
ar
X

iv
:1

01
1.

60
17

v1
  [

cs
.IT

]  
28

 N
ov

 2
01

0

A Selection Region Based Routing Protocol for
Random Mobile ad hoc Networks with Directional

Antennas
Di Li, Changchuan Yin, and Changhai Chen

Key Laboratory of Universal Wireless Communications, Ministry of Education
Beijing University of Posts and Telecommunications, China, 100876

E-mail: dean.lidi@gmail.com, ccyin@bupt.edu.cn, chenchanghai@gmail.com

Abstract—In this paper, we propose a selection region based
multihop routing protocol with directional antennas for wi reless
mobile ad hoc networks, where the selection region is definedby
two parameters: a reference distance and the beamwidth of the
directional antenna. At each hop, we choose the nearest nodeto
the transmitter within the selection region as the next hop relay.
By maximizing the expected density of progress, we present an
upper bound for the optimum reference distance and derive the
relationship between the optimum reference distance and the
optimum transmission probability. Compared with the results
with routing strategy using omnidirectional antennas in [1], we
find interestingly that the optimum transmission probabili ty is a
constant independent of the beamwidth, the expected density of
progress with the new routing strategy is increased significantly,
and the computational complexity involved in the relay selection
is also greatly reduced.1

I. Introduction

Determining the capacity region of wireless networks has
been an open problem for more than half a decade. In the
seminal work [2], Gupta and Kumar proved that the transport
capacity for wireless ad hoc networks, defined as the bit-meters
pumped every second over a unit area of the network, scales
asΘ(

√
n) in an arbitrary network, wheren is node density.

In [3], Weber et al. derived the upper and lower bounds on
the transmission capacity of spread-spectrum wireless ad hoc
networks, where the transmission capacity is defined as the
product between the maximum density of successful trans-
missions and the corresponding data rate, under a constraint
on the outage probability. All these works address the single
hop transmission. Recently, Baccelliet al. [4] proposed a
spatial reuse based multihop routing protocol, and derivedthe
optimum transmission probability. In their protocol, at each
hop the transmitter selects the best relay to maximize the
spatial density of progress. By assuming each transmitter has
a sufficient backlog of packets, Weberet al. in [5] proposed
the longest-edge based routing protocol where each transmitter
selects a relay that makes the transmission edge longest. In[6],
Andrewset al. defined the random access transport capacity
with the maximum allowable total number of transmissions
per packet along multiple hops. In [1], Liet al. proposed a

1This work is partially supported by the NSFC grants 60972073, 60971082,
60871042, and 60872049, the National Great Science SpecificProject under
grants 2009ZX03003-011 and 2010ZX03001-003.

selection region based multihop routing protocol to guarantee
the message transmitted towards the final destination, where
the selection region is defined by two parameters: a selection
angle and a reference distance. By maximizing the expected
density of progress, the author derived an upper bound on the
optimum reference distance, and the relationship between the
optimum reference distance and the optimum selection angle.

The above literatures only considered the wireless networks
with omnidirectional antennas. In [7], Yiet al. investigated
the wireless networks’ capacity using directional antennas,
extending the network capacity with omnidirectional antennas
in [2] to that with directional antennas. In [8], Spyropoulos
et al. discussed the network capacity gain one can achieve by
using directional antennas over that by using omnidirectional
antennas and how these bounds are affected by important
antenna parameters like gain and beamwidth. In [9], Daiet
al. combined the multiple channels and directional antennas
together and shown that they improve the network capacity
due to the increased network connectivity and reduced inter-
ference. However, previous literature usually focuses on the
scaling laws of the network capacity.

In this paper, we extend the former work in [1] with omnidi-
rectional antennas to that with directional antennas, and derive
the close-formed expected density of progress of the network,
which is defined as the number of packets progress toward
their destinations in a unit area of the network. Compared with
the routing strategy using omnidirectional antennas in [1], due
to the directional antennas, the selection region based routing
is implemented much easier and the calculation burden for
nodes to select the relay is also decreased.

The rest of the paper is organized as follows. Directional
antenna model, network model and routing strategy are de-
scribed in Section II. The optimization for selection region
and transmission probability are presented in Section III.
Numerical results and interpretations are given in SectionIV.
Finally, Section V summarizes our conclusions.

II. NetworkModel and Routing Protocol

In this section, we first present the simplified directional an-
tenna model, then define the network model and the selection
region based routing protocol using directional antennas.

http://arxiv.org/abs/1011.6017v1


A. Directional Antenna Model

In the study of wireless networks, the antenna model is often
grouped into omnidirectional and directional. Omnidirectional
antenna radiates signals equally well in all directions, while
directional antenna has gain in the direction of the main lobe
at which it is pointing. Thus, with directional antennas the
interference can be decreased and nodes located in each others
neighborhood may transmit simultaneously, which increase
spatial reuse of the channel. To simplify the analysis, we model
the power pattern of the directional antenna as a circular sector
with angleϕ, whereϕ is the beamwidth of the antenna, see
Fig. 1. In the following analysis, we assume the transmitters
with directional antenna and the receivers with omnidirectional
antenna, which is called Directional Transmission and Omni-
directional Reception (DTOR) as mentioned in [7].

B. Network Model

Assume nodes in the network follow a homogenous Poisson
Point Process (PPP) with densityλ, and slotted ALOHA as
the medium access control (MAC) protocol. During each time
slot a node chooses to transmit data with probabilityp, and
to receive with probability 1− p. Therefore, at a certain time
instant, the transmitters follow a homogeneous PPP (ΠT x) with
density pλ, while the receivers follow another homogenous
PPP (ΠRx) with density (1− p)λ. At each hop in the multihop
transmissions, a transmitter tries to find a receiver inΠRx as
relay. We consider the nodes are mobile, to eliminate the
spatial correlation, which is also discussed in [4]. We also
assume that all transmitters use a fixed transmission power
ρ and the wireless channel combines the large-scale path-
loss and small-scale Rayleigh fading. The normalized channel
power gain is given by

G(d) =
γ

dα
, (1)

whereγ denotes the small-scale fading, drawn from an expo-
nential distribution of mean1

µ
with probability density function

(PDF) fγ(x) = µexp(−µx), andα > 2 is the path-loss exponent.
For the transmission from transmitteri to receiver j, an

attempted transmission is successful if the received signal-to-
interference-plus-noise ratio (SINR) at the receiverj is above a
thresholdβ. Thus the successful transmission probability over
this hop with distancedi j is given by

Ps = Pr













ργ0d−αi j
∑

k∈ΠT X\{i} ργidk j
−α + η

> β













, (2)

where i ∈ ΠT x, j ∈ ΠRx. Since we use directional antenna
with beamwidthϕ for transmission, the interfers seen by
a specific receiver follow a homogeneous PPP (ΠT x′) with
densityp ϕ2πλ. Thus

∑

k∈ΠT x′ \{i} ργidk j
−α is the sum interference

seen at the receiverj, wheredk j is the distance from interferer
k to receiver j, and η is the average power of ambient
thermal noise. In the sequel we approximateη = 0, which
is reasonable in interference-limited ad hoc networks. From
[4], the successful transmission probability from transmitter i
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Fig. 1. Selection region with the directional antenna

to receiverj is derived as

Ps = exp
(

p
ϕ

2π
λtdi j

2
)

, (3)

where

t =
2π2/α

sin(2π/α)
β2/α. (3a)

C. Routing Strategy with Directional Antennas

Considering a typical multihop transmission scenario, where
a data source sends information to its final destination that
is located far away, and it is impossible to complete this
operation over a single hop. Thus a multihop transmission is
needed. In multihop wireless networks, if we assume position-
determined relays exist to ensure each hop shares the same
distance that aggregates to form the path from the data source
to its final destination, the optimum transmission distanceat
each hop is derived in [6]. In this case, the transmission
distance is used to determine the location of a relay. In a
practical case, nodes are usually randomly distributed, thus
relays may not be located just over the optimum transmission
distance. To guarantee a relay existing at a proper position, we
use the selection region based multihop routing protocol with
directional antennas. For each transmitter along the routeto the
final destination, the selection region includes two parameters:
the beamwidthϕ and a reference distancerm, as shown in
Fig. 1, where the selection region is defined as the region
that is located within angleϕ and outside of the distance
rm. Here, the transmitter is located in the circle centerO,
∠BOC = ∠AOC = ϕ/2, and

−−→
OC points to the direction of

the final destination. At each hop, the transmitter selects the
nearest receiver located in the selection region as the relay.

Compared with the routing strategy using omnidirectional
antennas in [1], the selection region based routing with direc-
tional antennas can be implemented much easier. Since the
transmitters are equipped with directional antennas, onlythe
receivers within the angleϕ can receive the radiated signals
from the transmitters, thus the process to delimit the potential
receivers within the angleϕ do not need any calculation.
However, for the routing protocol with omnidirectional an-
tennas, to determine if a receiver is located within the angle
ϕ or not needs a complicated calculation, e.g., calculating the
angleφ between the line from the transmitter towards the final
destination and the edge from the transmitter and the potential
receivers, and making comparisons between theseφ with ϕ to



decide which nodes are located within the selection region.

III. Reference Distance and Transmission Probability
Optimization

In this section, we derive the optimum values of the
transmission probabilityp and the reference distancerm for
different beamwidthϕ by maximizing the expected density of
progress.

A. Upper Bound for Optimum Reference Distance

As in [4], the density of progress is defined as

D = pλ · Ps · d cosφ,

where Ps is the successful transmission probability defined
in (2), d cosφ is the projection of the transmission distance
d along the line connecting the transmitter and the final
destination. Since the receivers follow a homogeneous PPP
with densityλ(1− p), the cumulative distribution function of
the transmission distanced is given as

Pr(d ≤ r) = 1− exp
[

−λ(1− p)
ϕ

2
(r2 − r2

m)
]

, rm ≤ r < ∞. (4)

Since φ is uniformly distributed over [−ϕ/2, ϕ/2], which is
independent ofd, the expected density of progress is given by

E[D] = pλ2

∞
∫

rm

ϕ

2
∫

− ϕ2

e−p ϕ2π λtx
2
x cosφ fd(x)dφdx

= λ2p(1− p)Γ

(

3
2
, kr2

m

)

k−3/2 exp
(

λ(1− p)
ϕ

2
r2

m

)

sin
(

ϕ

2

)

,

(5)

where fd(x) is the probability density function ofd obtained
from (4), k = λϕ

2 ( pt
π
+ (1 − p)), t is defined in (3a), and

Γ
(

3
2 , kr2

m

)

=

∞
∫

kr2
m

e−t x
3
2−1dx is the incomplete Gamma function.

To optimize the objective function in (5) with respect to the
beamwidthϕ, let us first assume thatp is a constant, and try to
derive the optimum value ofrm. For brevity, in the following
discussion, we write the objective function asE. Setting the
derivative with respect torm as 0, after some calculations we
have

dE
drm
= exp

(

λ(1− p)
ϕ

2
r2

m

)

·
















Γ

(

3
2
, kr2

m

)

λ(1− p)ϕrm +
dΓ

(

3
2 , kr2

m

)

drm

















= 0, (6)

whereΓ
(

3
2 , kr2

m

)

is calculated as

Γ

(

3
2
, kr2

m

)

= Γ

(

3
2

)

+
√

krm exp
(

−kr2
m

)

−
√
π

2
er f

(√
krm

)

. (7)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Beamwidth  (unit:π)

O
pt

im
um

 r
ef

er
en

ce
 d

is
ta

nc
e

 

 
upper bound 
simulation

Fig. 2. Numerical results and the analytical upper bound forthe optimum
reference distance

Therefore,

dΓ
(

3
2 , kr2

m

)

drm
=
√

k exp
(

−kr2
m

) (

1− 2kr2
m

)

−
√

k exp
(

−kr2
m

)

= −2k3/2r2
m exp

(

−kr2
m

)

. (8)

Applying (8) to (6), we obtain

Γ

(

3
2
, kr2

m

)

λ (1− p)ϕrm − 2k3/2r2
m exp

(

−kr2
m

)

= 0. (9)

Since it is difficult to analytically derive the exact solution
for rm from (9), here we present an upper bound forrm. Since

Γ

(

3
2
, kr2

m

)

>
1
2

[

Γ
(

1, kr2
m

)

+ Γ
(

2, kr2
m

)]

=
1
2

exp
(

−kr2
m

) (

2+ kr2
m

)

, (10)

using (10) in (9), we have

λ(1− p)kϕr2
m − 4k3/2rm + λ(1− p)ϕ > 0. (11)

Therefore,

rm <
2k3/2 −

√

4k3 − 2k[λ(1− p)ϕ]2

kλ(1− p)ϕ
. (12)

In Fig. 2, we compare the upper bound of the optimumrm

with the numerical results for different beamwidthϕ, when
p = 0.1.

B. Jointly Optimizing the Reference Distance and the Trans-
mission Probability

Now, let us maximize the objective function by jointly
optimizing rm and p, for different beamwidthϕ.

Rewrite (5) as

E = λ2p(1−p) exp
(

− ϕ
2π
λptr2

m

)

Γ

(

3
2
, kr2

m

)

exp
(

kr2
m

)

k−3/2 sin
(

ϕ

2

)

.

For brevity, we denote exp(kr2
m) as e andΓ

(

3
2 , kr2

m

)

as Γ.



With partial derivatives, we have

∂E
∂rm
=λ2p(1− p) sin

(

ϕ

2

)

k−3/2 exp
(

− ϕ
2π
λptr2

m

)

·
[

−ϕ
π
λptrmΓe + Γ

∂e
∂rm
+ e
∂Γ

∂rm

]

= 0, (13)

This holds only if

Γ
∂e
∂rm
+ e
∂Γ

∂rm
=
ϕ

π
λptrmΓe. (14)

Sincek = ϕλ(t−π)
2π p + ϕλ2 , there is ∂k

∂p =
ϕλ(t−π)

2π . To simplify
things, we can then calculate the derivative with respect tok
instead ofp as

∂E
∂k
= λ2 sin

(

ϕ

2

)

·
{[

−
tr2

m

t − π −
3
2

k−1 +
1− 2p

p(1− p)
2π

ϕλ(t − π)

]

Γe +

(

Γ
∂e
∂k
+ e
∂Γ

∂k

)}

= 0.

(15)

By using the relationship12rm
∂e
∂rm
= k ∂e

∂k , 1
2rm

∂Γ
∂rm
= k ∂Γ

∂k , and
(14), we have

Γ
∂e
∂k
+ e
∂Γ

∂k
=

rm

2k

(

Γ
∂e
∂rm
+ e
∂Γ

∂rm

)

=
ϕ

2πk
λptr2

mΓe. (16)

Applying (16) to (15), the following holds:
[

−
tr2

m

t − π
− 3

2
k−1 +

1− 2p
p(1− p)

2π
ϕλ(t − π)

]

Γe +
ϕ

2kπ
λptr2

mΓe = 0.

(17)

After some calculation, we have

− ϕt
2(t − π)

λr2
m −

3
2
+

[p + π/(t − π)](1 − 2p)
p(1− p)

= 0. (18)

Given beamwidthϕ, we useϕ and the optimump to express
the optimumrm as

rm =
1
√
ϕλ

√

2[p(t − π) + π](1 − 2p)
p(1− p)t

− 3(t − π)
t
. (19)

Interestingly, by jointly optimizingrm and p, we find that
the optimum transmission probabilityp in (19) is a constant
independent of beamwidthϕ, which is different from the result
we had in [1]. The proof is shown in Appendix.

Since in (19) p is an constant,rm is only related to the
beamwidthϕ. Thus for a given beamwidthϕ, there is an
associated optimum reference distancerm for the transmitters
to select next hop relay node, as shown in Fig. 4. Also note
that in (19)rm scales asλ−1/2, which intuitively makes sense.
This is because as the node density increases, the interferers’
relative distance to the receiver decreases as

√
λ, it requires a

shorter transmission distance by the same amount to keep the
required SINR. By applying (19) in (5), we observe that (5)
becomesN

√
λ, whereN is a constant independent ofλ. This

means that the maximum expected density of progress scales
asΘ(

√
λ), which conforms to the results in [2] and [6].
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Fig. 3. The optimum transmission probabilityp vs. the beamwidthϕ
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Fig. 4. The optimum reference distance vs. the beamwidthϕ

IV. Numerical Results and Interpretations

In this section, we present some numerical results based on
the analysis in Section III. We choose the path-loss exponent
α as 3, the node densityλ as 1, and the outage thresholdβ as
10 dB.

In Fig. 3, we show the optimum transmission probabil-
ity obtained numerically vs. the beamwidthϕ. As shown
in the figure, the optimum transmission probabilityp is a
constant, which does not change with the beamwidthϕ, this
confirms our proof in Appendix. Thus, with the selection
region based routing with directional antennas, no matter
how much the directional antenna’s beamwidth we select, the
optimum transmission probability always keeps the same as
p = 0.12. However, when we use the routing strategy with
omnidirectional antenna, the optimum transmission probability
p changes with the selection angleϕ (see Fig. 5 in [1]).

In Fig. 4, we compare the optimum reference distancerm

obtained numerically with that derived in (19), wherep is
chosen optimally as the constant shown in Fig. 3. We see
that increment of the beamwidthϕ leads to the decease of the
optimum reference distance. This can be explained as follows:
Increment of the beamwidthϕ means more interference seen
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Fig. 5. Comparison of the expected density of progress for the routing
protocol using directional antennas with that using omnidirectional antennas

by a receiver; therefore, the optimum reference transmission
distance should be decreased to guarantee the quality of the
received signal and the transmission successful probability.

In Fig. 5, we compare the expected density of progress
of the routing protocol using directional antennas with that
using omnidirectional antennas in [1]. From the figure, we
see that the expected density of progress for selection region
based routing with directional antennas owns a great advantage
to that of the routing strategy with omnidirectional antennas.
This is because directional antennas can bring benefits such
as reduced interference and increased spatial reuse compared
with omnidirectional antennas.

V. Conclusions

We propose a selection region based multihop routing pro-
tocol for wireless ad hoc networks with directional antennas,
where the selection region is defined by the beamwidth and
the reference distance. By maximizing the expected density
of progress, we present some analytical results on how to
refine the selection region and the transmission probability.
Compared with the routing strategy with omnidirectional an-
tennas in [1], the routing protocol in this paper owns two
main advantages: higher expected density of progress and less
computational complexity when choosing the next hop relay.

Appendix

Here, we prove that when jointly optimizing the reference
distance rm and the transmission probabilityp, the opti-
mum transmission probabilityp is a constant independent of
beamwidthϕ.

Step 1: We consider the partial derivitive to the reference
distancerm, which is shown in (9), here rewrite as

Γ

(

3
2
, kr2

m

)

λ (1− p)ϕrm − 2k3/2r2
m exp

(

−kr2
m

)

= 0, (20)

wherek = λϕ2
(

pt
π
+ (1− p)

)

. Applying k to (20), we have

Γ

(

3
2
, kr2

m

)

(1− p)−
[ pt
π
+ (1− p)

] √

kr2
m exp

(

−kr2
m

)

= 0. (21)

Step 2: Now let us focus on the partial derivitive to the
transmission probabilityp. As mentioned in Section III-B, we
calculate the derivitive with respect tok instead, here rewrite
(15) as

∂E
∂k
= λ2 sin(

ϕ

2
)

·
{[

−
tr2

m

t − π
− 3

2
k−1 +

1− 2p
p(1− p)

2π
ϕλ(t − π)

]

Γe +

(

Γ
∂e
∂k
+ e
∂Γ

∂k

)}

= 0.

(22)

By using the same notation, defined in Section III-B, i.e.,
e = exp

(

kr2
m

)

andΓ = Γ
(

3
2 , kr2

m

)

, we have

∂e
∂k
= exp(kr2

m)r2
m. (23)

∂Γ

∂k
= −k

1
2 r3

m exp(kr2
m). (24)

Applying (23) and (24) to (22), we have
[

−
tkr2

m

t − π
− 3

2
+

1− 2p
p(1− p)

pt + π(1− p)
(t − π)

]

Γe

+ Γexp
(

kr2
m

)

kr2
m −

(

kr2
m

)
3
2
= 0. (25)

Step 3: Applying (19) to (21) and (25), we see that inkr2
m,

ϕ can be cancelled, thus (21) and (25) become two equations
that are independent ofϕ. Therefore, when jointly optimizing
rm and p, the optimump is a constant independent of the
beamwidthϕ, only related tot which is defined in (3a). And
the numerical value for the optimump is given in Fig. 3.
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