel with

|S1| + |Sc| + |S2| sub-channels. |S1| of these sub-channels can be accessed by only the first

user, |S2| of these sub-channels can be accessed by only the second user, and |Sc| of these

sub-channels can be accessed by both users. For a fixed (α1, α2, β), |Sc| − α1 − α2 of the

sub-channels that both users can access, need to be used for the transmission of the common

message in addition to β of the |S1| sub-channels that only the first user can access and β of

the |S2| sub-channels that only the second user can access. Thus, each user gets the common

message over some common sub-channels, namely |Sc| −α1 −α2 sub-channels, which can be

observed by both users, and some private sub-channels, namely β sub-channels, which can

be observed by only one user. This leads to a β+|Sc|−α1−α2 DoF for the common message.

The first user’s message needs to be transmitted over α1 of the |Sc| sub-channels that are

observed by both users, and the remaining |S1| − β of the first user’s private sub-channels

(the rest of these sub-channels were dedicated to the transmission of the common message)

that cannot be observed by the second user. This results in an α1 + |S1| − β DoF for the

first user’s private message. Similarly, the second user’s message needs to be transmitted

over α2 of the |Sc| sub-channels that are observed by both users, and the remaining |S2| − β

of the second user’s private sub-channels (the rest of these sub-channels were dedicated to

the transmission of the common message) that cannot be observed by the first user. This

results in an α2 + |S2| − β DoF for the second user’s private message.

We provide the proof of Theorem 2 in the next three sections. In the next section,

we obtain an outer bound for the DoF region of the Gaussian MIMO broadcast channel

with common and private messages by using the GSVD, and also a relaxation on the power

constraint for the channel input. In Section 5, we obtain an inner bound for the DoF

region of the Gaussian MIMO broadcast channel with common and private messages. We

obtain this inner bound by using two different achievable schemes. The first one directly

uses Theorem 1, i.e., we make an explicit selection of the covariance matrices K0,K1,K2

involved in the DPC region to obtain this inner bound. The second one employs a variation

of the ZF scheme [9, 10] to obtain the inner bound for the DoF region. The equivalence of

these inner and outer bounds are shown in Section 6 to complete the proof of Theorem 2.

4 Outer Bound

We first obtain a new channel from the original one in (1)-(2)-(3) by using the GSVD, where

the capacity region of the new channel includes the capacity region of the original one in

(1)-(2)-(3). To this end, we note that

Ψ⊤
j Hj = Σj

[

Ω−1 0k×t−k

]

Ψ⊤
0 , j = 1, 2 (24)
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which is due to (12)-(13), and the fact that Ψ0 is orthonormal. Since Ψj is also orthonormal,

i.e., non-singular, the capacity region of the following channel

Ỹj = Ψ⊤
j Yj, j = 1, 2 (25)

is equal to the capacity region of the original one in (1)-(2)-(3). The channel defined in (25)

can be explicitly expressed as

Ỹj = Ψ⊤
j HjX+Ψ⊤

j Nj (26)

= Σj

[

Ω−1 0k×t−k

]

Ψ⊤
0 X+Ψ⊤

j Nj, j = 1, 2 (27)

where we used (24). We define Ñj = Ψ⊤
j Nj which is also a white Gaussian random vector,

i.e.,

E
[

ÑjÑ
⊤
j

]

= I (28)

due to the fact that Ψj is orthonormal and Nj is white. We also define

X̃ =
[

Ω−1 0k×t−k

]

Ψ⊤
0 X (29)

using which the channel in (27) can be written as

Ỹj = ΣjX̃+ Ñj , j = 1, 2 (30)

where the channel input X̃ should be chosen according to the trace constraint on X stated

in (3). We now relax the power constraint on X̃, and consequently, obtain a new channel

whose capacity region includes the capacity region of the original channel in (1)-(2)-(3). To

this end, we note that

tr
(

E
[

X̃X̃⊤
])

= tr
(

[

Ω−1 0k×t−k

]

Ψ⊤
0 E
[

XX⊤
]

Ψ0

[

Ω−1 0k×t−k

]⊤
)

(31)

= tr
(

E
[

XX⊤
]

Ψ0

[

Ω−1 0k×t−k

]⊤ [
Ω−1 0k×t−k

]

Ψ⊤
0

)

(32)

where (31) comes from the definition of X̃ in (29), and (32) comes from the fact that

tr(AB) = tr(BA). Since

[

Ω−1 0k×t−k

]⊤ [
Ω−1 0k×t−k

]

(33)

is a positive semi-definite matrix, there exists a ζ > 0 such that

[

Ω−1 0k×t−k

]⊤ [
Ω−1 0k×t−k

]

� ζI (34)
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Since tr(AB) ≥ 0 if A � 0,B � 0, using (34) in (32), we get

tr
(

E
[

X̃X̃⊤
])

≤ ζtr
(

E
[

XX⊤
]

Ψ0Ψ
⊤
0

)

(35)

= ζtr
(

E
[

XX⊤
])

(36)

≤ ζP (37)

where (36) comes from the fact that Ψ0 is orthonormal, and (37) is due to the total power

constraint on X given in (3). We now consider the following channel

Ỹj = ΣjX̃+ Ñj , j = 1, 2 (38)

where the channel input is subject to the following trace constraint

tr
(

E
[

X̃X̃⊤
])

≤ ζP (39)

We note that this new channel in (38)-(39) is obtained from the original channel in (1)-(2)-

(3) by two main operations: The first one is the multiplication of the channel outputs in the

original channel, i.e., (1)-(2), with invertible matrices Ψ1,Ψ2 which preserves the capacity

region. The second operation is the relaxation of the power constraint in the new channel

to get (39) which increases the capacity region by means of increasing the set of all feasible

input distributions. Thus, due to this second operation, the capacity region of the new

channel in (38)-(39) serves as an outer bound for the capacity region of the original channel

in (1)-(2)-(3). Similarly, the DoF region of the new channel in (38)-(39) is an outer bound

for the DoF region of the original channel in (1)-(2)-(3).

We next rewrite the channel in (38)-(39) in an alternative form. To this end, we note

that the last (r1+p−k) entries of Ỹ1 come from only the noise. Since the noise is white, see

(28), we can omit these last r1+ p− k entries of Ỹ1 without loss of generality. Furthermore,

we define

h̃1ℓ = Σ1,ℓℓ, 1 ≤ ℓ ≤ k − p (40)

Similarly, the first r2−p−s entries of Ỹ2 come from only the noise. Since the noise is white,

see (28), we can again omit these first r2 − p − s entries of Ỹ2 without loss of generality.

Similarly, we also define

h̃2ℓ = Σ2,(r2−k+ℓ)ℓ, k − p− s+ 1 ≤ ℓ ≤ k (41)

Using the definitions in (40)-(41) and omitting the entries of Ỹ1, Ỹ2 which contain only
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noise, the channel in (38) can be expressed as

Ỹ1ℓ = h̃1ℓX̃ℓ + Ñ1ℓ, ℓ = 1, . . . , |S1|+ |Sc| (42)

Ỹ2ℓ = h̃2ℓX̃ℓ + Ñ2ℓ, ℓ = |S1|+ 1, . . . , |S1|+ |Sc|+ |S2| (43)

where we used the definitions of S1,Sc,S2 given in (18)-(20) in conjunction with (40)-(41),

and {Ñ1,ℓ}
ℓ=|S1|+|Sc|
ℓ=1 , {Ñ2,ℓ}

|S1|+|Sc|+|S2|
ℓ=|S1|+1 are i.i.d. Gaussian random variables with unit vari-

ance. The power constraint on the channel input in (39) can be rewritten as

|S1|+|Sc|+|S2|
∑

ℓ=1

E
[

X̃2
ℓ

]

≤ ζP (44)

We note that the channel defined by (42)-(43) is a parallel Gaussian broadcast channel with

unmatched sub-channels, whose capacity region is obtained in [5]. In particular, the capacity

region of this channel can be obtained by evaluating the following region

R0 ≤
∑

ℓ∈S1∪Sc

I(Uℓ; Ỹ1ℓ) (45)

R0 ≤
∑

ℓ∈S2∪Sc

I(Uℓ; Ỹ2ℓ) (46)

R0 +R1 ≤
∑

ℓ∈Sc2

I(Uℓ; Ỹ1ℓ) +
∑

ℓ∈S1∪Sc1

I(Xℓ; Ỹ1ℓ) (47)

R0 +R2 ≤
∑

ℓ∈Sc1

I(Uℓ; Ỹ2ℓ) +
∑

ℓ∈S2∪Sc2

I(Xℓ; Ỹ2ℓ) (48)

R0 +R1 +R2 ≤
∑

ℓ∈Sc2

I(Uℓ; Ỹ1ℓ) +
∑

ℓ∈S2∪Sc2

I(Xℓ; Ỹ2ℓ|Uℓ) +
∑

ℓ∈S1∪Sc1

I(Xℓ; Ỹ1ℓ) (49)

R0 +R1 +R2 ≤
∑

ℓ∈Sc1

I(Uℓ; Ỹ2ℓ) +
∑

ℓ∈S1∪Sc1

I(Xℓ; Ỹ1ℓ|Uℓ) +
∑

ℓ∈S2∪Sc2

I(Xℓ; Ỹ2ℓ) (50)

by jointly Gaussian {(Uℓ, Xℓ)}
|S1|+|Sc|+|S2|
ℓ=1 [5], where Sc1 and Sc2 are given by

Sc1 =
{

ℓ ∈ Sc : h̃
2
1ℓ ≥ h̃2

2ℓ

}

(51)

Sc2 =
{

ℓ ∈ Sc : h̃
2
2ℓ ≥ h̃2

1ℓ

}

(52)

Hence, the capacity region of the channel in (42)-(43) is given by the union of the rate triples
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(R0, R1, R2) satisfying

R0 ≤
∑

ℓ∈S1∪Sc

C

(

h̃2
1ℓγℓPℓ

1 + h̃2
1ℓγ̄ℓPℓ

)

(53)

R0 ≤
∑

ℓ∈S2∪Sc

C

(

h̃2
2ℓγℓPℓ

1 + h̃2
2ℓγ̄ℓPℓ

)

(54)

R0 +R1 ≤
∑

ℓ∈Sc2

C

(

h̃2
1ℓγℓPℓ

1 + h̃2
1ℓγ̄ℓPℓ

)

+
∑

ℓ∈S1∪Sc1

C
(

h̃2
1ℓPℓ

)

(55)

R0 +R2 ≤
∑

ℓ∈Sc1

C

(

h̃2
2ℓγℓPℓ

1 + h̃2
2ℓγ̄ℓPℓ

)

+
∑

ℓ∈S2∪Sc2

C
(

h̃2
2ℓPℓ

)

(56)

R0 +R1 +R2 ≤
∑

ℓ∈Sc2

C

(

h̃2
1ℓγℓPℓ

1 + h̃2
1ℓγ̄ℓPℓ

)

+
∑

ℓ∈S2∪Sc2

C
(

h̃2
2ℓγ̄ℓPℓ

)

+
∑

ℓ∈S1∪Sc1

C
(

h̃2
1ℓPℓ

)

(57)

R0 +R1 +R2 ≤
∑

ℓ∈Sc1

C

(

h̃2
2ℓγℓPℓ

1 + h̃2
2ℓγ̄ℓPℓ

)

+
∑

ℓ∈S1∪Sc1

C
(

h̃2
1ℓγ̄ℓPℓ

)

+
∑

ℓ∈S2∪Sc2

C
(

h̃2
2ℓPℓ

)

(58)

for some γℓ = 1 − γ̄ℓ ∈ [0, 1], ℓ = 1, . . . , |S1| + |Sc| + |S2|, and {Pℓ}
|S1|+|Sc|+|S2|
ℓ=1 such that

∑|S1|+|Sc|+|S2|
ℓ=1 Pℓ = ζP , where C(x) = (1/2) log(1 + x).

We now obtain the DoF region of the channel in (42)-(43) by using (53)-(58), which will

serve as an outer bound for the DoF region of the original channel in (1)-(2). To this end,

we define

ηj = lim
P→∞

∑

ℓ∈Sj
C

(

h̃2

jℓ
γℓPℓ

1+h̃2

jℓ
γ̄ℓPℓ

)

1
2
logP

, j = 1, 2 (59)

We define δc1 as follows

δc1 = lim
P→∞

∑

ℓ∈Sc1
C
(

h̃2

1ℓ
γℓPℓ

1+h̃2

1ℓ
γ̄ℓPℓ

)

1
2
logP

(60)

≥ lim
P→∞

∑

ℓ∈Sc1
C
(

h̃2

2ℓ
γℓPℓ

1+h̃2

2ℓ
γ̄ℓPℓ

)

1
2
logP

(61)

where the inequality comes from the fact that h̃2
1ℓ ≥ h̃2

2ℓ, ℓ ∈ Sc1. Similarly, we define δc2 as
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follows

δc2 = lim
P→∞

∑

ℓ∈Sc2
C
(

h̃2

2ℓ
γℓPℓ

1+h̃2

2ℓ
γ̄ℓPℓ

)

1
2
logP

(62)

≥ lim
P→∞

∑

ℓ∈Sc2
C
(

h̃2

1ℓ
γℓPℓ

1+h̃2

1ℓ
γ̄ℓPℓ

)

1
2
logP

(63)

where the inequality comes from the fact that h̃2
2ℓ ≥ h̃2

1ℓ, ℓ ∈ Sc2. Using (59), (60),(63) and

the bound in (53), we get

d0 ≤ η1 + δc1 + δc2 (64)

Similarly, using (59), (61),(62) and the bound in (54), we get

d0 ≤ η2 + δc1 + δc2 (65)

Using (63) and the rate bound in (55), we get

d0 + d1 ≤ δc2 + |Sc1|+ |S1| (66)

Similarly, using (61) and the rate bound in (56), we get

d0 + d2 ≤ δc1 + |Sc2|+ |S2| (67)

We next consider the rate bounds in (57) and (58) to obtain bounds for d0+ d1+ d2. To this

end, we note that

C
(

h̃2
jℓγ̄ℓPℓ

)

= C
(

h̃2
jℓPℓ

)

− C

(

h̃2
jℓγℓPℓ

1 + h̃2
jℓγ̄ℓPℓ

)

(68)

Using this identity, we get

lim
P→∞

∑

ℓ∈S2∪Sc2
C
(

h̃2
2ℓγ̄ℓPℓ

)

1
2
logP

= lim
P→∞

∑

ℓ∈S2∪Sc2
C
(

h̃2
2ℓPℓ

)

1
2
logP

− lim
P→∞

∑

ℓ∈S2∪Sc2
C
(

h̃2

2ℓ
γℓPℓ

1+h̃2

2ℓ
γ̄ℓPℓ

)

1
2
logP

(69)

≤ |S2|+ |Sc2| − lim
P→∞

∑

ℓ∈S2∪Sc2
C
(

h̃2

2ℓ
γℓPℓ

1+h̃2

2ℓ
γ̄ℓPℓ

)

1
2
logP

(70)

= |S2|+ |Sc2| − η2 − δc2 (71)

where in (71), we used the definitions of η2, δc2 given in (59), (62), respectively. Using (57)
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and (71), we get

d0 + d1 + d2 ≤ δc2 + |S2|+ |Sc2| − η2 − δc2 + |Sc1|+ |S1| (72)

= |S2|+ |Sc2|+ |Sc1|+ |S1| − η2 (73)

Similarly, using the rate bound in (58), we can get the following

d0 + d1 + d2 ≤ |S2|+ |Sc2|+ |Sc1|+ |S1| − η1 (74)

Thus, we have obtained the DoF region of the channel in (42)-(43), which, by combining

(64)-(67), (73)-(74), can be expressed as the union of the triples (d0, d1, d2) satisfying

d0 ≤ min{η1, η2}+ δc1 + δc2 (75)

d0 + d1 ≤ δc2 + |Sc1|+ |S1| (76)

d0 + d2 ≤ δc1 + |Sc2|+ |S2| (77)

d0 + d1 + d2 ≤ |S1|+ |S2|+ |Sc1|+ |Sc2| −max{η1, η2} (78)

for some non-negative η1, η2, δc1, δc2 such that ηj ≤ |Sj |, δcj ≤ |Scj|. We define η =

min{η1, η2}. Using this definition, we can enlarge the region in (75)-(78) as follows

d0 ≤ η + δc1 + δc2 (79)

d0 + d1 ≤ δc2 + |Sc1|+ |S1| (80)

d0 + d2 ≤ δc1 + |Sc2|+ |S2| (81)

d0 + d1 + d2 ≤ |S1|+ |S2|+ |Sc1|+ |Sc2| − η (82)

where 0 ≤ η ≤ min{|S1|, |S2|}, δcj ≤ |Scj|. Furthermore, we let δ = δc1 + δc2 and define the

region Dout as the union of the DoF triples (d0, d1, d2) satisfying

d0 ≤ η + δ (83)

d0 + d1 ≤ |Sc|+ |S1| (84)

d0 + d2 ≤ |Sc|+ |S2| (85)

d0 + d1 + d2 ≤ |S1|+ |S2|+ |Sc| − η (86)

for some non-negative η, δ such that η ≤ min{|S1|, |S2|}, and δ ≤ |Sc|. It is clear that Dout

contains the region in (79)-(82), and hence, is an outer bound for the DoF region of the

Gaussian MIMO broadcast channel with common and private messages given in (1)-(2)-(3).
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5 Inner Bound

In this section, we provide an inner bound for the DoF region of the Gaussian MIMO

broadcast channel with common and private messages, i.e., we show the achievability of the

DoF region given in Theorem 2. In particular, we provide two different achievable schemes

for the DoF region in Theorem 2. The first one, presented in Section 5.1, uses the DPC

region in Theorem 1 directly. The second one, presented in Section 5.2, can be viewed as

a variation of the ZF scheme that eliminates the inter-user interference and inter-transmit

antenna interference by means of linear pre-processing at the transmitter and linear post-

processing at the receivers.

5.1 DPC-based Achievable Scheme

We now obtain an inner bound for the DoF region of the Gaussian MIMO broadcast channel

with common and private messages in (1)-(2)-(3) by using the achievable scheme given in

Theorem 1. In particular, we make explicit selections for the covariance matrices K0,K1,K2

involved in the achievable scheme of Theorem 1, and show that the corresponding DoF region

is equal to the one given in Theorem 2. To this end, we define the covariance matrices Ku

as follows

Ku = (ξP )Ψ0

[

Ω

0t−k×k

]

Λu

[

Ω⊤ 0k×t−k

]

Ψ⊤
0 , u = 0, 1, 2 (87)

where Λu is a diagonal matrix of size k×k. ξ in (87) is selected to ensure that tr(K0+K1+

K2) ≤ P . We next note the following identity

1

ξP
HjKuH

⊤
j = ΨjΣj

[

Ω−1 0k×t−k

]

Ψ⊤
0 Ψ0

[

Ω

0t−k×k

]

Λu

[

Ω⊤ 0k×t−k

]

Ψ⊤
0 H

⊤
j (88)

= ΨjΣjΛu

[

Ω⊤ 0k×t−k

]

Ψ⊤
0 H

⊤
j (89)

= ΨjΣjΛu

[

Ω⊤ 0k×t−k

]

Ψ⊤
0 Ψ0

[

Ω−⊤

0t−k×k

]

Σ⊤
j Ψ

⊤
j (90)

= ΨjΣjΛuΣ
⊤
j Ψ

⊤
j , j = 1, 2, u = 0, 1, 2 (91)

where (88) and (90) come from the following identity

Hj = ΨjΣj

[

Ω−1 0k×t−k

]

Ψ⊤
0 (92)

which is a consequence of the GSVD in (12)-(13). Thus, using the covariance matrices

K0,K1,K2 defined by (87) for the achievable scheme in Theorem 1, we can get the following
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achievable rates

R0(K0,K1,K2) = min
j=1,2

1

2
log

|(ξP )ΨjΣj(Λ0 +Λ1 +Λ2)Σ
⊤
j Ψ

⊤
j + I|

|(ξP )ΨjΣj(Λ1 +Λ2)Σ
⊤
j Ψ

⊤
j + I|

(93)

R1(K1,K2) =
1

2
log

|(ξP )Ψ1Σ1(Λ1 +Λ2)Σ
⊤
1 Ψ

⊤
1 + I|

|(ξP )Ψ1Σ1Λ2Σ
⊤
1 Ψ

⊤
1 + I|

(94)

R2(K2) =
1

2
log |(ξP )Ψ2Σ2Λ2Σ

⊤
2 Ψ

⊤
2 + I| (95)

Using Slyvester’s determinant theorem, i.e., |Am×nBn×m + Im×m| = |Bn×mAm×n + In×n|,

these rates can be expressed as follows

R0(K0,K1,K2) = min
j=1,2

1

2
log

|(ξP )(Λ0 +Λ1 +Λ2)Σ
⊤
j Σj + I|

|(ξP )(Λ1 +Λ2)Σ⊤
j Σj + I|

(96)

R1(K1,K2) =
1

2
log

|(ξP )(Λ1 +Λ2)Σ
⊤
1 Σ1 + I|

|(ξP )Λ2Σ⊤
1 Σ1 + I|

(97)

R2(K2) =
1

2
log |(ξP )Λ2Σ

⊤
2 Σ2 + I| (98)

We note that Σ⊤
1 Σ1,Σ

⊤
2 Σ2 are k × k (k = |S1| + |Sc| + |S2|) diagonal matrices with the

following structures

(Σ⊤
1 Σ1)ℓℓ

{

> 0 if 1 ≤ ℓ ≤ |S1|+ |Sc|

= 0 if |S1|+ |Sc|+ 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2|
(99)

(Σ⊤
2 Σ2)ℓℓ

{

= 0 if 1 ≤ ℓ ≤ |S1|

> 0 if |S1|+ 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2|
(100)

We next specify the diagonal matrices Λ0,Λ1,Λ2 as follows

Λ0,ℓℓ =































1 if 1 ≤ ℓ ≤ β

0 if β + 1 ≤ ℓ ≤ |S1|+ α1

1 if |S1|+ α1 + 1 ≤ ℓ ≤ |S1|+ |Sc| − α2

0 if |S1|+ |Sc| − α2 + 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2| − β

1 if |S1|+ |Sc|+ |S2| − β + 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2|

(101)

Λ1,ℓℓ =











0 if 1 ≤ ℓ ≤ β

1 if β + 1 ≤ ℓ ≤ |S1|+ α1

0 if |S1|+ α1 + 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2|

(102)
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Λ2,ℓℓ =











0 if 1 ≤ ℓ ≤ |S1|+ |Sc| − α2

1 if |S1|+ |Sc| − α2 + 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2| − β

0 if |S1|+ |Sc|+ |S2| − β + 1 ≤ ℓ ≤ |S1|+ |Sc|+ |S2|

(103)

where 0 ≤ β ≤ min{|S1|, |S2|}, 0 ≤ αj , α1 + α2 ≤ |Sc|. These selections of Λ0,Λ1,Λ2 yield

R01(K0,K1,K2) =
1

2
log

|(ξP )(Λ0 +Λ1 +Λ2)Σ
⊤
1 Σ1 + I|

|(ξP )(Λ1 +Λ2)Σ⊤
1 Σ1 + I|

(104)

=
1

2

|S1|+|Sc|
∑

ℓ=1

log
(ξP )(Λ0,ℓ + Λ1,ℓℓ + Λ2,ℓℓ)(Σ

⊤
1 Σ1)ℓℓ + 1

(ξP )(Λ1,ℓℓ + Λ2,ℓℓ)(Σ
⊤
1 Σ1)ℓℓ + 1

(105)

=
1

2

β
∑

ℓ=1

log
(

(ξP )(Σ⊤
1 Σ1)ℓℓ + 1

)

+
1

2

|S1|+|Sc|−α2
∑

ℓ=|S1|+α1+1

log
(

(ξP )(Σ⊤
1 Σ1)ℓℓ + 1

)

(106)

where (105) comes from the fact that Λ0,Λ1,Λ2,Σ
⊤
1 Σ1 are diagonal by noting the structure

of Σ⊤
1 Σ1 stated in (99), and (106) is a consequence of our Λ0,Λ1,Λ2 choices given in (101)-

(103), respectively. Equation (106) implies that

lim
P→∞

R01(K0,K1,K2)
1
2
logP

= β + |Sc| − α1 − α2 (107)

Similarly, we have

R02(K0,K1,K2) =
1

2
log

|(ξP )(Λ0 +Λ1 +Λ2)Σ
⊤
2 Σ2 + I|

|(ξP )(Λ1 +Λ2)Σ⊤
2 Σ2 + I|

(108)

=
1

2

|S1|+|Sc|+|S2|
∑

ℓ=|S1|+1

log
(ξP )(Λ0,ℓ + Λ1,ℓℓ + Λ2,ℓℓ)(Σ

⊤
2 Σ2)ℓℓ + 1

(ξP )(Λ1,ℓℓ + Λ2,ℓℓ)(Σ⊤
2 Σ2)ℓℓ + 1

(109)

=
1

2

|S1|+|Sc|−α2
∑

ℓ=|S1|+α1+1

log
(

(ξP )(Σ⊤
2 Σ2)ℓℓ + 1

)

+
1

2

|S1|+|Sc|+|S2|
∑

ℓ=|S1|+|Sc|+|S2|−β+1

log
(

(ξP )(Σ⊤
2 Σ2)ℓℓ + 1

)

(110)

where (109) comes from the fact that Λ0,Λ1,Λ2,Σ
⊤
2 Σ2 are diagonal by noting the structure

of Σ⊤
2 Σ2 stated in (100), and (110) is a consequence of our Λ0,Λ1,Λ2 choices given in

(101)-(103), respectively. Equation (110) implies that

lim
P→∞

R02(K0,K1,K2)
1
2
logP

= β + |Sc| − α1 − α2 (111)
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Hence, combining (107) and (111) yields that

d0 = β + |Sc| − α1 − α2 (112)

is an achievable DoF for the common message. We now consider the first user’s rate as

follows

R1(K1,K2) =
1

2
log

|(ξP )(Λ1 +Λ2)(Σ
⊤
1 Σ1) + I|

|(ξP )Λ2(Σ⊤
1 Σ1) + I|

(113)

=
1

2

|S1|+|Sc|
∑

ℓ=1

log
|(ξP )(Λ1,ℓℓ + Λ2,ℓℓ)(Σ

⊤
1 Σ1)ℓℓ + 1|

|(ξP )Λ2,ℓℓ(Σ⊤
1 Σ1)ℓℓ + 1|

(114)

=
1

2

|S1|+α1
∑

ℓ=β+1

log
(

(ξP )(Σ⊤
1 Σ1)ℓℓ + 1

)

(115)

where (114) comes from the fact that Λ1,Λ2,Σ
⊤
1 Σ1 are diagonal by noting the structure of

Σ⊤
1 Σ1 stated in (99), and (115) is a consequence of our Λ1,Λ2 choices given in (102)-(103),

respectively. Equation (115) implies that

d1 = α1 + |S1| − β (116)

is an achievable DoF for the first user’s private message. We finally consider the second

user’s rate as follows

R2(K2) =
1

2
log |(ξP )Λ2(Σ

⊤
2 Σ2) + I| (117)

=
1

2

|S1|+|Sc|+|S2|−β
∑

ℓ=|S1|+|Sc|−α2+1

log
(

(ξP )(Σ⊤
2 Σ2)ℓℓ + 1

)

(118)

where (118) comes from (100) and (103). Equation (118) implies that

d2 = α2 + |S2| − β (119)

is an achievable DoF for the second user’s private message. Thus, we have obtained an inner

bound Din for the DoF region of the Gaussian MIMO broadcast channel with common and

private messages, where Din consists of DoF triples (d0, d1, d2) satisfying

d0 ≤ |Sc| − α1 − α2 + β (120)

d1 ≤ α1 + |S1| − β (121)

d2 ≤ α2 + |S2| − β (122)

for some non-negative α1, α2, β such that α1 + α2 ≤ |Sc|, β ≤ min{|S1|, |S2|}.
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As a final remark, we note that here we obtain an inner bound for the DoF region of the

Gaussian MIMO broadcast channel with common and private messages without any recourse

to the alternative parallel channel-like representation of the Gaussian MIMO channel given in

(30). Indeed, this inner bound can also be obtained by using this alternative representation,

and in the next section, the ZF-based achievable scheme implicitly uses this alternative

scheme.

5.2 ZF-based Achievable Scheme

In this section, we provide an alternative achievable scheme to show that the DoF region given

in Theorem 2 is achievable. This alternative achievable scheme can be viewed as a variation

of the ZF scheme [9,10], where the ZF scheme is originally proposed for the Gaussian MIMO

broadcast channel with only private messages, i.e., without a common message. In this ZF

scheme, the transmitter eliminates the inter-user interference via a linear pre-processing of

its transmitted signals. In particular, the transmitter sends each user’s message in the null

space of the other user’s channel gain matrix such that each user sees an interference-free

link between itself and the transmitter. However, this complete elimination of the inter-user

interference can be accomplished only under certain conditions on the ranks of the channel

gain matrices H1,H2, i.e., under certain conditions on the number of transmit and receive

antennas t, r1, r2. In particular, [9, 10] show that the ZF scheme can attain the DoF for the

private message sum rate2 when r1+ r2 ≤ t. This restriction comes from the fact that in the

ZF scheme, each user’s message is sent through the null-space of the other user’s channel

gain matrix. Alternatively, this restriction can be explained by examining the methodology

of the ZF scheme, which uses individual singular value decompositions of the channel gain

matrices H1,H2 to obtain the pre-coding matrix of each user [9, 10]. However, by using the

GSVD of the two channel gain matrices simultaneously to obtain the precoding matrices of

the two users, this restriction can be removed as we do here. In the variation of the ZF

scheme we propose here, the transmitter sends

X = Ψ0

[

Ω

0t−k×k

]

(

X̂1 + X̂c + X̂2

)

(123)

2The DoF for the private message sum rate is given by

d
sum = lim

P→∞

R1 +R2

1

2
logP
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where X̂1, X̂c, X̂2 are given by

X̂1 =
[

X̂11 . . . X̂1|S1| 01×(|Sc|+|S2|)

]⊤

(124)

X̂c =
[

01×|S1| X̂c1 . . . X̂c|Sc| 01×|S2|

]⊤

(125)

X̂2 =
[

01×(|S1|+|Sc|) X̂21 . . . X̂2|S2|

]⊤

(126)

Consequently, the received signal at the first user can be written as

Y1 = H1X+N1 (127)

= Ψ1Σ1

[

Ω−1 0k×t−k

]

Ψ⊤
0 Ψ0

[

Ω

0t−k×k

]

(

X̂1 + X̂c + X̂2

)

+N1 (128)

= Ψ1Σ1(X̂1 + X̂c + X̂2) +N1 (129)

= Ψ1Σ1(X̂1 + X̂c) +N1 (130)

where (128) is a consequence of the GSVD and (123), and (130) comes from the fact that

Σ1X̂2 = 0. After multiplying Y1 by the orthonormal matrix Ψ⊤
1 , we get

Ŷ1 = Ψ⊤
1 Y1 (131)

= Σ1(X̂1 + X̂c) + N̂1 (132)

where N̂1 = Ψ⊤
1 N1 is additive white Gaussian noise with unit covariance matrix. Thus, the

channel outputs resulting from the use of the channel input defined by (123)-(126) are given

by

Ŷ1 = Σ1(X̂1 + X̂c) + N̂1 (133)

Ŷ2 = Σ2(X̂c + X̂2) + N̂2 (134)

This equivalent form of the channel in (133)-(134), which results from the use of the ZF

scheme, imply that, since Σ1 and Σ2 are diagonal, the ZF transforms the channel into a

parallel Gaussian broadcast channel with unmatched sub-channels, where both users have

access to |Sc| sub-channels through which they observe a noisy version of X̂c. In addition to

these common sub-channels, the jth user has access to |Sj| sub-channels through which it

observes a noisy version of X̂j, and the other user cannot observe these sub-channels. Now,

we consider independent Gaussian coding across all sub-channels to obtain the DoF region

given in Theorem 2. In particular, we send the common message through |Sc|−α1−α2 sub-

channels of the |Sc| common sub-channels that both users can access and β sub-channels of

each user’s private sub-channels which cannot be observed by the other user. The jth user’s

private message is transmitted through αj sub-channels of the |Sc| common sub-channels in
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addition to the |Sj | − β sub-channels of the jth user’s private sub-channels that cannot be

observed by the other user. Consequently, this coding scheme yields the following achievable

rate triples

R0 ≈
|Sc| − α1 − α2 + β

2
logP (135)

R1 ≈
α1 + |S1| − β

2
logP (136)

R2 ≈
α2 + |S2| − β

2
logP (137)

for any non-negative α1, α2, β satisfying α1 + α2 ≤ |Sc|, β ≤ min{|S1|, |S2|}. The achievable

rate triples given by (135)-(137) imply that the DoF region that ZF scheme can attain is

equal to the one that DPC attains, i.e., Din, where Din is the DoF region given in Theorem 2.

6 Equivalence of the Inner and Outer Bounds

We now show that the inner bound Din for the DoF region of the Gaussian MIMO broadcast

channel with common and private messages given in (120)-(122) is equal to the outer bound

Dout for the DoF region of the Gaussian MIMO broadcast channel with common and private

messages given in (83)-(86). Din is defined by the following equations

d0 ≤ |Sc| − α1 − α2 + β (138)

d1 ≤ α1 + |S1| − β (139)

d2 ≤ α2 + |S2| − β (140)

0 ≤ α1 (141)

0 ≤ α2 (142)

α1 + α2 ≤ |Sc| (143)

0 ≤ β ≤ min{|S1|, |S2|} (144)

We define α = α1 + α2, using which in (138)-(144), we get

d0 ≤ |Sc| − α+ β (145)

d1 ≤ α− α2 + |S1| − β (146)

d2 ≤ α2 + |S2| − β (147)

0 ≤ α− α2 (148)

0 ≤ α2 (149)

α ≤ |Sc| (150)

0 ≤ β ≤ min{|S1,S2|} (151)
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We can eliminate α2 from (145)-(151) by using Fourier-Motzkin elimination, which yields

d0 ≤ |Sc| − α+ β (152)

d1 + d2 ≤ α + |S1|+ |S2| − 2β (153)

d1 ≤ α + |S1| − β (154)

d2 ≤ α + |S2| − β (155)

0 ≤ α ≤ |Sc| (156)

0 ≤ β ≤ min{|S1|, |S2|} (157)

We next note that if (d0, d1, d2) is an achievable DoF triple, so is (d0− t1− t2, d1+ t1, d2+ t2)

for any (t1, t2) such that 0 ≤ t1, 0 ≤ t2, t1 + t2 ≤ d0. We define

d′0 = d0 − t1 − t2 (158)

d′1 = d1 + t1 (159)

d′2 = d2 + t2 (160)

using which, (152)-(157) can be expressed as

d′0 + t1 + t2 ≤ |Sc| − α + β (161)

d′1 + d′2 − t1 − t2 ≤ α + |S1|+ |S2| − 2β (162)

d′1 − t1 ≤ α + |S1| − β (163)

d′2 − t2 ≤ α + |S2| − β (164)

0 ≤ t1 (165)

0 ≤ t2 (166)

0 ≤ α ≤ |Sc| (167)

0 ≤ β ≤ min{|S1|, |S2|} (168)

We can eliminate t1 from (161)-(168) by using Fourier-Motzkin elimination, which yields

d′0 + d′1 + d′2 ≤ |Sc|+ |S1|+ |S2| − β (169)

d′0 + d′1 + t2 ≤ |S1|+ |Sc| (170)

d′2 − t2 ≤ α + |S2| − β (171)

d′0 + t2 ≤ |Sc| − α + β (172)

0 ≤ t2 (173)

0 ≤ α ≤ |Sc| (174)

0 ≤ β ≤ min{|S1|, |S2|} (175)
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After eliminating t2 from (169)-(175), we get

d′0 + d′1 + d′2 ≤ |Sc|+ |S1|+ |S2| − β (176)

d′0 + d′1 + d′2 ≤ |S1|+ |Sc|+ |S2| − β + α (177)

d′0 + d′1 ≤ |S1|+ |Sc| (178)

d′0 + d′2 ≤ |S2|+ |Sc| (179)

d′0 ≤ |Sc| − α + β (180)

0 ≤ α ≤ |Sc| (181)

0 ≤ β ≤ min{|S1|, |S2|} (182)

We note that the bound in (177) is redundant. Since the region described by (176)-(182) is

equal to the region Dout in (83)-(86), this completes the proof.

7 Conclusions

In this work, we consider the Gaussian MIMO broadcast channel with common and private

messages and obtain the DoF region of this channel. The crucial step in obtaining this

result is to construct a parallel Gaussian broadcast channel with unmatched sub-channels

from the Gaussian MIMO broadcast channel by using the GSVD. The capacity region of the

constructed parallel channel provides an outer bound for the capacity region of the Gaussian

MIMO broadcast channel. Using the capacity result for the parallel channel, we obtain an

outer bound for the DoF region of the Gaussian MIMO broadcast channel. We show that this

outer bound can be attained by the achievable scheme that combines a classical Gaussian

coding for the common message and DPC for the private messages. In addition to the DPC

scheme, we also show that a variation of the ZF scheme can attain the DoF region of the

Gaussian MIMO broadcast channel with common and private messages.
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