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Abstract—The generalized 1+N protection [9], protects N round). In [6] the author extends 1+N scheme to protect again
unicast connections by a single Steiner tree connecting alind multiple link failures.
points of the connections. By sending network coded packets In [7] and [9] the single failure protection version of 1+N is

on the protection Steiner tree in parallel with the working tended t | tecti ircuit which miaht
traffic, 1+N is able to recover from any single link failure extenaed to a more generai protection circuit which migit no

without enduring the delay from switching to the backup path. hecessarily be a cycle. Hence, the constraint of having a p-
Optimal cost provisioning and 1+N protection of a given set cycle as the backup circuit is relaxed. While [7] considerlyo

of connections is an NP-hard problem comprising of three ynidirectional connections and gives a general descriptio
NP-hard subproblems: partitioning of the connections, findng e protection circuit, in [9] the authors show that the oyati
edge disjoint primary paths and Steiner tree protection ciicuit 14N tecti ircuit f . t of bidirecti | uadt

for the subset of connections in each partition. In this pape pro_ ec IQI’I circuit for a glver! .se 0, _' Irec |c_)na ug -

a polynomial time heuristic algorithm for 1+N protection is Connections is a tree. More specifically it is a Steiner Malim
proposed which combines heuristic steps to address the treeNP-  Tree (SMT) that connects all the end points of the connestion
hard components of the problem. Our simulations show that e and has the same bidirectional bandwidth as the connections
heuristic algorithm provides average cost reduction of 22% and To guarantee single link failure protection, the connextio

18.5% compared to 1+1 protection in COST239 and NSFNET . . - L .
networks. An asymptotic bound is also derived for the case of have to be prOV|S|orjed using link disjoint paths and.thel fetel
Comp|ete graph networks which shows that 1+N can achieve tree must alSO be ||nk d|S]0|nt from a." the connections.
maximum of 66.6% cost improvement compared to 1+1. When  The authors further show how 1+N can actually be imple-
compared to the optimal 1+N solution from ILP formulation, the  mented on top of the Steiner tree by rooting the tree at one
heuristic algorithm increases the cost no more than 13%. specific node, referred to as node X, and defining two flow
directions with respect to node X: from the leaf nodes toward
. INTRODUCTION X (upstream) and from X toward leaf node (downstream).
The idea of 1+N protection was first introduced by one In the upstream direction, each end point of each bidirec-
of the authors [5][8] to protect multiple unicast conneatio tional connection locallyxorsthe transmitted and received data

against single link failures by performing network codifg [ packets corresponding to each communication round. These

over a single p-cycle [11] as the backup circuit. Comparé@cally coded packets are sent toward the node X on the
to the traditional 1:N protection, the application of netiwo St€iner tree. Each non-leaf node simplgrs all incoming
coding allows 1+N to provide lower failure recovery time&oded packets (and its locally coded packet if it is in fact an

while using the same backup capacity. The connections h&R¢! POINY) into one packet and sends it up toward the node X.
to be provisioned using link disjoint paths. The p-cycle ethi Ultimately the node Xxors all the coded packets it receives.

protects these connections passes through all end pointsJ8fer normal. failure-free conditions, node X will simplytge
the connections and has to also be link disjoint from all tHfzZer0 Packet; since data packets coming from two end points
connections. The connections and p-cycle itself are tidirePf the each connection will cancel each other. In the case of a
tional and are assumed to be of the same capacity. ESUpgle failure, end points of the failed connection will ea@

end point receives and transmits coded backup data in tH@tNiNg (@ zero packet) from the other end point and their
opposite directions on the p-cycle (called half p-cyclejon locally coded packets would simply be their own data packet
the failure of a connection (in result of a single link faiy for that communication round. Therefore once all coded data

1+N scheme makes sure that end points of the correspondifgkets reach the node X and added together, the node X will
connection can recover their intended data (for a specifindo °€ 1eft with one final packet which is theor of two data

of communication) simply byoring the coded data receivedPackets sent from end points of the failed connection.
on the two half p-cycles and their own data (of the same While the upstream information flow involves collection and
coding of data packets, in the reverse direction node X simpl

This research was supported in part by the National Sciecedation sends_the final packet towarq leaf nodes a.-nd eaCh_mte_rmed'at
under grants CNS-0626741 and CNS-0721453, node just forwards the received packet in that direction; no



coding occurs. End points of the failed connection can théw well those heuristic algorithms perform compared to the
recover their intended data for each communication round bptimal 1+N protection, an analytical-experimental stugy
adding the received coded data on the Steiner tree in thiesented for the case of complete graphs.
downstream direction to their own data packet of the sameSection Il introduces basic models and assumptions. In Sec-
round. tion Il problem statement and algorithm design are presnt
Figure 1 [9] gives an example 1+N protection scenario iBimulation results and experimental comparison betwedh 1+
which three connection§S1, D1), (S2,D2), and (S3,D3) and 1+1 are shown in Section IV. Our analytical bound on the
are protected using a simple Steiner tree. For simplicity tlperformance of 1+N compared to 1+1 is given in Section V.
Steiner tree is shown to be nicely symmetric around the no8ection VI concludes the paper.

X.
Il. MODELS AND ASSUMPTIONS
R I | 5‘ A An optical network is modeled as an undirected graph
A;‘;‘/’E’O \ﬂ“l G(V,E) with V as the set of nodes anH as the set of
/52 :SQ Q—>i*<_d2 Dzzdz\ B undirected edges. Each edge represents a fiber link. Edge
=~ -, capacity represents the number of wavelength channels per
§+ﬁg\053 $3 = -3 53/@@3 fiber link. All edge capacities are assumed to be equal.
A set of x bidirectional connection§’ is defined as
s1A+s2;rs3 dlA+d2:d3
ST K S 1L C = {(si,t:)|si,t: € V,si # 15,1 < i < K}

U
R s2+d2 ) ) )
All connections are assumed to demand unit capacity equal

to one wavelength channel. This means that a single unit of
capacity (equal to the bandwidth of one wavelength channel)

, . . . is enough to carry the traffic of one and only one connection,
As the figure shows, connectiof62, D2) is failed; S2 . gn y me i y
i.e. no traffic grooming is allowed.

receives nothing fronD2 and vice versa. In other words data o -
-~ ’ : : . We further assume that the edge capacity is not a limiting
packetsd2 (received version ofl2) ands2 (received version - . . : .
copstramt in provisioning connections or protection witc

of 52) are zero. The.sum EXpressions on egch link represq.)r%ls assumption reflects the fact that each fiber link has huge
the coded packets in the upstream direction. The node :
amount of bandwidth.

adds two received upstream packets to get- d2 which it We also define one unit of cost as one unit of capacity used

then sends back in the downstream direction to end points L .
on one edge. Therefore the cost of provisioning a connection

of all connections. Clearly nodeS2 and D2 can recover . ) : . .
equal to reserving one unit of capacity on a simple path

their intended data by adding their own data to the received : ; . . .
connecting end points of the connection, i.e. is equal to
downstream data.

The preceding 1+N scheme provides 100% protecti length of the path (since each connection demands one unit

0 :
against any single link failure. Compared to traditional 1: OI? capacity per each edge).
protection technique_ which acheives the same prote_ct'um le I1l. PROBLEM STATEMENT AND ALGORITHM
at the same cost, it offers the advantage of having much )
lower recovery time. Compared to 1+1 protection technique GVen the network grapli- and the set of connectiorts,
which offers instantaneous recovery from single failuges\ the main problem is to provision and protect all connections

presents near instantaneous recovery at lower cost: N cenrf@d@inst any single link failure using the technique of 1+N at
tions are protected by single protection circuit in 1+N \ghilMinimum cost. As stated before, the optimal solution ineslv

the following two steps:

1) Optimal partitioning of the set of connections: The
partitioning determines which connections should be
protected together, i.e., the subset of connections in

Fig. 1. Example of 1+N protection using a simple Steiner {fje

each connection requires a dedicated disjoint protectath p
in 1+1.

Optimal cost 1+N solution, however, is not easy to find.
Simply trying to protect all connections together will not

necessarily give the optimal cost (it could even be infdakib
The first step, therefore, is to partition the set of conrecti

The subset of connections in each partition are then pexdect

together. To find the optimal partitioning is NP-hard [2].€Bv

each partition are protected using the same Steiner
tree. Different partitions are provisioned and protected
independently, therefore, the total cost associated with a
partitioning is equal to the sum of individual partitions

after partitioning is done, provisioning link disjoint patand costs. Minimum cost partitioning is an instance of fa-
Steiner tree protection of the subset of connections in each mous Set Partitioning Problem (SPP) which is NP-hard
partition are still NP-hard problems [4][13]. [2].

Therefore we revert to polynomial time heuristic algorityim 2) Minimum cost provisioning and protection of each
to solve the three NP-hard components of the problem. The partition: This problem is comprised of two NP-hard
suboptimal cost of 1+N protection is then compared to odtima  subproblems namely, minimum cost edge disjoint paths
cost of 1+1 for real world networks. To have an idea of [4] and Steiner Minimal Tree [13]. Since the optimal



solution to the problem requires solving the two subflgorithm 1 Greedy algorithm to find a partitioning of con-
problems jointly, it is at least as hard as the hardest Bections. The COST function returns the cost of provisignin
the two subproblems, i.e., NP-hard. and 1+N protection of a partition.

Due to the exponential time nature of the problem, the IL'IBp;Jt t_GI(D\_/’E): tr_1t(_etwprk gfraph, C:t_set of connections

formulation of the problem as an optimization problem ca@u put. . partiioning ot connections

X ) ; LP—0p—20
only find the optimal solution for small networks and a few il é 0d
number of connections in a reasonable amount of time [9].2: w .;e —?;th 0
The way to solve real world instances of the problem is to3: "p= _en , COST
revert to efficient heuristic algorithms. We start by design emin = argmincec { ({e})}

p — {emin}

a heuristic algorithm for the partitioning step.

. . - ?: C — C\cmin
Since there are exponentially many ways to partition a sef  ise
of given connect|ons,_a ponnqmlaI time algorithm should no & c, _ {c € C|COST(pU {c}) < COST(p)
try to check all possible partitions. Two extreme cases are: + COST({c})}
I) Single partition which includes all the connections. hist o emin = argmineec, {COST(pU {c})}

case all connections are provisioned using edge disjoilhispa1 .
and a single edge disjoint Steiner tree is used to protect zi\fl]:
connections. II) Each connection is a separate partitiath arllzj

if cmin # 0 then
p — pU {cmin}

protected separately; Steiner tree in this case is simplylgj eIsCe<_ Cemin
secondary path edge disjoint from connection’s primarphpat ™"

L . L . 14: P—PuUp
This is in fact equivalent to 1+1 protection; 1+1 protectisn 0
included as a special case of 1+N protection in the solutiofn’ enl()j it
space. It is worth noting that the number of connections in :

. S o 17: end if
a partition may be limited by the network graph connectlwt)ig end while
since to provision and protect a larger partition would iegju 190 P— PUp

more “disjointness”.
Algorithm 1 shows our greedy partitioning algorithm. The

COST function returns the cost to provision and protect a

partition. The algorithm starts by a new empty partitipas 2) Two heuristic algorithms are used to solve the subprob-

the current partition. The first connection to be added to a lems: Greedy Shortest Paths algorithm [10] and Greedy

new partition is the one whose COST is minimum among all ~ Steiner Tree algorithm by Takahashi [12].

remaining cpnnections ("”?S 3 1o 6). T_he COSt_ _retu_rned byAlgorithm 2 shows the Greedy Shortest Paths algorithm
COST function for such a single-connection partition isaqu 0]. The algorithm tries to find a set of minimum cost edge

to the cost of 1+1 provision and protection (which is foun isjoint paths for the subset of connections in a partifiom

using Bhandari's algorithm [3] and is optimal). “each round it finds the connection with the minimum length
The algorithm then greedily chooses the next connecti@Rortest path among all remaining connections, routes the
c to be added to the current partitignin such a way that connection, and removes the route from the graph to guarante
the cost of new partition is locally minimized (line 8). Agqge disjointness. The Greedy Shortest Paths algorithm doe
connectionc is considered a candidate only if the cost ofiot guarantee that edge disjoint paths will be found for all
new partition formed by adding to the current partition ¢onnections in the partition (even if they are actually iislas
(COST(pU{c})) is less than the total cost of consideriag 14 fing). When the next shortest path does not exist (lined) th
as single-connection partitiorCOST ({c})) plus the cost of 414qrithm returns an empty set of routes. The Greedy Steiner
current partitionCOST (p). If no such candidate connectionyyee algorithm by Takahashi [12] starts by a terminal node
exists (line 12) the current partitignis considered as completeeng point node of a connection) as the current subtree (line
and is included in the final output partitioning (line 13). 5y 4nd continuously finds the next closest terminal node to
The algorithm stops when all connections are covefeds the current subtree (line 5) and connects it to the subtree by
the partitioning of the connections. a shortest path (line 9). In the case that the Steiner careot b
The underlying component of above algorithm is minimuffpyund, at some point the distance of the next closest teimina
cost provisioning and protecting of a partition (COST funGyould become infinity (line 6) and an empty tree would be
tion) which is an NP-hard problem (consisting of two NP-hargbtyrned.
subproblems). We use the following heuristic steps to solve, o partitioning algorithm (Algorithm 1), for each parti

this problem: tion the COST function runs Greedy Shortest Paths algorithm
1) The problem is split into two separate subproblems: Prtw find a set of edge disjoint paths. Upon success, it runs
visioning minimum cost edge disjoint paths and findin@reedy Steiner Tree algorithm on the residual graph after
minimum cost Steiner tree for subset of connections iemoving all paths. This is to guarantee that the Steiner tre

the partition. is disjoint from connections paths. Only if both steps are



Algorithm 2 Greedy shortest paths algorithm. 1+1. One unit of cost is defined as one unit of capacity on an

Input: G: network graph, p: a partition edge. The horizontal axis represents the number of randomly
Output: R: set of edge disjoint routes for generated connections (between 1 and 65). The diagram shows
1. R0 up to 55 connections for 11-node COST239 because that is
2: while p # () do the maximum number of possible connections given 11 nodes.
3 min = argmingep {|ri|} Each point in the digram is the averaged value over 100

{ri is the shortest path route of connectignin G'} rounds of simulation. The following observations are made
4 if |rmin| = oo then from Figure 2:
5 return{ o 1+N performs better as the number of connections in-
6: else creases. Intuitively this increases the potential to mtote
r R = RUrmin more connections together and reduce the total cost.
8 G — G\Tmin « 1+N performs better in networks with higher edge den-
o: end if sity. The graph densities are 19/14 in NSFNET, 26/11
10: end while in COST239 and 91/14 in complete graph; more “dis-
11: return 12 jointness” potential in the network makes larger partision

possible.

Algorithm 3 Greedy Steiner tree algorithm.

Input:  G: network graph}/,: set of end points of connections o
in partition p

Output: T: Steiner tree 60 C°g':'a':,':ti____—-

1: pick an arbitraryv € V, - ="

22T «—w § 7

3V, =W\ g o’ COST239

4: while V, # 0 do I

5. w = argmingev, {|ru|} 2 /

{r. is the shortest path route betweerand 7'} S " il

6: if |ry| = co then I

7: return () ©

8 else o 4

9: T — T U Tw 0 10 20 30 40 50 60
10 Vp — Vp\w # of connections

11:  end if

12: end while Fig. 2. 1+N cost reduction over 1+1 in 3 different networks.
13: returnT

Table | summarizes the simulation results regarding the cos
efficiency of 1+N with respect to 1+1 in the three simulated
successful, a finite cost value will be returned by the COSJetworks. The numbers are averaged over 100 rounds of sim-
function. ulation. For each network maximum and average percentage
While the time complexity of the COST function dependsf cost reduction is given. The performance of our heuristic
on the specific implementation of each of the heuristic al-

gorithms the worst case time complexity of Algorithm 1 is TABLE |
2 . . 1+N COST REDUCTION OVERL+1IN 3 DIFFERENT NETWORKS
O(|C|*.TcosT) Where Tcost represents time complexity
of the COST function. In our implementatioficosr is Cost reduction (%)] NSENET | COST239| Complete
O(|V|%.|C|?) therefore the total worst case time complexity Max 215 34.5 60.2
is O(|V|2.|C|4). Average 185 29.2 50.7
IV. SIMULATION RESULTS algorithm for 1+N is also compared to the optimal 1+N results

Two real world networks 14-node NSFNET and 11-nodebtained from an ILP formulation of the problem (we use a
COST239 and one artificial 14-node complete graph netwardvised version of the ILP in [9] which runs faster). Since th
are used in the simulations. The total cost of our heuristiptimal solution requires exponential time in terms of n@mb
algorithm for provisioning and 1+N protection of a giverof connections, the comparison can only be made for few
set of connections is compared to the same cost when legses with limited number of connections. Table Il presents
technique is used. Figure 2 compares the percentage of the results for two cases of 5 and 10 randomly generated con-
cost reduction in NSFNET, COST239, and complete grapiections in NSFNET and COST239 as two practical networks.
network. Percentage of the cost reduction representsvelafThe cost value reported for 5 connections is averaged over 10
improvement in total cost when 1+N heuristic is compared tostances while in the case of 10 connections we could only



run one instancelV is the number of connections. Degree oélgorithm on complete graphs which is capable of achieving
suboptimality is the percentage of cost increase when $tguri a performance very close to the asymptotic bound.

algorithm is compared to optimal solution.
9 P P VI. CONCLUSIONS

TABLE Il A heuristic algorithm for minimum cost provisioning and
CosTOFL+N - HEURISTICVS. ILP. 1+N protecting of a given set of connections is presented. Th
Network | N | Heuristic | ILP | Degree of suboptimality (%) core idea is to greedily partition the given set of connexgio
NSFNET | 5 27 26 3.8 such that total cost is minimized. The subset of connections
10 52 46 13 in each partition are independently provisioned and ptetec
COST239| 5 14.8 14 5.7 . ) L
0 >5 55 7 using Greedy Shortest Paths and Greedy Steiner Tree heurist

algorithms. Performance of the algorithm is evaluated both
experimentally by simulating different network scenaréosl
analytically by finding an asymptotic bound. The simulation
results show that cost efficiency of our heuristic 1+N aldponi

i i + - . .
Based on two observations made earlier on 1+N perfov(uth respect to 1+1 increases when the number of connections

mance, we consider an asymptotic analysis. The best soenarj graph density is increased. Given the fact that the com-

. . - o]
+ - . .

which we expect to give the best 1+N cost efficiency compared ison was made between a suboptimal algorithm for 1+N

eme and an optimal algorithm for 1+1 scheme, our results

to 1+1, would then be to consider a complete graph (densggé
how maximum cost savings of 21.5%, 34.5%, and 60.2% in

V. ASYMPTOTIC ANALYSIS

graph) with maximum number of connections possible.

we let the number of nodes go to infinity, asymptotic COit4—node NSFNET, 11-node COST239, and 14-node complete
efficiency of 1+N versus 1+1 would be achieved. ' :

: graph networks. Moreover the suboptimal cost found by the
A compI?te grath(.V, E) with V| = »n _nodes has heuristic algorithm shows at most 5.7% and 13% increase
(5) = % edges which is equally the maximum numb

2 . o : o €6t cost in the case of 5 and 10 connections (respectivley)
of possible distinct connections. Provisioning each Connecompared to the optimal 1+N resluts from ILP formulation
tion takes only one unit of cost. Total cost of provisionin

9f the problem. The final contribution of this paper is an
. ‘a(n—1) . . .
all connections, therefore, i&=5—". We consider this cost o mototic bound which shows 1+N can achieve 66.6% cost

as the fixed minimum provisioning cost independent of ﬂ}%duction compared to 1+1 in complete graphs
protection scheme used. In 1+1 protection, each connection

will be protected by a shortest disjoint path of length 2,deen REFERENCES
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