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Abstract—In this paper we consider the problem of high
accuracy localization of mobile nodes in a multipath-rich
environment where sub-meter accuracies are required. We
employ a peer to peer framework where the vehicles/nodes
can get pairwise multipath-degraded ranging estimates in
local neighborhoods together with a fixed number of anchor
nodes. The challenge is to overcome the multipath-barrier with
redundancy in order to provide the desired accuracies especially
under severe multipath conditions when the fraction of received
signals corrupted by multipath is dominating. We invoke a
message passing analytical framework based on particle filtering
and reveal its high accuracy localization promise through
simulations.
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I. INTRODUCTION

High-accuracy localization is mandated in many applica-
tions like vehicle safety [1], autonomous robotic systems [2],
Unmanned Air Vehicle (UAV) systems etc, where sub-meter
accuracies are called for. Standard GPS receivers can have
errors over fifty or more meters which is unacceptable for
many of these applications. The principal problem is multipath
1 interference [3], which is particularly prevalent in cities and
“urban canyon” environments. In a multipath-rich environ-
ment, the received signals are no longer gaussian in nature
challenging the use of standard estimation techniques like the
well-known Kalman Filtering framework and its extensions.
The principal idea behind GPS is to obtain three or more
distance measurements from sources with known locations
(e.g. satellites) and estimate the location based on trilateration.
However, even if one of the measurements is corrupted by
multipath, the location errors can be significantly large. It has
been well noted that redundancy in measurements is the key
to tackle multipath [3]. Many of the existing solutions such
as D-GPS, A-GPS [4] augment the GPS system by adding
extra infrastructure in terms of fixed base stations. However
infrastructure cost and complexity constrains the amount of
redundancy that can be introduced in the system and as a
consequence limits the achievable localization.

In contrast to existing centralized systems that are based on
a “cellular-like” architecture, with users individually comput-
ing their location by calculating the distance to a small number
of satellites and/or terrestrial base stations, we adopt a “peer

1Multiple delayed versions of the same transmitted signal are received at
the receiver due to reflections from different objects in the environment.
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Figure 1. Peer-to-Peer Collaborative Localization
to peer” architecture (see Fig 1) where nodes collaborate and
help each other to refine their position estimates. We look for
distributed algorithms in the interest of scalability and reduced
computational complexity. We propose the inclusion of low-
cost static “anchor” nodes with known locations and study
the effect of the number of anchor nodes and existing mobile
nodes on the system performance. Collaboration coupled with
mobility generates a large pool of measurements in the system.
The fundamental insight is that, some fraction of these mea-
surements will be produced by line-of-sight (LOS) dominated
signals, and hence be fairly accurate, while some fraction will
be corrupted by dominated non-line-of-sight (NLOS) reflected
waves. Receivers do not know a priori which measurements
are LOS and which are NLOS. Hence, the task of the users
is to cooperatively discard the NLOS signals, thus enabling
them to compute high-precision position estimates. Our main
contribution in this paper is to uncover a framework and a
distributed algorithm founded on message passing for collab-
orative localization. We adopt a mixture model (discussed in
Sec. II) for the received signal to characterize LOS/NLOS, that
naturally arises given that the receivers do not know a priori
the nature of the received signal.

Distributed algorithms [2], [5] have been of recent interest
for collaborative localization. However, most of the existing
work in the literature on localization focus on the case when
the measurements are gaussian. In our setting, the distributions
of interest are mixture distributions that are highly non-
gaussian in nature. Generalizations of Kalman Filtering, such
as the Extended Kalman Filter (EKF) [6] have been proposed
for non-gaussian problems. However, EKF solutions do not
work well when the distributions are bimodal as in the case
of mixture distributions, since gaussians do not approximate
bimodal distributions very well. Some of the other approaches
try to weed out the NLOS signals ( [3], [7], [8], [9]), and
work only with the LOS signals which can be reasonably
modeled as gaussian. The underlying algorithm used in most
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of these approaches has been modified forms of the Random
Sample Consensus (RANSAC) algorithm, which is a classical
algorithm in computer vision literature to discard outliers in
the data. RANSAC works well when the number of outliers
(here the NLOS signals) is much smaller than the number
of LOS signals. However, these are limited in settings (for
e.g. see [10] for an ultra-wideband setting) where the fraction
of LOS signals is typically lesser than NLOS which would
challenge the performance of RANSAC-based approaches.
The main reason for this is that in our case the NLOS signals
dominate the set of measurements, and those can no longer
be considered as outliers. Simulation results show that our
algorithm works very well even in this challenging case where
the fraction of LOS signals is dominated by the fraction of
NLOS signals. An excellent survey of existing locationing
algorithms and their drawbacks can be found in [11].

II. PROBLEM SETUP

We have N mobile nodes with an arbitrary mobility model
and M static anchor nodes with known locations. For simu-
lations we consider the nodes to be moving with a constant
velocity along a fixed trajectory, motivated by the highway
setting for vehicles. Each vehicle is equipped with a sensor
capable of getting a Time of Arrival (ToA)/ Time Difference
of Arrival (TDoA) signal from other vehicles/anchors within
a communication radius R. We model each measurement as
either a LOS-dominated signal or an NLOS-dominated signal
by choosing the observation noise in the received signal to
be drawn from a mixture of two distributions, corresponding
to LOS and NLOS respectively. The model is motivated by
some of the experimental work carried out in the UWB [10],
[12], [13]. For e.g., the experimental results in [10] show
that some fraction of the received signals are purely LOS-
dominated signals which motivates the mixture distribution.
For simulations, we will model the noise in LOS as gaussian
whereas for the NLOS we will take it to be a sum of an
exponential and a gaussian distribution. The noise model for
NLOS is again motivated from some of the experimental
results discussed in [12], [13]. These show that the NLOS
signal distribution is very close to an exponential distribution.
This was earlier conjectured in [14], where the author argues
that the arrivals of the different paths can be modeled as a
Poisson process which in turn leads to the inter arrival times
being exponential. The theory developed here is however, more
generic and does not depend on the specific nature of the
distributions. Each vehicle is assumed to be equipped with an
accelerometer and magnetometer that give noisy readings of
the velocity and direction of motion of the vehicle. We will
assume that there is a multiple access protocol in place that
will help the vehicles communicate across the shared medium.

Let vt(k) denote the true location of the kth
vehicle at time instant t. θt(km) denotes the reading
(distance measurement) between the vehicle k and
node2 m at time instant t. The readings θt(km)

2The term vehicle/anchor and node will be interchangeably used.
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Figure 2. Graphical model representation of the unknown vehicle states
(locations) and the observations (LOS/NLOS measurements).

are sampled from a mixture of two distributions,
(pLOS(θt(km)|vt(k), vt(m)), pNLOS(θt(km)|vt(k), vt(m)))),
with mixture probabilities (α, 1−α) respectively. Let zt(km)
be the indicator random variable for the LOS reading between
vehicles k and m at time instant t.

zt(km) =

{
1 if θt(km) ∼ pLOS(θt(km)|vt(k), vt(m))
0 otherwise

It is highly unlikely that a vehicle’s state would change rapidly
over time. To capture this, we will model the state evolutions
of the zt(km)’s as a “sticky” Markov Chain with a stationary
distribution (α, 1−α). Let p(vt(k)|vt−1(k)) be the distribution
that governs the evolution of the vehicle states across time
which is an artifact of the inertial navigation system.

Every vehicle k needs to estimate its location vt(k), based
on all measurements {θτ (km)}tτ=1 from its neighbors upto
time t. Given the non-gaussian nature of the problem and
the accuracy requirement we need to develop robust, accurate
and distributed algorithms. Particle Filters have gained impor-
tance in the recent past for tackling non-gaussian estimation
problems. These provide accuracies close to Minimum Mean
Square Error (MMSE) estimates. The nature of our problem
helps us obtain Kalman-like updates for particle filtering giv-
ing rise to a simplified algorithm. A short primer on graphical
models and particle filtering is provided in the next section.

III. GRAPHICAL MODELS & PARTICLE FILTERING PRIMER

Graphical models and particle filtering have been exten-
sively studied in the machine learning community. An excel-
lent treatment of graphical models is provided in [15] and
discussions on particle filtering can be found in [16]. We
describe these briefly to make our paper self contained.

A. Graphical models

Graphical models provide a good way of understanding
dependencies between different random variables. These mod-
els come in handy when we are trying to estimate some
parameters given probability distributions that have a certain
structure and we need computationally feasible algorithms to
get the estimates. A directed acyclic graph, G(V, E), consists
of a vertex set V and edge set E which is the collection of
all directed edges. The vertices (nodes) of the directed graph



can be factored as

p(XV) =
�

s∈V
p(Xs|Xπs

).

Dependencies amongst the vehicle locations and the read-
ings are captured by the graphical model shown in Fig 2, which
is a coupled Hidden Markov Model (HMM). The unshaded
nodes are the hidden nodes that need to be estimated 4.
The shaded nodes are the observations coupling the different
Markov chains of the vehicles and are called as the evidence
nodes. Note that at some time instants we might not have any
readings between some vehicles and thus there is no evidence
node coupling the corresponding vehicle states. Based on
the factorization as described above, the joint probability
distribution of the set of all random variables is given by

p({vt}, {θt}, {zt}) =
�

t,k,m

p(θt(km)|vt(k), vt(m), zt(km))

N�

k=1

p(v1(k))
�

t

p(vt(k)|vt−1(k))

N�

k=1

p(z1(km))
�

t

p(zt(km)|zt−1(km)).

The primary goal here is to estimate the hidden nodes
given the observations. It is hard to directly apply conven-
tional inference algorithms such as the celebrated loopy belief
propagation [14] considering the fact that the hidden states are
continuous in nature and that the graph grows over time. We
will introduce approximations to the graphical model and use
particle filtering to do inference over the approximated model.
Simulation results show that we can obtain high accuracies in
spite of the approximations. We briefly describe particle filters
in the next section and discuss on how to adapt the same for
our setting.

B. Particle Filtering

Particle Filtering is a Monte Carlo simulation technique
whose overall goal is to approximate the posterior state density
which can then be used to obtain the MMSE estimate. We will
consider only a single vehicle for now and omit the vehicle
index k for notational simplicity. Let v1:t and θ1:t denote the
set of states and observations up to time t respectively. The
posterior density of the state given the observations can be
approximated as follows

p(vt|θ1:t) ≈ p̂(vt|θ1:t) =
1

K

K�

i=1

δ(vt − vi
t)

where {vi
t; i = 1, ..., K} are K i.i.d random samples (particles)

picked from the distribution p(vt|θ1:t) and δ(.) is the dirac-
delta function. Expectations of some functions of the state
f(vt), can then be approximated with high probability, for

4Anchor nodes are not shown in this model for simplicity.

large K, as follows

E[f(vt)|θ1:t] ≈ Ê[f(vt)|θ1:t] =
1

K

K�

i=1

f(vi
t).

Typically sampling from the true posterior distribution is
hard. Let us consider sampling from a distribution π(v1:t|θ1:t),
known as proposal distribution. After some simple manipula-
tions using Bayes rule, we get

E[f(v1:t)|θ1:t] =

�
f(v1:t)

p(v1:t|θ1:t)

π(v1:t|θ1:t)
π(v1:t|θ1:t)dv1:t

=
Eπ[wt(v1:t)f(v1:t)]

Eπ[wt(v1:t)]

where wt(v1:t) are known as the importance weights given by

wt(v1:t) =
p(θ1:t|v1:t)p(v1:t)

π(v1:t|θ1:t)
.

Thus, if we now have i.i.d samples of v1:t from the proposal
distribution π(v1:t|θ1:t), the following approximation holds

E[f(v1:t)|θ1:t] ≈
K�

i=1

w̃t
if(vi

1:t).

where w̃t
i are the normalized importance weights. The esti-

mate is shown to converge to the true MMSE estimate with
high probability [15]. For the case of a single HMM (Fig 2),
we have p(v1:t, θ1:t) = p(v1)

�t
j=2 p(vj |vj−1)

�t
j=1 p(θj |vj)

Lets choose a proposal distribution that admits a decompo-
sition π(v1:t|θ1:t) = π(v1:t−1|θ1:t−1)π(vt|v1:t−1θ1:t). After
simplifications, we can obtain a recursive estimation for the
weights.

wt =
wt−1p(θt|vt)p(vt|vt−1)

π(vt|v1:t−1θ1:t)
.

The choice of the proposal distribution affects the performance
of the estimator. The optimal proposal distribution, that min-
imizes the variance of the error has been shown [17] to be
p(vt|vt−1, θt). Since sampling from this distribution is difficult
for the problem at hand, we will use a simpler proposal
distribution π(vt|v1:t−1θ1:t) = p(vt|vt−1) to get the weight
updations wt = wt−1p(θt|vt) . The reader is referred to the
literature for other efficient methods of choosing a proposal
distribution. Typically a resampling step is introduced (see
Alg. 1) after the weight updation step, to handle degeneracy
issues when some of the particle weights become too low.

Algorithm 1 Particle Filtering
1: Initialize: Sample {vi

0}K
i=1 from p(v0), set wi

0 = 1
K .

2: for t ≥ 1 do
3: Sample vi

t from p(vt|vi
t−1).

4: Update wi
t = wi

t−1p(θt|vi
t).

5: Normalize wi
t .

6: Resample new set of particles and set wi
t = 1

K
7: end for
8: Output:Ê[f(vt)|θ1:t] =

�K
i=1 wi

tf(vi
t).

represent random variables and the dependencies amongst the
random variables are captured by the edges. Let {Xs, s ∈ V}
denote the set of all random variables indexed by the nodes
of the graph. For every node s ∈ V , let πs denote the set of
indices of its parents 3. For any S ⊆ V , let XS , {Xs, s ∈ S}.
Then, the joint probability distribution of the random variables
can be factored as p(XV) =

∏
s∈V p(Xs|Xπs

).

Dependencies amongst the vehicle locations and the read-
ings are captured by the graphical model shown in Fig 2, which
is a coupled Hidden Markov Model (HMM). The unshaded
nodes are the hidden nodes to be estimated 4 and the shaded
nodes are observations coupling the different Markov chains
of the vehicles, called as the evidence nodes. Based on the
factorization described above, the joint probability distribution
of the set of all random variables is given by equation (1).

The primary goal here is to estimate the hidden nodes
given the observations. It is hard to directly apply conven-
tional inference algorithms such as the celebrated loopy belief
propagation [15] considering the fact that the hidden states are
continuous in nature and that the graph grows over time. We
will introduce approximations to the graphical model and use
particle filtering to do inference over the approximated model.
Simulation results show that we can obtain high accuracies in
spite of the approximations. We briefly describe particle filters
in the next section.

B. Particle Filtering

Particle Filtering is a Monte Carlo simulation technique
whose goal is to approximate the posterior state density that
can be used to obtain the MMSE estimate. We will consider
only a single vehicle for now and omit the vehicle index
k for notational simplicity. Let v1:t and θ1:t denote the set
of states and observations up to time t respectively. The
posterior density of the state given the observations can be
approximated as p(vt|θ1:t) ≈ p̂(vt|θ1:t) = 1

K

∑K
i=1 δ(vt − vit)

where {vit; i = 1, ...,K} are K i.i.d random samples (parti-
cles) picked from the distribution p(vt|θ1:t) and δ(.) is the
dirac-delta function. Expectations of some functions of the
state f(vt), can then be approximated with high probability,
for large K, as E[f(vt)|θ1:t] ≈ 1

K

∑K
i=1 f(v

i
t). Typically

sampling from the true posterior distribution is hard. Let us
consider sampling from a distribution π(v1:t|θ1:t), known as
proposal distribution. After some simple manipulations using

3Node p is the parent of node s, if there is an incoming edge to s from p.
4Anchor nodes are not shown in this model for simplicity.
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Figure 3. Approximation for the original coupled HMM.

Bayes rule, we get

E[f(v1:t)|θ1:t] =
Eπ[wt(v1:t)f(v1:t)]

Eπ[wt(v1:t)]
,

where wt(v1:t) are known as the importance weights given by

wt(v1:t) =
p(θ1:t|v1:t)p(v1:t)

π(v1:t|θ1:t)
.

Thus, if we have i.i.d samples of v1:t from the proposal distri-
bution π(v1:t|θ1:t), we get E[f(v1:t)|θ1:t] ≈

∑K
i=1 w̃t

if(vi1:t),
where w̃t

i are the normalized importance weights. Conver-
gence of this estimate to the true MMSE estimate is shown in
[16].

For the case of a single HMM (Fig 2), we have
p(v1:t, θ1:t) = p(v1)

∏t
j=2 p(vj |vj−1)

∏t
j=1 p(θj |vj). Lets

choose a proposal distribution that admits a decomposition
π(v1:t|θ1:t) = π(v1:t−1|θ1:t−1)π(vt|v1:t−1θ1:t). After simpli-
fications, we can obtain a recursive estimation for the weights,

wt =
wt−1p(θt|vt)p(vt|vt−1)

π(vt|v1:t−1θ1:t)
.

The optimal proposal distribution, that minimizes the variance
of the error has been shown [16] to be p(vt|vt−1, θt). Since
sampling from this distribution is difficult for our problem, we
will use a simpler distribution π(vt|v1:t−1θ1:t) = p(vt|vt−1)
to get the weight updations wt = wt−1p(θt|vt). The reader
is referred to the literature for other methods of choosing a
proposal distribution. Typically a resampling step is introduced
(see Alg. 1), to handle degeneracy issues when particle weights
become too low.

IV. PARTICLE FILTERING FOR LOCALIZATION

Exact inference over Fig 2 being hard, we will resort to an
approximation for every vehicle as shown in Fig 3. The new set
of shaded nodes in this graph correspond to the estimated lo-
cation of the other vehicles. At every time instant each vehicle
gets the estimated location of its neighbors from the previous
time instants and assuming that it is close enough to the true
location, the vehicle gets an estimate of its own location using
particle filtering. A straightforward method of particle filtering
over this model would be to consider {vt, zt} as a random
variable pair which would reduce the graphical model to a

p({vt}, {θt}, {zt}) =
∏

t,k,m

p(θt(km)|vt(k), vt(m), zt(km))

N∏

k=1

p(v1(k))
∏

t

p(vt(k)|vt−1(k)
∏

k,m

p(z1(km))
∏

t

p(zt(km)|zt−1(km)). (1)



IV. PARTICLE FILTERING FOR C-HALO

Exact inference over Fig 2 being hard, we will resort to an
approximation for every vehicle as shown in Fig 3. The new set
of shaded nodes in this graph corresponds to the estimated lo-
cation of the other vehicles. At every time instant each vehicle
gets the estimated location of its neighbors from the previous
time instants and assuming that it is close enough to the true
location, the vehicle gets an estimate of its own location using
particle filtering. A straightforward way of particle filtering
over this model would be to consider {vt, zt} as a random
variable pair which would reduce the graphical model to a
simple HMM. However the state space of the random variables
grows exponentially with the number of neighbors as we now
need to sample particles over {vt(k), zt(km)}, which could
potentially lead to scaling issues. More importantly particle
filtering is efficient when the hidden states are continuous,
whereas here zt’s are binary. Thus we now need to see if we
can combine particle filtering and exact inference to obtain
simplified weight updations.

Consider the HMM in Fig 3 and ignore the vehicle indices
k and m. Using the same definition of wt(v1:t) as before, we
can now write wt(v1:t) =

�
zt
φ(v1:t, zt), where

φ(v1:t, zt) =
p(θ1:t, zt|v1:t)p(v1:t)

π(v1:t|θ1:t)
.

Assuming a similar proposal distribution factorization as be-
fore we can show that

φ(v1:t, zt) =
p(θt|zt, vt)p(vt|vt−1)

π(vt|v1:t−1θ1:t)�

zt−1

p(zt|zt−1)φ(v1:t−1, zt−1).

Choosing π(vt|v1:t−1θ1:t) = p(vt|vt−1), we get

φt � φ(v1:t, zt) = p(θt|zt, vt)
�

zt−1

p(zt|zt−1)φ(v1:t−1, zt−1).

For each vehicle k and its neighbor m we have φt(km) and
the update equations are given in the Algorithm 2.

Algorithm 2 Particle Filtering for Accurate Localization
1: Initialize: Sample {vi

0(k)}K
i=1 from p(v0(k)), set wi

0(k) = 1
K ∀k.

2: for t ≥ 1 do
3: Sample vi

t(k) from p(vt(k)|vi
t−1(k)).

4: for all Neighbors m do
5: if m was a neighbor at t − 1 then
6: φi

t(km) = p(θt(km)|zt(km), vi
t(k))�

zt−1
p(zt(km)|zt−1(km))φi

t−1(km).

7: else
8: φi

t(km) = p(zt(km))p(θt(km)|vi
1(k), zt(km)).

9: end if
10: end for
11: Calculate wi

t(k) =
�

m

�
zt(km) φ

i
t(km)

12: Normalize wi
t and resample.

13: end for
14: Output:Ê[vt(k)|{θ1:t(km)}] =

�N
i=1 wi

t(km)vi
t(k).

The optimal detection rule for zt is given by

ẑt =

�
1 if p(zt = 1|θ1:t) > p(zt = 0|θ1:t)
0 otherwise .

This can be simplified and shown to be equal to the following
test Eπφ(v1:t, zt = 1) ≷1

0 Eπφ(v1:t, zt = 0), which is
evaluated by approximating Eπφ(v1:t, zt) ≈

�
i φ(vi

1:t, zt).
In practice, each vehicle would send a known sequence of

bits to its neighbors, who in turn reflect this back along with
their own location estimates. Assuming that the processing
needs negligible time, based on the received signal the vehicle
can get the round trip delay and then calculate its location
estimate based on the algorithm. One issue in implementation
is that after a sufficiently long time instant, the weights would
essentially get concentrated over a very small set of samples
which cannot be avoided [18]. To take care of this in our
simulations, we would reset the system when the number of
distinct particles become very small and sample a new set
of particles from a small neighborhood centered around the
location estimate at the current time instant.

V. SIMULATION RESULTS

The simulation set up consists of N = 20 vehicles moving
in a grid of size 150m × 30m. The vehicles start at random
locations from the left most corner of the grid and move at a
constant velocity to the right. The locations of the vehicles are
indicated by squares in Fig 4(b). The readings are generated
as follows. If dt(km) = ||vt(k) − vt(m)|| < R,

θt(km) =

�
dt(km) + nt(km) if LOS

dt(km) + �t(km) + nt(km) otherwise

where nt(km) ∼ N(0, σ2
LOS) i.i.d, �t(km) ∼ Exp(σ−1

NLOS).
The motivation for taking the NLOS noise to be exponential
comes from some of the experimental results discussed in
[19], [20]. These show that the NLOS signal distribution is
very close to an exponential distribution. This was earlier
conjectured in [21], where the author argues that the arrivals
of the different paths can be modeled as a Poisson process
which in turn leads to the inter arrival times being exponential.
We want the fraction of the readings that are LOS to be α.
The evolution of the zt(km) random variables is governed by
the probability law, p(zt(km) = 1|zt−1(km) = 0) = α

2 for
these simulations and the other values are taken so that the
stationary distribution is (α, 1 − α). Simulations have been
carried out for other transition probability matrices having the
same stationary distribution and the results are similar. The
inertial navigation system readings are assumed to be obtained
under a additive white gaussian noise model with a constant
velocity of motion. Time steps are divided into units of one
for simplicity. We compare the performance of the algorithm
to a genie aided Maximum Likelihood (ML) algorithm. Here
each vehicle, at every time instant, calculates the local ML
estimate of its location assuming that a genie provides it with
the exact locations of its neighbors .

simple HMM. However the state space of the random variables
grows exponentially with the number of neighbors as we now
need to sample particles over {vt(k), zt(km)}, which could
lead to scaling issues. More importantly particle filtering is
efficient when the hidden states are continuous, whereas zt’s
are binary. Thus we now see to combine particle filtering and
exact inference to obtain simplified weight updations.

Consider the HMM in Fig 3 and ignore the vehicle indices
k and m. Using the same definition of wt(v1:t) as before, we
can now write wt(v1:t) =

∑
zt
φ(v1:t, zt), where

φ(v1:t, zt) =
p(θ1:t, zt|v1:t)p(v1:t)

π(v1:t|θ1:t)
.

Assuming a similar proposal distribution factorization as be-
fore we can show that

φ(v1:t, zt) =
p(θt|zt, vt)p(vt|vt−1)
π(vt|v1:t−1θ1:t)

∑

zt−1

p(zt|zt−1)φ(v1:t−1, zt−1).

Choosing π(vt|v1:t−1θ1:t) = p(vt|vt−1), we get

φt , φ(v1:t, zt) = p(θt|zt, vt)
∑

zt−1

p(zt|zt−1)φ(v1:t−1, zt−1).

For each vehicle k and its neighbor m we have φt(km) and
the update equations are given in the Algorithm 2.

The optimal detection rule for zt is given by

ẑt =

{
1 if p(zt = 1|θ1:t) > p(zt = 0|θ1:t)
0 otherwise .

This can be simplified and shown to be equal to the following
test Eπφ(v1:t, zt = 1) ≷1

0 Eπφ(v1:t, zt = 0), which is
evaluated by approximating Eπφ(v1:t, zt) ≈

∑
i φ(v

i
1:t, zt). To

take care of degeneracy issues over long time instants [16], we
reset the system when the number of distinct particles become
small and sample a new set of particles from a neighborhood
around the location estimate at that time instant.

V. SIMULATION RESULTS

The simulation set up consists of N = 20 vehicles moving
in a grid of size 150m × 30m. The vehicles start at random
locations from the left most corner of the grid and move at
a constant velocity to the right. To account for the vertical
motion, a simplistic model of a curved trajectory is simulated
for each vehicle. The observations are generated as follows.
If dt(km) = ||vt(k)− vt(m)|| < R,

θt(km) =

{
dt(km) + nt(km) if LOS

dt(km) + εt(km) + nt(km) otherwise
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are binary. Thus we now see to combine particle filtering and
exact inference to obtain simplified weight updations.

Consider the HMM in Fig 3 and ignore the vehicle indices
k and m. Using the same definition of wt(v1:t) as before, we
can now write wt(v1:t) =
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zt
φ(v1:t, zt), where φ(v1:t, zt) =

p(θ1:t,zt|v1:t)p(v1:t)
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For each vehicle k and its neighbor m we have φt(km) and
the update equations are given in the Algorithm 2.

The optimal detection rule for zt is given by

ẑt =

�
1 if p(zt = 1|θ1:t) > p(zt = 0|θ1:t)
0 otherwise .

This can be simplified and shown to be equal to the following
test Eπφ(v1:t, zt = 1) ≷1

0 Eπφ(v1:t, zt = 0), which is
evaluated by approximating Eπφ(v1:t, zt) ≈

�
i φ(vi

1:t, zt).
To take care of degeneracy issues over long time instants

[17], we reset the system when the number of distinct particles
become small and sample a new set of particles from a
neighborhood around the location estimate at that time instant.

V. SIMULATION RESULTS

α (%) Pd Mean Error Mean Error
(Particle Filtering) (Maximum Likelihood)

5 0.43 1.04 m 1.05 m
15 0.52 0.99 m 1.01 m
30 0.61 0.93 m 0.94m
45 0.68 0.71 m 0.73 m

Table I
MEAN ESTIMATION ERRORS OF THE PROPOSED PARTICLE FILTERING

ALGORITHM AND MAXIMUM LIKELIHOOD AS A FUNCTION OF THE
FRACTION OF LOS SIGNALS (α). ALSO SHOWN IS THE DETECTION

PROBABILITY OF THE LOS SIGNALS (Pd).

The simulation set up consists of N = 20 vehicles moving
in a grid of size 150m × 30m. The vehicles start at random
locations from the left most corner of the grid and move at a

(a) Cumulative density function of localization error as a function of α.

(b) True and estimated vehicle trajectories for the proposed algorithm, α = 45%

(c) Mean estimation errors and the detection probability of the LOS signals
(Pd) as a function of α.

(d) Mean estimation errors of the particle filtering algorithm as a function of
the number of anchor nodes and vehicles for α = 30%.

Figure 4. Parameters for all the plots: σINS = 0.1, σLOS = 0.05,
σNLOS = 5, Num of particles = 900, Horizontal velocity= 0.2m per
time step ∀k, M = 26, N = 20, R = 10m. The plots are a function of
the fraction of LOS signals α. The proposed particle filtering algorithm is
compared against the local Maximum Likelihood algorithm.

constant velocity to the right. The observations are generated
as follows. If dt(km) = ||vt(k) − vt(m)|| < R,

θt(km) =

�
dt(km) + nt(km) if LOS

dt(km) + �t(km) + nt(km) otherwise

where nt(km) ∼ N(0, σ2
LOS) i.i.d, �t(km) ∼ Exp(σ−1

NLOS).

(c) Mean estimation errors and the detection probability of the LOS signals
(Pd) as a function of α.

are binary. Thus we now see to combine particle filtering and
exact inference to obtain simplified weight updations.

Consider the HMM in Fig 3 and ignore the vehicle indices
k and m. Using the same definition of wt(v1:t) as before, we
can now write wt(v1:t) =
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zt
φ(v1:t, zt), where φ(v1:t, zt) =

p(θ1:t,zt|v1:t)p(v1:t)
π(v1:t|θ1:t) . Assuming a similar proposal distribution

factorization as before we can show that
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Choosing π(vt|v1:t−1θ1:t) = p(vt|vt−1), we get

φt � φ(v1:t, zt) = p(θt|zt, vt)
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p(zt|zt−1)φ(v1:t−1, zt−1).

For each vehicle k and its neighbor m we have φt(km) and
the update equations are given in the Algorithm 2.

The optimal detection rule for zt is given by

ẑt =
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1 if p(zt = 1|θ1:t) > p(zt = 0|θ1:t)
0 otherwise .

This can be simplified and shown to be equal to the following
test Eπφ(v1:t, zt = 1) ≷1

0 Eπφ(v1:t, zt = 0), which is
evaluated by approximating Eπφ(v1:t, zt) ≈

�
i φ(vi

1:t, zt).
To take care of degeneracy issues over long time instants

[17], we reset the system when the number of distinct particles
become small and sample a new set of particles from a
neighborhood around the location estimate at that time instant.

V. SIMULATION RESULTS

Num of Anchors Num of Vehicles Mean Error
(M) (N) (Particle Filtering)
26 20 0.93 m
26 24 0.82 m
26 30 0.76 m
30 20 0.74 m
36 20 0.70 m

Table I
Pd OF THE HIDDEN z STATES AND THE MEAN ESTIMATION ERROR.

The simulation set up consists of N = 20 vehicles moving
in a grid of size 150m × 30m. The vehicles start at random
locations from the left most corner of the grid and move at a

(a) Cumulative density function of localization error as a function of α.

(b) True and estimated vehicle trajectories for the proposed algorithm, α = 45%

(c) Mean estimation errors and the detection probability of the LOS signals
(Pd) as a function of α.

(d) Mean estimation errors of the particle filtering algorithm as a function of
the number of anchor nodes and vehicles for α = 30%.

Figure 4. Parameters for all the plots: σINS = 0.1, σLOS = 0.05,
σNLOS = 5, Num of particles = 900, Horizontal velocity= 0.2m per
time step ∀k, M = 26, N = 20, R = 10m. The plots are a function of
the fraction of LOS signals α. The proposed particle filtering algorithm is
compared against the local Maximum Likelihood algorithm.

constant velocity to the right. The observations are generated
as follows. If dt(km) = ||vt(k) − vt(m)|| < R,

θt(km) =

�
dt(km) + nt(km) if LOS

dt(km) + �t(km) + nt(km) otherwise

where nt(km) ∼ N(0, σ2
LOS) i.i.d, �t(km) ∼ Exp(σ−1

NLOS).

(d) Mean estimation errors of the particle filtering algorithm as a function of
the number of anchor nodes and vehicles for α = 30%.

Figure 4. Parameters for all the plots: σINS = 0.1, σLOS = 0.05,
σNLOS = 5, Num of particles = 900, Horizontal velocity= 0.2m per
time step ∀k, M = 26, N = 20, R = 10m. The plots are a function of
the fraction of LOS signals α. The proposed particle filtering algorithm is
compared against the local Maximum Likelihood algorithm.

where nt(km) ∼ N(0, σ2
LOS) i.i.d, εt(km) ∼ Exp(σ−1NLOS).

We assume the fraction of the readings that are LOS to be α.
The evolution of the zt(km) random variables is governed by
the probability law, p(zt(km) = 1|zt−1(km) = 0) = α

2 for
these simulations and the other values are taken so that the
stationary distribution is (α, 1 − α). The inertial navigation



system readings are assumed to be obtained under an additive
white gaussian noise model. Time steps are divided into units
of one for simplicity. We compare the performance of the
algorithm to a local genie aided Maximum Likelihood (ML)
algorithm. Here each vehicle, at every time instant, calculates
the local ML estimate of its location assuming that a genie
provides it with the exact locations of its neighbors.

The localization error cumulative density function is plotted
for different values of α in Fig 4(a). The x-axis is the set
of error values and y-axis is the cumulative density function.
One can see that even at low values of α = 5%, more
than 80% of the errors are less than 1.5m. The algorithm
performance is slightly better than ML algorithm. This is
not too surprising considering that particle filtering tries to
approximate MMSE which is the optimal solution for mean
squared loss function. Algorithms based on RANSAC were
found to have errors over 5m and are not discussed here.
The true and estimated vehicle trajectories are plotted in Fig
4(b). The estimated vehicle trajectory is generated by a simple
polynomial fit to all the estimated vehicle locations. Table 4(c)
shows the probability of detection (Pd) of the hidden zt(km)
states (fraction of the times LOS states are detected correctly)
and the mean estimation error. The strength of the algorithm
is in exploiting the large pool of measurements efficiently
where algorithms like RANSAC fail. Table 4(d) shows the
localization error performance as a function of the number
of anchor nodes and mobile nodes in the system. One can
observe a law of diminishing returns as the number of anchor
nodes increases. Another interesting observation is that the
percentage improvement in the localization performance when
the number of mobile nodes, that act like “pseudo-anchors”,
is the similar to that of adding more anchors. A theoretical
exploration of this phenomenon is currently under progress.

We shall now discuss some practical aspects of implement-
ing this scheme. The communication between the nodes can
be carried over the Dedicated Short Range Communications
(DSRC) band, that has been allocated by the Federal Com-
munications Commission (FCC) for Intelligent Transportation
Systems. IEEE 802.11p can be used for medium access.
This is essentially a CSMA protocol specialized for vehicular
networks. Whenever a node receives a 802.11p packet from
some other node, it can estimate the time delay of arrival that
translates to a distance measurement used for localization.
The location estimate sent by one node to the other node
can be sent as part of the 802.11p packet. The parameters
of the distributions and the fraction α can be estimated using
an Expectation Maximization (EM) algorithm at every step.
Each vehicle has an average of 8 other vehicles and 4 anchor
nodes in its communication radius which is quite a reasonable
assumption. In practice, the anchors usually have a larger range
of communication and the anchor density required would be
lesser than that used in the simulations. We assume that the
computational load in updating the particles is manageable by
present day vehicles that have a reasonably high processing
power.

VI. CONCLUSION AND FUTURE WORK

In this work we explored the application of particle filtering
to get estimates of vehicle locations in a highly NLOS
environment. We derived weight update equations for the
NLOS setting and simulation results show that reasonably
good accuracies in positioning is feasible. Future work in-
cludes carrying out more realistic simulations using traffic and
network simulators. The approximation in the graphical model
could break down above a certain noise threshold and below
a certain anchor density, and the algorithm could potentially
diverge. A theoretical understanding of when the algorithm
diverges is another research direction, though we believe this
to be a hard problem. A theoretical exploration of the effect
of increased anchor and mobile nodes is under progress.
Integrating other sensing modalities into the algorithm is a
future research direction.
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