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Abstract—We consider distributed storage over two untrusted
networks, whereby coding is used as a means to achieve a
prescribed level of confidentiality. The key idea is to exploit the
algebraic structure of the Vandermonde matrix to mix the input
blocks, before they are stored in different locations. The proposed
scheme ensures that eavesdroppers with access to only one of
the networks are unable to decode any symbol even if they are
capable of guessing some of the missing blocks. Information-
theoretic techniques allow us to quantify the achievable level
of confidentiality. Moreover, the proposed approach is shown to
offer low complexity and optimal rate.

I. INTRODUCTION

Suppose that a user wants to store and share a large file in
a distributed fashion yet only has access to multiple networks
that he does not trust. A natural question arises: is it possible to
store the file in such a way that attackers who only have access
to a subset of these networks are unable to reconstruct the file
or any of its parts? A standard cryptographic solution would
be to encrypt the file using a secret key and then partition the
resulting cryptogram into multiple packets that can be spread
over the various untrusted networks. Such an approach has two
obvious drawbacks: (a) computational security does not yet
offer provably secure cryptographic primitives, (b) the secret
key must be shared with any user who has the right to retrieve
the file.

We propose a different technique that relies on coding
rather than classical cryptography. Although several contri-
butions have uncovered the advantages of coding techniques
in ensuring superior resiliency and flexibility in distributed
storage systems [1], few have addressed its potential to pro-
vide data confidentiality in untrusted networks. Inspired by
recent advances in network coding [2] [3], we show that
the aforementioned goal can be achieved without requiring
more bandwidth or storage space, while ensuring quantifiable
confidentiality levels and dispensing with the need for secret
key distribution.

Consider the example shown in Figure 1. The aforemen-
tioned large file is to be stored in a distributed fashion in two
untrusted networks (represented by clouds). Eavesdroppers E1

and E2, who are assumed not to collude, only have access to
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Fig. 1. Example of distributed storage over two untrusted networks.

one of the networks yet can observe all of the traffic carried
in each of them. To ensure that eavesdroppers E1 and E2

are unable to reconstruct the file or any of its parts, our user
splits the file into n blocks bi and encodes each block in
a special way. The coding scheme exploits the structure of
the Vandermonde matrix, which allows the user to mix the
original data in such a way that an attacker is provably unable
to recover any individual information symbol — even if it is
able to guess part of the file. The next step is to pick n − k
code blocks ci and store them in the first network (shown
on the left). The coding scheme ensures that these n − k
blocks are protected by means of the other k blocks that are
stored in the other network (shown on the right). In turn, these
remaining k blocks are protected by the n − k blocks that
are only available in the first network. The locations of the
blocks can be shared publicly with authorized users who have
access to both networks. Since the eavesdroppers E1 and E2

only have access to one of the networks albeit different ones,
the properties of the Vandermonde matrix prevent them from
acquiring data contained in the original file.

Our main contribution is thus a distributed storage scheme
that exploits the algebraic structure of the Vandermonde matrix
to provide the following guarantees:

• Rate Optimality: Provided that the original data is com-
pressed in an optimal way, the proposed scheme does not
incur on any redundant communication or storage, as is
the case with any reference system that requires secret
key distribution.

• Low Complexity: We demonstrate that the proposed
scheme is efficient, in particular in scenarios where
network coding is already employed.

• Widely Applicable: The coding scheme is not specific to
any particular network topology. Furthermore, it can be
applied on top of any network protocol, including those
in which network nodes introduce redundancy (such as
redundant network coding [2] or fountain codes [4]). This
is shown not to decrease the security of the system.

• Quantifiable Level of Security: Although our scheme does



not yield perfect secrecy (or unconditional security), we
are able to use information-theoretic security arguments
to show that the eavesdropper with access to a subset
of the coded packets is not able to recover any symbol
individually, as introduced in [5]. The proposed system
includes a tunable security parameter k which ensures
that the encoding scheme is such that no additional
symbols are obtained from the publicly known system
of equations, even if an eavesdropper observing n − k
coded blocks is able to guess up to k− 1 of the original
n blocks.

The rest of the paper is organized as follows. Section II
provides a detailed description of relevant related work. The
basic methodology is scrutinized in Section III, which explains
the coding and the recovering process of the proposed scheme
under the adopted intruder model. Section IV then elaborates
on the consequences of having compromised coded informa-
tion and proves that the attacker with access to the untrusted
network is indeed ignorant about the original information.
After some notes on the system aspects described in Section
V, the paper concludes with Section VI.

II. RELATED WORK

Coding techniques were used in [6] to achieve strong
secrecy over a channel, in which an eavesdropper acquires a
fraction of the transmitted symbols. It was shown that a coset
scheme achieves the maximum secret rate albeit at the expense
of data rate and constraints on the field size. The maximum
number of symbols that can be securely communicated is
upper bounded by n − γ, where n is the total number of
symbols transmitted and γ is the number of symbols observed
by the eavesdropper. A modified version of the wiretap channel
II is considered in [7], where the number of erasures at the
eavesdropper is fixed. The positions are chosen at random and
a coding scheme based on nested MDS codes is shown to
achieve the secrecy capacity. A similar problem is considered
in [8] in the context of coded networks. The goal is to build
a network code that achieves information-theoretic security
under the premise that an eavesdropper only has access to a
subset of edges in the network that is smaller than the capacity
of the network. New bounds for this problem are derived in [9]
by modeling the problem as a network generalization of the
wiretap channel of type II [6].

A quantifiable security criterion is introduced in [5] to
measure the attainable level of secrecy in a multicast scenario,
in which an attacker only observes linear combinations of
data packets and not the data packets themselves. The main
contribution of [5] is a topology dependent scheme in which
an encoding matrix at the source is chosen such that an
eavesdropper with access to some packets cannot obtain any
information about the original plaintext. Although the mutual
information between the original information and the coded
packets is different from zero, the mutual information mea-
sured between a single coded symbol and the original plaintext
is shown to be zero. The contribution in [3] generalizes
this problem by proposing a fixed outer coding scheme that

achieves secure capacity and is universal in the sense that any
feasible network code can be used internally without making
any assumption about the network. Our problem setup can
be viewed as a wiretap channel II in which the user controls
which blocks can be intercepted by the eavesdropper. In the
following we adopt the security criterion in [5].

As an example of an application, secure distributed storage
in sensor networks is considered in [10]. The main idea is
to distribute parts of data by different sensors in such a way
that each partition is implicitly secure, i.e., reconstruction of
the data requires access to a threshold number of sensors that
store the data partition. The scheme uses the 3 and 9 roots of
a number in a cubic transformation to provide a low complex-
ity confidentiality solution. A technique to hide information
without the presence of an encryption key is presented in [11].
The hidden information may be used for validation of shares
at the time of secrets reconstruction. The proposed protocol
provides methods to share large secrets by dividing the secret
in smaller pieces and recursively hiding them in the shares.
The problem of determining the secrecy capacity of distributed
storage systems against a passive eavesdropper observing a
fixed number of nodes is considered in [12]. The problem
described in [12] can be translated in an instance of [7] with
the diference that in [12] only certain erasure patterns can
occur.

III. PROBLEM SETUP

We now introduce the notation used in the remainder
of the paper. Vectors are represented by lowercase bold-
face and matrices are represented by capital boldface letters,
diag (x1, x2, . . . , xn) denotes n × n diagonal matrix with
x1, x2, . . . , xn in the diagonal, and In denotes a n×n identity
matrix. The realization of a random variable x is denoted by
x̃. For compactness, we write row i of a matrix M as Mi. The
set of rows ranging from i to l of matrix M is represented as
Mi:l, the subvector formed by the positions ranging from i to
l of a vector v is represented as vi:l and a subset containing
any k components of v is denoted by v(k).

Let A (whose elements are [Ai,j ] = (ai−1
j )) be a n × n

Vandermonde matrix used for performing coding at the source,
where all the coefficients ai are distributed over all non-
zero elements of a finite field Fq , q = 2u > n, and are
different from each other, i.e.,∀i, l ∈ {1, · · · , n}, i 6= l ⇒
ai 6= al. Let the original data, or plaintext, be a vector
b = (b1, b2, . . . , bn)T whose components bi, i = 1, . . . , n are
independent random variables uniformly distributed over Fq ,
with entropy H(bi) = H(b). Each encoded data vector is rep-

resented by c = (c1, . . . , cn)T = Ab, where ci =
n∑

j=1

ai−1
j bj .

To recover the original information, a legitimate user re-
ceives n − k contiguous components of c from an untrusted
network. The remaining k components of c (or alternatively, k
linear combinations of b that are independent from the com-
binations present in the first untrusted network) are obtained
from the remaining network. Matrix A is public. To obtain b,
the user performs A−1c.



We consider that during any observation, the ultimate goal
of an adversary is to discover the original data. We assume the
threat posed by a passive attacker that (i) is able to listen to all
the exchanged traffic over the untrusted network and (ii) has
full information about the encoding and decoding schemes, as
well as knowledge of matrix A.

To explain the security metric, we first trace a parallel
between our scheme and a classical cryptographic framework.
The original data b is first encoded with matrix A, and then
divided in two different ciphertexts A1:n−k · b = c1:n−k

and An−k+1:n · b = cn−k+1:n. The first ciphertext can be
viewed as the result of the encryption of a subset of n − k
components of vector b (i.e., b(n−k)) using a key which is
a function f(b(k)) of the remaining b(k) = b(n) \ b(n−k)

original symbols. The interpretation for the second ciphertext
is similar, except that in this case, a key of size n − k is
protecting k symbols.

We adopt an information-theoretic secrecy criterion inspired
by [5]. Let X be the vector of original data of size n and Y
be an (n− k)× 1 ciphertext vector.

Definition 1 (Secrecy Criterion (from [5])): The
ciphertext Y is considered to be secure with respect to m
components of X if the mutual information between Y and
any subset of X of size m is zero, that is, I(Y;X(m)) = 0.
That means that any individual symbol is resistant up to
m− 1 guesses [3].

The goal of the problem is to prove that the proposed
scheme satisfies the secrecy criterion in Definition 1, while
ensuring that a legitimate user is able to recover the complete
information.

IV. SECURITY ANALYSIS

We now perform the security analysis of our scheme. First,
we show in Lemma 1 that an eavesdropper observing any n−k
contiguous components of c is unable to recover any isolated
symbol, even if it guesses k − 1 symbols. Then, we perform
an information-theoretic analysis of the scheme in Theorem 1.

Lemma 1: Let y be the number of symbols that an attacker
observing cp+1:p+n−k could guess, where 0 ≤ p ≤ k. Then,
if y ≤ k − 1, the attacker is unable to recover any additional
symbols.

Proof: First, assume that an eavesdropper observes the
first n − k rows of c. Then, it obtains the system of linear
equations A1:n−k · b = c1:n−k to solve, where

A1:n−k =

 a0
1 a0

2 . . . a0
n

...
...

. . .
...

an−k−1
1 an−k−1

2 . . . an−k−1
n

 .
Now, suppose that the attacker is able to guess k − 1

symbols. Note this is the worst-case scenario – if an attacker
cannot obtain additional symbols by guessing any x symbols,
then it cannot recover additional symbols by guessing any
x − 1, . . . , 1 symbols as well. Hence, the cases in which the
attacker guesses 0 . . . k − 2 symbols are encompassed in the
case that we analyze now. For each one of the

(
n

k−1

)
possible

combinations resulting from k−1 guesses, the attacker obtains
a sub-matrix V of size (n−k)× (n−k+1), which preserves
the structure of the Vandermonde matrix. Thus, after guessing
k − 1 symbols, the system observed by an eavesdropper
A1:n−k ·b = c1:n−k can be rewritten as V ·b′ = c′1:n−k, with
k − 1 less unknowns. Without loss of generality, we assume
that the attacker guesses the last k − 1 symbols of vector b
(from component n− k + 2 to n):

V =

 a0
1 a0

2 . . . a0
n−k+1

...
...

. . .
...

an−k−1
1 an−k−1

2 . . . an−k−1
n−k+1

 .
Then, we take the reduced row echelon form of V:

RREF(V) =

 In−k

d1

...
dn−k

 ,
where

dm =
n−k∏
i=1
i 6=m

(ai + an−k+1)

/
n−k∏
i=1
i 6=m

(ai + am) . (1)

The result in (1) follows from the fact that a vector of
the form d = [d1, d2, . . . , dn−k,−1]T lies in the nullspace
of RREF(V). Hence it also lies in the nullspace of V. If
∀m ∈ {1, · · · , n − k}, dm is given by (1) then the condition
that Vd = 0 is satisfied. The reduced row echelon form is
unique and if the attacker was able to recover any symbol, the
reduced row echelon form of V would include at least one
row of the form [0, . . . 0, 1, 0 . . . , 0]. We now show that this is
impossible. Each element aj in (1) is different from zero and
ai 6= aj∀i, j. Since the characteristic of the field is 2, di could
only be 0 if ai = an−k+1, thus di 6= 0,∀i. It follows that an
eavesdropper is unable to recover any other original symbols
if it can guess up to k−1 symbols. Suppose now that, instead
of having access to the first n− k rows of c, an eavesdropper
observes any n − k contiguous components of c, obtaining
the system of linear equations Ap+1:p+n−k ·b = cp+1:p+n−k,
where 0 ≤ p ≤ k and

Ap+1:p+n−k =

 ap
1 ap

2 . . . ap
n

...
...

. . .
...

ap+n−k−1
1 ap+n−k−1

2 . . . ap+n−k−1
n

 .
Once again, we can consider, without loss of generality,

that the attacker is able to guess the last k − 1 components
of vector b. Then, he can eliminate the last k − 1 columns of
matrix Ap+1:p+n−k, obtaining matrix

V′ =

 ap
1 ap

2 . . . ap
n−k+1

...
...

. . .
...

ap+n−k−1
1 ap+n−k−1

2 . . . ap+n−k−1
n−k+1

 ,
which can be written as a function of matrix V as V′ = VE,
where E is a matrix of size (n− k + 1)× (n− k + 1), with



the following structure:

E = diag
(
ap
1, a

p
2, . . . , a

p
n−k, a

p
n−k+1

)
.

Consider a matrix Q = Q1Q2 such that RREF(V′) =
QV′ = QVE and RREF(V) = Q2V. Thus, RREF(V′) =
Q1RREF(V)E. Let rj be the jth row of matrix RREF(V)E.
From the definition of matrix E, we can easily show that
by only applying the following elementary row operation
rj = rj/a

p
j , j = 1, . . . , n − k, we obtain its reduced row

echelon form

RREF(V′) =

 In−k

ap
n−k+1d1

ap
1
...

ap
n−k+1dn−k

ap
n−k

 .
Since ∀j ∈ {1, . . . , n−k} both ap

j and dj are non-zero and

since ap
n−k+1 is also non-zero, we have

ap
n−k+1dj

ap
j
6=0.

Theorem 1: The mutual information between any subset of
m components of vector b (i.e., b(m)) and any contiguous
n− k components of c is given by:

I(b(m); cp+1:p+n−k) =
{

0, if m ≤ k
(m− k)H(b), if m > k

(2)

Proof: Without loss of generality, we pick the first n− k
rows of c. We also assume that matrix A is of public
knowledge, so the only unknowns for the eavesdropper are
the components of b. First, we have that

I(b(m); c1:n−k) = H(b(m))−H(b(m)|c1:n−k).

We are now ready to analyze H(b(m)|c1:n−k) by resorting
to the chain rule for entropy. Without loss of generality we
assume that the subset of m components of b is composed by
the first m components of b. Then:

H(b(m)|c1:n−k) = H(b1, · · · , bm|c1:n−k)

=
m∑

j=1

H(bj |c1:n−k, b̃j−1, · · · , b̃1) (3)

where conditioning on b̃i means conditioning on the random
variable bi being equal to b̃i. Let us first analyze the case in
which m ≤ k. If j = k, we have the term

H(bk|c1:n−k, b̃1, · · · , b̃k−1). (4)

The conditional part of (4) forms the following system of
equations: a0

k · · · a0
n

...
. . .

...
an−k−1

k · · · an−k−1
n


 bk

...
bn

 =

 z1
...

zn−k

 , (5)

where zi = ci − (ai−1
1 b̃1 + · · · + ai−1

k−1b̃k−1). Putting the
system in the reduced row echelon form, the i-th equation,
i = 1, . . . , n − k, is now of the type yi = bk+i−1 + d′ibn,
where each yi results from the elementary row operations to

form the RREF and d′1 · · · d′n−k can be obtained via Lemma 1.
Now, we have that

H(bk|y1, · · · , yn−k)=H(bk|y1)=H(bk|bk + d′1bn)=H(bk) (6)

since bi and bj are independent for i 6= j and bk is uniformly
distributed in Fq . Therefore, bk + d′1bn is independent of bk.
For j < k,

H(bj |c1:n−k, b̃1, · · · , b̃j−1) ≥ H(bk|c1:n−k, b̃1, · · · , b̃k−1).
(7)

Since the RHS of (7) is equal to H(b), equality holds. Hence,
H(bj |c1:n−k, b̃1, · · · , b̃j−1) = H(b) for all j < k. For m > k,
the first k terms are equal to H(b) and the last (m− k) terms
of equation (3) are equal to zero, since the attacker can form
a system with more equations than unknowns. It follows that:

H(b(m)|c1:n−k) =
{
mH(b) if m ≤ k
kH(b) if m > k

(8)

Since bj , j = 1, . . . ,m are i.i.d. random variables, then
H(b1, . . . , bm) = mH(b) and (2) holds.

Lemma 1 shows that an attacker observing n−k contiguous
positions of a vector encoded with matrix A is unable to
perform Gaussian elimination on the matrix to recover any
symbol even if he uses up to k−1 guesses. It is also important
to note that the size of the field needs to be strictly greater
than the size of the matrix n. Moreover, it is easy to see from
Theorem 1 that any linear combination of any contiguous n−k
components of c maintains the property of being secure against
up to k−1 guesses. Thus, any network coding method can be
employed in the untrusted network, while still preserving the
security properties of our scheme.

V. SYSTEM ASPECTS

We now discuss several system aspects pertaining our
security scheme. We analyze the computational complexity
of our scheme and then compare it to other weak security
strategies.

A. Computational Complexity

The use of a Vandermonde matrix reduces the computational
complexity of inversion and multiplication by vectors. Note
that Vandermonde matrices are parity check matrices for MDS
codes, and in that context its structure was used to feature
lower complexity matrix and matrix-vector multiplication [13].
For the purposes of our analysis, we consider the algorithms
in [14]. The complexity is measured in algebraic operations.
Inversion takes O(n2) operations for a n× n matrix. Matrix-
vector multiplication takes O(n log2 n) operations. By taking
these benchmarks into account, the computational overhead
at the source is O(n2). The generation of the first two rows
of the Vandermonde matrix can be deemed to be negligible;
then, generating the remainder of the matrix takes O(n2)
multiplications in Fq\{0}. The source then generates the coded
vectors by multiplying the matrix and the plaintext, which
takes O(n log2 n) operations. At the sink, in the worst case
scenario in which all packets are encoded, the complexity is



O(n2) multiplication operations. In applications that use net-
work coding, the proposed scheme does not add to the overall
complexity of the system, because Gaussian elimination is
already required for the retrieval of the stored data.

B. Comparison with Competing Coding Techniques

The work in [5] establishes the necessary conditions to
achieve the defined secrecy criterion, given the topology and
the used network code. However, the techniques to find a
matrix that satisfies such requirements are arguably too high
in terms of computational complexity. The scheme presented
in [3] is independent of both the topology and the network
code used, but it suffers from similar drawbacks as [5] in terms
of finding such a matrix for an arbitrary number of guesses.
As seen above, our approach has some practical advantages
over the existing ones.

The work in [15] derives bounds for the probability of de-
coding an individual symbol in a network where Random Lin-
ear Network Coding (RLNC, i.e., random mixings of packets
at the intermediate nodes of the network) is used. It is shown
that RLNC increases the security for a threat model in which
the intermediate nodes comply with the protocol however may
try to decode as much as possible. Although randomness does
not seem sufficient to provide confidentiality with probability
one against partial decoding, our coding scheme accomplishes
this goal while keeping low requirements on the amount of
resources needed. Finally, our model is the general case of the
physical access attack performed on the node used to bootstrap
the network considered in [16], from which the adversary
obtains n − 1 coded blocks containing n original blocks in
F2. Thus, in our framework, the compromised central node is
an untrusted network storing n− k coded symbols, where the
security parameter is k = 1.

VI. CONCLUSION

We proposed an encoding scheme for achieving confiden-
tiality based on the structure of the Vandermonde matrix.
The scheme relies on part of the original information to
protect the other part and vice versa. We showed that the
proposed approach offers low computational complexity and
is easily applicable to distributed storage scenarios with two
untrusted networks. Specifically, our theoretical results prove
that any privacy attack based on k blocks (available in one
network) requires the eavesdropper to guess the remaining
n − k blocks (stored in the other network). This is true
even if the eavesdropper is interested in acquiring only one
information symbol.

In addition, the scheme allows us to share the data with
any number of valid users. As in other network coding
schemes, if one or more users have access to only one of
the untrusted networks (storing k blocks) but already possess
n − k blocks that are linearly independent of the k stored
blocks, the presented distributed storage scheme allows for
perfect reconstruction of the original file even if the linear
combinations available to the various users are different.

Finally, it is worth noting that the proposed scheme can
be used in typical scenarios where a single user wishes to
store some file in an untrusted network while keeping part
of the data in his own local machine. In this case, the user
can use the parameter k to tweak simultaneously the level of
security and the amount of data that he keeps. The structure
of the Vandermonde matrix assures that any k distinct blocks
available locally are linearly independent of the remaining n−
k blocks that are stored in the untrusted network.

Our ongoing work targets the extension of our distributed
storage scheme from two to multiple untrusted networks, as
well as the adoption of a stronger threat model involving
Byzantine attackers.
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