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Abstract

In this paper, we consider a general multiple input multipleoutput (MIMO) system with channel

state information (CSI) feedback over time-correlated Rayleigh block-fading channels. Specifically,

we first derive the closed-form expression of the minimum differential feedback rate to achieve the

maximum erdodic capacity in the presence of channel estimation errors and quantization distortion

at the receiver. With the feedback-channel transmission rate constraint, in the periodic feedback

system, we further investigate the relationship of the ergodic capacity and the differential feedback

interval, and we find by theoretical analysis that there exists an optimal differential feedback interval

to maximize ergodic capacity. Finally, analytical resultsare verified through simulations in a practical

periodic differential feedback system using Lloyd’s quantization algorithm.

I. INTRODUCTION

Channel state information (CSI) feedback from the receiverto the transmitter has been

intensively studied with great interest due to its potential benefits to the multiple input multiple

output (MIMO) system. CSI can be utilized by a variety of channel adaptive techniques

(e.g., water-filling, beamforming, precoding, etc.) at thetransmitter to enhance the spectral

efficiency as well as the robustness of the system, especially, in the frequency division

duplexing (FDD) mode. As the transmission rate of the feedback channel is normally very

limited, the infinite feedback of CSI is hard to realize in practice. Therefore, it is important to

investigate how to decrease the amount of feedback signalling overhead to meet the uplink
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feedback channel requirements. As a result, CSI feedback reduction has attracted lots of

attention in recent years [1], [2].

Specifically, when the wireless channel experiences time-correlated fading [3], typically

represented by a Markov random process [4]–[6], the amount of CSI feedback can be largely

reduced. In [8], a number of feedback reduction schemes weresummarized, considering the

lossy compression scheme exploiting the properties of fading process as the best choice. In [7]

and [9], schemes using switched codebook and rotation codebook with differential feedback

were proposed, respectively. In [10], it modeled the time-correlated fading channel as a finite-

state Markov chain to reduce the feedback rate by ignoring some states occurred with small

probabilities. In [11] and [12], a predictive vector quantization scheme was proposed, provided

that the previous quantization CSI is known. In [13], variable-length code was applied for

feedback rate reduction. Despite of so much research on practical feedback reduction schemes,

the lower bound of the feedback compression as well as the required minimum differential

feedback rate to guarantee the accuracy of CSI has not yet been well studied for time-

correlated MIMO Rayleigh block-fading channels.

In [14]–[17], the relationship between the capacity gain and the limited feedback of CSI was

studied. Lower and upper bounds of ergodic capacity gain using CSI feedback in comparison

with open-loop systems were reported in [18] and [19]. However, the time correlation was not

taken into account in these work. In [20], a periodic feedback scheme was studied with time

correlation, but the feedback only occurs in the first block of the transmission period. Unlike

previous work, in this paper, we investigate the relationship between the ergodic capacity and

the differential feedback interval with feedback channel capacity constraint in every fading

block.

In this paper, we consider a general MIMO system with periodic differential CSI feedback

over time-correlated Rayleigh block-fading channels, andaddress the problem of the ergodic

capacity under the impact of the feedback interval. The maincontribution can be briefly

summarized as follows:

1) We derive the minimum differential feedback rate for time-correlated MIMO Rayleigh

block-fading channels by taking into account of both the channel estimation errors and

channel quantization distortion.

2) We investigate the relationship between the ergodic capacity and the differential feed-

back interval with feedback channel rate constraint in a periodic feedback system.

Furthermore, we prove that there exists an optimal feedbackinterval to achieve the
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maximum ergodic capacity.

3) We design a practical differential feedback scheme usingLloyd’s quantization algorithm

to verify the theoretical results.

The rest of the paper is organized as follows. In Section II, we describe the system model.

In Section III, the minimum differential feedback rate is derived, and the relationship between

the ergodic capacity and differential feedback interval isstudied. In Section IV, we provide

the simulation results. In Section V, we draw the main conclusions. The derivations are given

in the appendices.

Notation: Bold uppercase (lowercase) letters denote matrices (vectors), (·)+ denotes Her-

mitian transpose,log2(·) denotes the base two logarithm,det(·) denotes determinant operator,

andE[·] stands for the expectation over random variables.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1, where the downlinkchannel is modeled as a

time-correlated MIMO Rayleigh block-fading channels, andthe uplink channel is modeled

as a limited and lossless feedback channel with a feedback capacity constraint per fading

block. In this paper, we consider the differential feedback, i.e., the receiver just feeds back

the differential CSI to the transmitter given the previous channel quantization matrix, where

the channel estimation errors and channel quantization distortion are also considered.

A. Time-Correlated MIMO Rayleigh Block-Fading Channel Model

We consider MIMO Rayleigh block fading channels, where the channel fading matrix re-

mains constant within a fading block and varies from one to another. There areNt transmitter

antennas andNr receiver antennas. The received signals can be expressed ina vector form

y = Hx+ n0, (1)

where y = [y1, y2, y3, . . . , yNr
]T denotes aNr × 1 received signal vector,H is a Nr ×

Nt channel fading matrix with independent entries obeying complex Gaussian distribution

CN (0, σ2
h), x = [x1, x2, x3, . . . , xNt

]T represents aNt×1 transmitted signal vector, andn0 is

aNr×1 noise vector whose entries are independent and identicallydistributed (i.i.d) complex

Gaussian variablesCN (0, σ2
0).

The time-correlated channel can be represented by a first-order Autoregressive model (AR1) [6],

and the channel fading matrix can be written as

Hn = αHn−1 +
√
1− α2Wn, (2)
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where Hn−1 denotes(n− 1)th channel fading matrix,Wn is a noise matrix, which is

independent ofHn−1, and the entries are i.i.d. complex Gaussian variablesCN (0, σ2
h). The

parameterα is the time autocorrelation coefficient, which is given by the zero-order Bessel

function of first kindα = J0(2πfdτ) [6], wherefd denotes the maximum Doppler frequency

in Hertz, andτ denotes the time interval. In the block-fading system, the time interval can

be calculated asT = τ/tblock, wheretblock is the duration of every block.

The CSI can be estimated by the receiver using orthogonal pilots. Without loss of generality,

in this paper, maximum likelihood (ML) criterion is employed for channel estimation, and

the estimated channel matrix can be expressed in an equivalent form as

Ĥ = H+He, (3)

whereĤ denotes the channel estimation matrix, whose entries are i.i.d. complex Gaussian

variablesCN (0, σ2
ĥ
), H is the actual channel fading matrix, andHe denotes the channel

estimation error matrix, which is independent ofH, with entries of independent complex

Gaussian distributed withCN (0, σ2
ĥ
− σ2

h) [21].

As He is independent ofH in (3), we obtain

H =
σ2
h

σ2
ĥ

Ĥ+Ψ, (4)

where σ2
h and σ2

ĥ
denote the variances ofH and Ĥ, respectively, andΨ is independent

of Ĥ with entries satisfyingCN
(

0,
σ2
h
·(σ2

ĥ
−σ2

h
)

σ2
ĥ

)

. The detailed derivation of (4) is given in

Appendix A.

B. CSI Feedback Model

We consider a limited and lossless feedback channel. Through CSI quantization, the

feedback channel output̄H can be modeled as [18]

Ĥ = H̄+ E, (5)

whereE denotes the independent additive quantization error matrix with entries satisfying

CN
(

0, D
NrNt

)

, whereD represents the channel quantization distortion constraint.

In this paper, we consider the differential feedback, whereonly the differential CSI will

be fed back to the transmitter, assuming that the previous channel quantization matrix̄Hn−1

is known both at receiver and transmitter. The differentialCSI can be written as

Hd = Diff
(

Ĥn, H̄n−1

)

, (6)
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whereHd represents the differential CSI betweenĤn and H̄n−1, andDiff(·) denotes the

differential function.

Furthermore, we assume that the CSI feedback channel has a capacity constraintCfb per

fading block. When the CSI is quantized toR bits and the feedback interval isT blocks, the

average feedback rate satisfies the inequalityR/T ≤ Cfb. Therefore, the feedback interval

can be calculated by

T =

⌈

R

Cfb

⌉

, (7)

where⌈x⌉ denotes the smallest integer larger thanx.

C. Ergodic Capacity of Pilot-assisted MIMO Systems

In this paper, we use the water-filling precoder to obtain thecapacity gain. The channel

quantization matrix can be decomposed at the transmitter toperform water-filling ??????water-

filling reference??????

H̄ = UΣV+, (8)

whereU andV are unitary matrixes, andΣ is a non-negative and diagonal matrix composed

of eigenvalues.

For the pilot-assisted MIMO system with ML channel estimation, the closed-loop ergodic

capacity with water-filling can be obtained with the help of [20], [21]

Cerg = E
Ĥ,H̄

[

L−Nt

L
log2 det

(

INr
+ J · J+

(

F−1
))

]

, (9)

where J = ĤVZ, Je = HeVZ, F = 1
A2 INr

+ EJe
[JeJ

+
e |J], L denotes the number of

transmitted symbols,A represents the amplitude of signal symbol, andZ stands for a diagonal

matrix determined by the water-filling algorithm, which is given by ??????reference??????






















z2
i
=







µ−
(

γ2i,iA
2
)

−1
, γ2i,iA

2 ≥ µ−1

0, otherwise
Nt
∑

i=1

z2
i
A2 = NtA

2,

(10)

whereγi,i are entries ofΣ, andµ is a cut-off value chosen to meet the power constraint.

It can be observed from (9) that the closed-loop ergodic capacity is determined bȳH and

Ĥ, and the loss of the capacity is mainly caused by the distortion. Hence, the ergodic capacity

is a negative-correlated function in association with the distortion of CSI feedback [14], [17].
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III. M INIMUM DIFFERENTIAL FEEDBACK RATE

In this section, we derive the minimum differential feedback rate of the time-correlated

MIMO Rayleigh block-fading channels to guarantee the accuracy of the CSI. The minimum

differential feedback rate is determined by the rate distortion theory of continuous-amplitude

sources ??????reference??????. When the(n− 1)th channel quantization matrix̄Hn−1 is

known at both receiver and transmitter, the minimum differential feedback rate can be written

as

R = inf
{

I
(

Ĥn; H̄n|H̄n−1

)

: E
[

d
(

Ĥn; H̄n

)]

≤ D
}

, (11)

where inf {·} denotes infimum function [23],I
(

Ĥn;Hn|Hn−1

)

denotes the mutual infor-

mation betweenĤn and H̄n given H̄n−1, andd
(

Ĥn, H̄n

)

=
∥

∥

∥
Ĥn − H̄n

∥

∥

∥

2

is the channel

quantization distortion, which is the measurement of the quality of feedback information.

Since the entries ofH, Ĥ and H̄ are i.i.d. complex Gaussian variables, the minimum

differential feedback rate can be written as

R = inf
{

NrNt · I
(

ĥn; h̄n|h̄n−1

)

: E
[

d
(

ĥn; h̄n

)]

≤ d
}

, (12)

whered = D
NrNt

denotes the one-dimensional average channel quantizationdistortion, and

ĥn, h̄n, and h̄n−1 denote the entries of̂Hn, H̄n, andH̄n−1, respectively.

Lemma 1: Given the one-dimensional channel quantization distortion constraintd, and the

(n− 1)th channel quantization elementh̄n−1, the mutual informationI
(

ĥn; h̄n|h̄n−1

)

can be

calculated as

I ≥ log



α2

(

σ2
h

σ2
ĥ

)2

+
(1− α2)

d
σ2
h +

(

σ2
ĥ
− σ2

h

)

d

(

1 + α2σ
2
h

σ2
ĥ

)]

, (13)

whereσ2
h andσ2

ĥ
denote the variances ofh andĥ respectively, andα is the time autocorrelation

coefficient.

The proof ofLemma 1 can be found in Appendix B. Aŝhn, h̄n and h̄n−1 are complex

Gaussian variables, the minimum value of the mutual information is indeed achievable [23].

Combining (12) and (13), the minimum differential feedbackrate of the time-correlated

MIMO block-fading channels can be calculated as

R = NrNt ·max







log



α2

(

σ2
h

σ2
ĥ

)2

+
(1− α2)

d
σ2
h +

(

σ2
ĥ
− σ2

h

)

d

(

1 + α2σ
2
h

σ2
ĥ

)



 , 0







. (14)
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From (14), we can see that the minimum differential feedbackrate is determined by the dis-

tortion of the quantization, time correlation coefficient,and the estimation variance. Note that

the minimum differential feedback rate in (14) is the lower bound of feedback compression

with time correlation in the block-fading MIMO channels. Given the accuracy of feedback

CSI (i.e. the distortiond), the minimum feedback rate can be easily obtained in (14).

Furthermore, as the ergodic capacity increases with the distortion decreasing, we investigate

the feedback design scheme for minimizing the distortion ofthe feedback CSI in order to

maximize the ergodic capacity in the following.

From (14), ifR ≥ 0, d can be calculated as

d =



σ2
ĥ
−
(

σ2
h

σ2
ĥ

)2

σ2
ĥ
· α2



 /



2
R

NrNt − α2

(

σ2
h

σ2
ĥ

)2


 . (15)

In a practical communication system, the feedback channel is causal, which implies that̄Hn

can be only used in the next feedback periodĤn+1. With the causal feedback constraint, we

consider the impact of the feedback delay on the distortion.Combining (15) and (35), the

distortion can be written as

d = α2

(

σ2
h

σ2
ĥ

)2σ2
ĥ
−
(

σ2
h

σ2
ĥ

)2

σ2
ĥ
· α2

2
R

NrNt − α2
(

σ2
h

σ2
ĥ

)2 + α2
σ2
h

(

σ2
ĥ
− σ2

h

)

σ2
ĥ

+
(

1− α2
)

σ2
h +

(

σ2
ĥ
− σ2

h

)

. (16)

Given σ2
h and σ2

ĥ
, we can see thatd is a function ofR and α in (16). In a periodic

feedback system with limited feedback, indicated by (2) and(7), bothα andR are related

to T . Therefore, after some manipulations, the distortiond can be expressed as a function of

T ,

d (T ) =
σ4
h

σ2
ĥ

·









(

1− 2
CfbT

NrNt

)

α(T )2

2
CfbT

NrNt −
(

σ2
h

σ2
ĥ

)2

α(T )2









+ σ2
ĥ
. (17)

From (17), we have

T → 0 ⇒ 2
CfbT

NrNt → 1 ⇒ d → σ2
ĥ
. (18)

Similarly, whenT is large enough, the time correlationα (T ) trends to0. Therefore, we have

T → ∞ ⇒ α(T ) → 0 ⇒ d→ σ2
ĥ
. (19)

There are some interesting observations from (18) and (19):When T trends to zero, the

channel state remains static, such that it is not necessary to send any feedback bits. Therefore,

the quantization channel at the transmitter is independentof the estimation channels at
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receiver. On the other hand, ifT is large enough, the time correlation decreases to zero,

which implies that the feedback quantization channel is completely outdated and it is also

independent of the estimation channel. Therefore, the distortion in both (18) and (19) areσ2
ĥ
.

When 0 < T < ∞, we have0 < α (T )2 < 1 and 1 < 2
CfbT

NrNt . Hence, we can obtain that

the first term of (17) is negative, and

0 < T <∞ ⇒ d < σ2
ĥ
. (20)

Combining (18), (19) and (20), we can predict that there exists an optimalT in the region

(0,∞) to minimize the distortion. We give the proof of the existence of the optimal feedback

interval T in the Appendix C. To further verify the theoretical analysis, numerical results

of the relationship between the distortion and the feedbackinterval from (17) are given in

Fig. 2.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we first provide the simulation results for the derived minimum differential

feedback rate expression. Then, we discuss the relations between the ergodic capacity andthe

feedback interval in a periodic feedback system with feedback channel transmission rate

constraint. Finally, we verify our theoretical results by apractical differential feedback system

employing Lloyd’s quantization algorithm. All simulations are performed for a point-to-point

MIMO system over time-correlated block fading channels. For simplicity and without loss

of generality, we considerNt = 2 antennas at transmitter,Nr = 2 antennas at receiver, and

the channel variance is set asσ2
h = 1.

A. Minimum Differential Feedback Rate

Fig. 3 shows that the minimum differential feedback rate versus the time correlation with

the variance of channel estimation errorσ2
e = σ2

ĥ
− σ2

h = {0, 0.05}, and the accuracy of

CSI is represented by the distortion withd = {0.1, 0.2}. We also include the non-differential

compression results for comparison.

In Fig. 3, we can see that when time correlation increases, itresults in significant reduction

of feedback rate by using differential compression. In addition, the impact of estimation error

and quantization distortion is also illustrated in Fig. 3. For lower quantization distortion,

larger minimum feedback rate is required. It can be also observed from Fig. 3 that with more

estimation errors, the feedback rate has to be increased.
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B. Ergodic Capacity and Feedback Interval

In this subsection, we give the simulation results of the relationship between the ergodic

capacity and the feedback intervals. For simplicity, we assume that the block size isL = 100

with the duration of1 ms, and the power of pilot is10% of the total transmit power, which

is a reasonable value in practice [21]. We select a relatively smaller value of SNR, which

is 0 dB, and the Doppler frequency is9.26 Hz (Moving speed is5 km/h, and the Carrier

Frequency is2 GHz).

In Fig. 4, we plot the relations between ergodic capacity andthe feedback interval with

the feedback capacity constraintCfb = {0.5, 1, 2, 4} for every block. It clearly shows that the

ergodic capacity is a monotonic convex function of the feedback interval, and there exists an

optimal feedback interval which maximizes the ergodic capacity. The results are reasonable,

because whenT increases from a small region, it begins to provide larger feedback rate and

thus improve the quality of feedback information, while when T goes toward a relatively

larger region, the time correlation gradually decreases and the feedback delay becomes larger,

causing the feedback information outdated and therefore impair the performance.

Note that the relations betweenCerg and T in Fig. 4 is consistent with the analysis in

section III, and the similar optimal values ofT can be also found in Fig. 2. Additionally,

from Fig. 4, we can see that asCfb increases, the ergodic capacity also enhances. However, the

absolute increment becomes smaller, which implies that it is necessary to limit the feedback

channel transmission rate since little gain can be achievedwhenCfb becomes very large.

C. Differential Feedback System with Lloyd’s Quantization Algorithm

In order to verify our theoretical results, we design a differential feedback system using

Lloyd’s quantization algorithm [24]. Firstly, differential codebooks are generated by Lloyd’s

quantization algorithm and available at both receiver and transmitter. When the(n− 1)th

channel quantization matrix̄Hn−1 is known both at receiver and transmitter, the receiver

only feeds back the differential codeword to the transmitter.

The feedback steps are given as follows. Firstly, the receiver calculates true quantization

error Hd = Ĥn − H̄n−1. Secondly, this true error is quantized asCd in the differential

codebooks with the smallest Euclidean distance to the true error. Thirdly, the corresponding

codeword index is sent back to the transmitter. Finally, thetransmitter recovers the channel

quantization matrix byH̄n = H̄n−1 +Cd.
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Fig. 5 shows the ergodic capacity using the Lloyd’s quantization algorithm (dash curves)

have the same trend with theoretical ones (solid curves) andthere exists an optimal feedback

interval. From Fig. 5, it shows that the ergodic capacity of theoretical results is larger than

the practical ones at small feedback interval region, but they get converged as the feedback

interval increases. The reasons are given as follows. When the feedback interval is in the

small region, the feedback rate is not sufficient both for theoretical and practical results, since

the codebooks generated with Lloyd’s quantization algorithm have stronger randomization.

However, when the feedback rate is small, with the increase of the feedback interval, the more

feedback rate can be obtained, reducing the randomization of Lloyd’s quantization algorithm

and thus, making the performance converged to the theoretical results.

V. CONCLUSIONS

In this paper, we have derived the minimum differential feedback rate for the time-

correlated Rayleigh block-fading channels considering channel estimation error and quan-

tization distortion. We found that the minimum differential feedback rate is the lower bound

of feedback compression with time correlation. We also investigated the relationship between

the ergodic capacity and the feedback interval provided thefeedback-channel constraintCfb

per fading block. We found that the ergodic capacity is a monotonic convex function on

feedback intervals, and there exists an optimal feedback interval to maximum the ergodic

capacity. The simulation results of a practical differential feedback with Lloyd’s quantization

algorithm is provided to validate our theoretical results.

APPENDIX A: PROOF OF(4)

Substituting (3) into (4), it yields

Ψ =

(

1− σ2

h

σ2

ĥ

)

H− σ2

h

σ2

ĥ

He, (21)

whereσ2
h andσ2

ĥ
are the variances of the entries ofH andĤ, respectively. Since the entries

hi,j of H, andhe,i,j of He are i.i.d. complex Gaussian variables, the entriesψi,j of Ψ are also

i.i.d variables. Therefore, we only need to prove the one-dimensional model. For simplicity,

the foot labels are ignored. From (21), we can get

ψ =

(

1− σ2
h

σ2
ĥ

)

h− σ2
h

σ2
ĥ

he. (22)
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From (22), ashe is independent onh at ML cannel estimation, the variance ofψ can be

calculate by

σ2
ψ =

σ2
h

(

σ2
ĥ
− σ2

h

)

σ2
ĥ

. (23)

As a result, the distribution ofψ is given by

CN



0,
σ2
h

(

σ2
ĥ
− σ2

h

)

σ2
ĥ



 . (24)

In the next, we give the proof thatψ is independent of̂h. As a complex Gaussian variable,

ĥ can be written aŝh = x̂+ j · ŷ, wherex̂ and ŷ areN
(

0,
σ2
ĥ

2

)

. Similarly, h can be written

ash = x+ j · y, wherex andy areN
(

0,
σ2
h

2

)

. We then consider the conditional probability

p
(

h|ĥ
)

when ĥ is given. For the real part, the probability can be written as

p (x|x̂) = p (x̂|x) p (x)
p (x̂)

=

1
√

π(σ2
ĥ
−σ2

h)
exp

(

− (x̂−x)2

σ2
ĥ
−σ2

h

)

1√
πσ2

h

exp
(

− x2

σ2
h

)

1√
πσ2

ĥ

exp
(

− x2

σ2
ĥ

) .

Therefore, we have

p (x|x̂) = 1
√

π
σ2
h(σ2ĥ−σ

2

h)
σ2
ĥ

exp






−

(

x− σ2
h

σ2
ĥ

x̂
)2

σ2
h(σ2ĥ−σ

2

h)
σ2
ĥ






. (25)

Similarly, the imaginary part can be written as

p (y|ŷ) = 1
√

π
σ2
h(σ2ĥ−σ

2

h)
σ2
ĥ

exp






−

(

y − σ2
h

σ2
ĥ

ŷ
)2

σ2
h(σ2ĥ−σ

2

h)
σ2
ĥ






. (26)

Combining (25) and (26), when̂h is given, the conditional distribution ofh can be

calculated as

CN





σ2
h

σ2
ĥ

ĥ,
σ2
h

(

σ2
ĥ
− σ2

h

)

σ2
ĥ



 . (27)

Sinceψ = h− σ2
h

σ2
ĥ

ĥ, the conditional distribution ofψ given ĥ is given by

CN



0,
σ2
h

(

σ2
ĥ
− σ2

h

)

σ2
ĥ



 . (28)

From (24) and (28), we find that the distribution ofψ is the same regardless of whetherĥ

is given or not. Hence,ψ is independent of̂h. Finally, the independent property betweenΨ

andĤ has been proved.
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APPENDIX B: PROOF OFLEMMA 1

From (3), we have

ĥn = hn + hen. (29)

From (2), the one-dimensional AR(1) channel model can be rewritten as a scalar form

hn = αhn−1 +
√
1− α2wn. (30)

Substituting (30) into (29) yields

ĥn =
(

αhn−1 +
√
1− α2wn

)

+ hen. (31)

From (4), we have

hn−1 =
σ2
h

σ2
ĥ

ĥn−1 + ψn−1. (32)

whereψn is independent on̂hn, as proved in Appendix A. Substituting (32) to (31) yields

ĥn = α

(

σ2
h

σ2
ĥ

ĥn−1 + ψn−1

)

+
√
1− α2wn + hen. (33)

From (5), we have

ĥn−1 = h̄n−1 + en−1. (34)

Substituting (34) into (33), we obtain

ĥn = α
σ2
h

σ2
ĥ

h̄n−1 + α
σ2
h

σ2
ĥ

en−1 + αψn−1 +
√
1− α2wn + hen. (35)

When h̄n−1 is given, the conditional mutual information can be writtenas

I
(

ĥn; h̄n|h̄n−1

)

= h
(

ĥn|h̄n−1

)

− h
(

ĥn|h̄n, h̄n−1

)

. (36)

Substituting (35) into (36), it yields

I = h

(

α
σ2
h

σ2
ĥ

en−1 + αψn−1 +
√
1− α2wn + hen

)

− h
(

en|h̄n−1

)

. (37)

Considering the identical equationh
(

en|h̄n−1

)

≤ h (en), andh (en) = h (en−1), (37) can be

written as

I ≥ h

(

α
σ2
h

σ2
ĥ

en−1 + αψn−1 +
√
1− α2wn + hen

)

− h (en−1) . (38)

Then, (38) can be written as

I ≥ h

(

en−1 +
σ2
ĥ

σ2
h

ψn−1 +

√
1− α2

α

σ2
ĥ

σ2
h

wn +
σ2
ĥ

ασ2
h

hen

)

− h (en−1) + 2 log

(

α
σ2
h

σ2
ĥ

)

. (39)
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As h̄n−1, en−1, ψn−1, wn andhen are independent complex Gaussian variables, and also

mutually independent between each other, (39) can be written as

I ≥ I

(

en−1 +
σ2
ĥ

σ2
h

ψn−1 +

√
1− α2

α

σ2
ĥ

σ2
h

wn +
σ2
ĥ

ασ2
h

hen;
σ2
ĥ

σ2
h

ψn−1 +

√
1− α2

α

σ2
ĥ

σ2
h

wn +
σ2
ĥ

ασ2
h

hen

)

+ 2 log

(

α
σ2
h

σ2
ĥ

)

. (40)

According to the rate distortion theory of continuous amplitude sources [23], (40) achieves the

minimum value when thēhn−1, en−1, ψn−1, wn andhen are independent Gaussian variables.

I ≥ log

[

1 +
1− α2

d · α2

σ4
ĥ

σ2
h

+
σ4
ĥ

d · σ4
h

(

σ2
h

σ2
ĥ

+
1

α2

)

(

σ2
ĥ
− σ2

h

)

]

+ 2 log

(

α
σ2
h

σ2
ĥ

)

. (41)

From (41), we finally obtain

I ≥ log



α2

(

σ2
h

σ2
ĥ

)2

+
(1− α2)

d
σ2
h +

(

σ2
ĥ
− σ2

h

)

d

(

1 + α2σ
2
h

σ2
ĥ

)



 . (42)

APPENDIX C: PROOF OFEXISTENCE OF THEOPTIMAL T

For simplicity, we assumex = 2πfdτ . Thus, the time correlation can be rewritten asα =

J0 (2πfdτ ) = J0 (x) and the time interval can be rewritten asT = τ/tblock = x/ (2πfd · tblock).
From (17), the distortiond can be rewritten as

d(x) =

(

σ4
h

σ2
ĥ

)







(

1− 2kx
)

J0(x)
2

2kx −
(

σ2
h

σ2
ĥ

)2

J0(x)
2






+ σ2

ĥ
. (43)

wherek = Cfb/ (2πNrNtfd · tblock), andd(x) is a continuously differentiable function onx.

Then we get the first derivatived
dx
d(x) from (43), we have

d

dx
d(x) =

2kx
(

σ4
h

σ2
ĥ

)

·
{[

2
(

2kx − 1
)

· J1(x)− k ln 2 ·
(

J0(x)−
(

σ2
h

σ2
ĥ

)2

J0(x)
3

)]

J0(x)

}

(

2kx −
(

σ2
h

σ2
ĥ

)2

J0(x)
2

)2 .

(44)

whereJ1 (x) = − d
dx
J0 (x) in [17], whereJn (x) is a first kindn-order Bessel function.

Whenx → 0, there areJ0(x) → 1 andJ1(x) → 0. Thus, the first derivative ofd(x) is

d

dx
d(x)|x→0 = −



















σ4
h

σ2
ĥ

·
[

k ln 2 ·
(

1−
(

σ2
h

σ2
ĥ

)2
)]

(

1−
(

σ2
h

σ2
ĥ

)2
)2



















< 0. (45)



14

However, whenx = 3
2
, sinceJ1

(

3
2

)

> J0
(

3
2

)

, we have

d

dx
d(x)|x= 3

2

>

2
3

2
k
(

σ4
h

σ2
ĥ

)

·
{[

2
(

2
3

2
k − 1

)

− k ln 2 ·
(

1−
(

σ2
h

σ2
ĥ

)2

J0
(

3
2

)2
)]

J0
(

3
2

)2
}

(

2
3

2
k −

(

σ2
h

σ2
ĥ

)2

J0
(

3
2

)2
)2

>
2

3

2
k
(

σ4
h

σ2
ĥ

)

·
{[

2
(

2
3

2
k − 1

)

− k ln 2
]

J0
(

3
2

)2
}

(

2
3

2
k −

(

σ2
h

σ2
ĥ

)2

J0
(

3
2

)2
)2 (46)

Considering the inequality2
3

2
k − 1 > 3

2
ln 2 · k2 3

2
k, we have

2
(

2
3

2
k − 1

)

− k ln 2 > k ln 2
(

3 · 2 3

2
k − 1

)

> 0. (47)

Substituting (47) to (46), we have

d

dx
d(x)|x= 3

2

> 0. (48)

As d
dx
d(x) is a continuous function onx, combining (45) and (48), we can easily obtain

there exists ax to make d
dx
d(x) = 0 when0 < xopt <

3
2
. Thus, the existence of the optimal

Topt = xopt/ (2πfd · tblock) is proved.
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