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Abstract—We devise an optimization framework for general- of ¢, the time-scale is long, so the scheduler provitieg-
ized proportional fairness (GPF) under different time scaes for  term ~-fairness among the rates. On the other hand, for high

amplify-and-forward (AF) relay networks. In GPF scheduling, y4)yes ofe, the time-scale is short, so the scheduler provides
a single input parameter is used to change the fairness from short-t fai h t

throughput optimal, to proportionally fair and asymptotic ally to ort- e_rm g alrne§s among the rates. )
max-min fair. We extend the GPF scheduling to include a new  Previous works in AF relay networks found short-term fair

input parameter, which determines the time-scale of fairnes from  user rates with optimization [2]-[5]. If the fairness is erded
short-term GPF to long-term GPF. We devise a low-complexity in the constraints of the scheduling optimization [2], [[#].
near-optimal algorithm to find schedules satisfying the gien e minimum rates must be known in advance and the their
fairness criteria in a given time-scale. Slmu!a.tl.ons showttat the f ibili be checked b h hani Anoth
proposed algorithm indeed allows the flexibility to change le easibility must € checked by an_ot er mechanism. nother
fairess and its time-scale. To the best of our knowledge, th approach is to provide fairness with careful selection @ th
paper is the first to provide a multi-user scheduling framewask  objective functions to achieve proportional fairness [4] o
for AF relays with both flexible fairness and flexible time-sales. genera"zed fairness [5] similar to this paper. However, in
those works fairness was limited to short-term time-scalds
paper extends the previous work to a more general framework
where we can control the time-scale of the fairness.

We propose a gradient-based algorithm to quickly find
schedules in each frame. Our framework and our algorithm

We investigate combined short-term/long-term generdliz€onsider AF frequency switching [7], which was not consid-
fair resource scheduling for multi-user amplify-and-fargy €red previously in fair multiuser cases [2], [3], [6], [8}€].
(AF) relays, which forward and multiplex data in orthogonaThe algorithm allocates radio resources to users in itanati
frequency division multiple access (OFDMA) networks. Teedn each iteration, rates are allocated to maximize the gradi
relays are cost-effective, simpler to implement, and s  Of the sum-utility of user rates.
less delay in comparison to other decode-and-forward relayOur simulations show that the algorithm indeed allows
based routers. As evident in today’s wired networks, impléde flexibility to change the fairness and its time-scalee Th
menting hop-by-hop routing is a huge challenge at high dasinulations also show that if the number of available reseur
rates due to the hardware complexities of fast packet heaiicks (RBs) in the frame is large, the fairness of the short-
inspection. AF relaying eliminates these issues from thg veterm fair scheduling approaches the fairness of long-teren o
high-data rate wireless networks. To the best of our knowledge, our work is the first to provide

We devise a mixed time-scale generalized proportional f&ir Scheduling framework for multi-user AF relays with both
(GPF) scheduling framework to make OFDMA-based Aftexible rate fairness notion and flexible time-scales.
relay scheduling fair to users. GPF scheduling is also knasvn
~-fair scheduling in the wired networking literature [1]. i$h } ]
framework is based on assigning utility functions to users, e consider OFDMA where orthogonal sub-carriers are
which take user’s rate and a parameteas inputs. Depending 9rouped in time and frequency as RBs, with duration/pf
on the value of they parameter, the rates that maximiz&€conds and a frequency span 16§, Hertz. There areV
the sum-utility gradually change resource allocation frofvailable sub-channels arii RBs in each sub-channel in
throughput optimal to proportionally fair, and asymptatiy the frame to be assigned t users. The f_rame duration is
to max-min fair. T. =TT, seconds. In the sequel, we consider a sector where

To address the time-scale of fairness, our framework ad%éaredetermined rglay-station (RS) is se_rving the USErs. Ou
an additional parameterto ~-fair scheduling. For low values "€SUlts can be easily extended to scenarios with multiple RS
The RS is an OFDMA-based AF relay, which multiplexes

This work was sponsored in part by Huawei Technologies Cod,,L USET datg after receiving them from.the BS. The relay amglifie
Shenzhen, China. the received symbols before multiplexing and retransngtti

Index Terms—Long-term fairness, generalized fairness,
amplify-and-forward relays.
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them on possibly different sub-channel. The received $igrtavo types of rates is more dominant. Ro& 1/2, the mixed
is sampled and processed with fast Fourier transform (FFBte simplifies to the scaled average rate

to obtain the received modulation symbols, which are then 1 1 1 1

stored in the RS’s buffer. The RS may re-map the RBs from‘%gﬁ)[k] =3 [<1 — E) Rk —1]+ Erm[k] = 5Rm[lf],
sub-channel to a different sub-channel, before perforrttieg

inverse FFT to obtain the output signal, not to couple a gogghile for ¢ = 1, Rﬁ)[k] = Lr,[k] is a scaled version of
sub-channel with a deep faded sub-channel. Multiple usgkg instantaneous rate. We show shortly that the scalirtgrfac
may have RBs on the same sub-channel in the same framgees not change the results of the optimization framewark. |
The number of bits carried in an RB depends on thfie sequel, we calR'; [k] the mixed time-scale rate for user
adaptive modulation and coding (AMC) used in the combinegd in frame k.
transmission over the two hops. We denote the number of bitsy family of utility functions, which result iny-fair [1] user
in an RB, transmitted to user on sub-channel couplinG, j) rates is defined with
in framek with bff”) [k]. The sub-channel coupling, j) refers B 1—ry
to the “coupling” of sub-channe| used by the BS, with sub- U (R@) k) = ﬁ (R$Z> [k]) if v#1
channelj, used by the RS. We udé to signify the discrete m\ o B Y) = log (Rgfl)[k]) if v =1
nature of time associated with OFDMA frames.
The rate of userm in frame k is determined from the wherey > 0 is the parameter influencing the kind of fairness
number of RBs it is allocated in the framieand the AMC we expect and the term in the brackets is the mixed time-scale

®)

used in each RB: rate (4). The constant factor is necessary to make theyutilit
A concave fory > 1. In addition it is interesting to note that,
Tmlk] = o Z Z bl(;n) [k]xl(;") k], (1) with this k|r_1d of utility, the constant factoTLC do_es not ch_ange
€= j=1 the allocation. The allocation based on this utility is also
(M) o1 ) ) independent of frequency span, which is hidderbl(.gﬁ) [k].
whereb; " [k] is the number of bits that can be transmitted to

ij
userm on sub-channel couplingi, j) in frame k, xl(;”)[k] "
is the number of RBs assigned to user on sub-channel (~(e) B (c) ) N (~(E) ) 6
coupling (i, 7) in frame k, and T, is the frame duration in Un (BrlR], - Rl R _;Um Ryl[k]y) - (6)
seconds. We usez(.;”) [k] to indicate that the slot allocations

in framek are the unknowns that the scheduling algorithm . . . o
searching for. ~v ande are said to bey-fair associated with time-scale ef

The slot allocations are integer number of RBs and areDn‘ferent rate fairness types can be achieved by changing

always allocated in pairs, since the AF relay cannot change lthe pa_ram_etew, if the _ne_two_rk utility function is _us_eq as
AMC of the received signals. Thug is an even number. This the objective (_)f_ an optimization [1.]' FOV =0 maximizing
model is flexible enough to allow for many different framéhe network utility corresponds to finding maximum a\_/er_a_ged
structures. For example, if we limit allocation of a wholdsu throughput, fory = 1, the averaged user rates maximizing

channels to one user at a timé’.”) [k] € {0,T/2}, otherwise the network utility are pr_oportlonally fair, aqq 35— oo the
J averaged rates maximizing the network utility become max-

! ity is possible far™ erag
a finer granularity is _|0053|bl_e far; ;' [k] € {Q, L....T/2}.  min fair.
The average rate is obtained from the instantaneous ratesy, ine following section, we show how theand~ param-
At the beginning of framé+1, after the scheduling algorithm g(ers are used to design a flexible optimization framework,
finds RB allocation for framé;, the average rate of User is \yhich finds rates satisfying different types of fairness &nd

The sum utility over the user rates is the network utility

Ilgser rates, which maximize the network utility for a specific

1 x different time-scales.
mngzwm, 2)

J=1 [1l. MIXED TIME-SCALE v-FAIR AF RELAY SCHEDULING

so the relationship between average rate in frémend the o )
average rate in framé — 1 is Based on they-fair utility, we now formulate an opti-

mization for AF relay that runs in each frame and finds
R[] = (1 — 1) Rulk — 1] + lrm [k]. (3) instantaneou_s rates that maximize the_network _utiIity,c_Whi
k k takes the mixed time-scale rates as inputs. Since different

In the sequel, we use a mixture of instantaneous and aver¥ghies of thes parameter change the time-scale of the mixed
rates to derive an optimization, which obtains fairness féine-scale rates, the same optimization can obtain seant-t
different time-scales, fairness, long-term fairness and a range between them. This

framework unified the two separate optimizations, one may
Rﬁﬁ) k] = (1—¢) <1 — 1) Ry [k—1]+ elrm k], (4) develop for short-term and long-term fairness.
k k In each frame: we use the following optimization to max-
wherel/2 < e < 1 is a parameter determining, which of thémize the network utility, (6), over all feasible instantaus



rates to find they-fair mixed time-scale rates Algorithm 1 FIND-RATES(R,,[1], 5™ [k], M, N, T)

) Yiyg

T(1=e) (1= ) Rulk =1 +ekrak]) " Initialize: 1<4,j<N:T® =71/2, 7" = 7)2

max ~
Sy 11—~ 1 Vi gome B e b0V k] ralk] < 0
(7a) 2 while 37,°¥ >0and 37> >0 do
1 L& 3 (i%,7%,m*) < arg max YT
St Tm, [k] :TC Z Z bE;n) [k]xz(;n) [k]’ 1 S m S M, (7b) . ) 9 11271]%1\]6 [(l—e)(l—%)Rm [k—1]+€%’f‘m [k]]’y
i=1 j=1 * oo T
; . 4 2K 2Dk 4+ 1
Ry[k —1] = <1 - E) Rk =21+ 2rmlk =11, (70) 50y [k] 4= 1 [K] + 01 [K]
M N T 6: TZ-(*BS) — TZ-(*BS) -1
S S MK < F 1Si<N, (10 7 T 79 1
m=1j=1 8 if Ti(*BS) =0 then
MON o bW e0, 1<m<M, 1<j<N
Z% [k] < bX 1<j<N, (7€) 10 endif
m=1 Z:% 11:  if Tj(*RS) =0 then
x§7>[k]e{o,...,5},1g¢,j§N,1§m§M, 12: B0, 1<m<M, 1<i<N
(7) 13:  end |f_
14: end while

where M is the number of usersy is the number of sub- 1s: R [k] = (1 — %) Rk —1]+ %Tm[k]
channelsT, is the frame durationbg’”[k] is the number of
bits that can be transmitted to useron sub-channel coupling
(i,7) in the framek, :cg”) [k] is the number of RBs assigned to ) ) o ) _
userm on sub-channel coupling, j) in the framek, ~ is the 0 non-llnearlt_y of the_objectl\_/e (7a) and_constramt (mych
parameter that sets the type of fairness, aigithe parameter €nsures the integrality of time allocations. In additiore th
that sets the time-scale of the fairness. size of the optimization is very large. Therefore finding an
The objective function maximizes the network utility oflgorithm with acceptable complexity is of interest. We idev
mixed time-scale rates (6). Depending on the paramettire @ low-complexity sub-optimal algorithm to find mixed time-
optimization results in rates satisfying different ratarfass Scale rates, based on how the convex solver would find the
criteria. On the other hand, depending on the parametbe best solution. The convex solver works in iterations. Inheac
optimization results in different time-scales for the fiaiss, so iteration, it finds the gradient of the objective functiom (i
it can obtain short-term or long-term fairness. Constgaiib) terms of time aIIopayons) and increases the time gllonatm
relate the time allocations to user rates. Constraints &nd) the way that maximizes the gradient. Following this apphoac
(7e) ensure that the total number of allocated RBs does @t algorithm is based on the observation that if we can
exceed what is available in the frame. Constraint (7f) ezsurfncrease only one af " [k] in iteration, we should increase
that the scheduling variables are integers. the time allocation of the sub-channel couplirg j) for

The optimization variables, we are looking for, afg") [k]. userm with the highest parti_al d_erivative_, to maximize the
{ncremental change in the objective function.

¢ Finding the sub-channel and user that maximize the partial
derivative of the objective function,

All of :cE;") [, < k are fixed past decisions which reflec
themselves iR, [k—1]. Previous allocations make the curren
optimization biased.

We note that fore = 1/2 the network utility objective 0 0 5(6)

simplifies to 0™ [K] Un (Rl [k, - B [k]’w)
ij
1 1 m 9)
Un (R§2)[k],...,Rf,%)[k],7) ! b k]
- T T, 1 1 7
YT Rl A © T((1= ) (1= ) Rulk = 1+ e )
log (3) + log (Rn[k]) if v=1, is the basis for the low-complexity sub-optimal algorithm

(FIND-RATES). This can be also explained with Taylor ex-
so the constant factoré%)(lﬂ), log (%), can come out of the pansion of the network utility.

objective function and the optimization in terms 8= [k] is  Algorithm FIND-RATES works in iterations to find the
indeed equivalent to the optimization wifky, [k] in the given mixed time-scale rates for frame. Variables7,”* and
~-fairness. TJ.(RS) keep track of the available slots on each sub-channel for
If ¢ =1, the optimization in each frame is independent dhe BS and the RS transmissions, respectively. The algorith
past allocations, dealing with the satisfaction only imfesk. uses a copy of coupling ratéé;”) and make it zero when a

The optimization has a high computational complexity dusub-channel get exhausted. We use this copy because we need



.- . . . TABLE |
the or|g|nalb§;")[k] for updating the instantaneous rates. Since SIMULATION PARAMETERS

Bl(.;”) is reset at each frame, there is no need for frame index
regarding this variable. To make the algorithm run smoothly.

Parameter Value

s~ . BS-RS Channel Rician, K=10 dB [15]
we initialize the_ average rates with a small vgllb'en[l]_ =4. BS-RS Shadowing Log-normal, variance dB
This approach is similar to [11], [12] where in the first step, “BS-RS Doppler Shift | 4 Hz
when the rates are all zero, the best user is selected in term®RS-Users Channel Rayleigh ( [15])
of SNR. RS-Users Shadowing | Log-normal, variancé dB
In each iteration, the algorithm allocates time to the user RS-Users Doppler Shift 37 Hz
and sub-channel that maximizes the partial derivative ef th _Path Loss 38.4 + 2.35log 10(d) dB
Lo . . . Cell Radius 1000 m
objective function. Step3 finds the sub-channel coupling BS-RS Distance 200 m
and user that maximizes the gradient decent of the objectiveTrznsmit Bower 20 dBm BS,30 dBm RS
function, according to (9). After finding the best sub-cheinn ~Antenna Gain 10 dB BS, 5 dB RS,0 dB Users
coupling, the allocation for that user is increased and the Noise Figure 2 dB RS,2 dB Users

user’s rate is updated in Stdpand Stepb. Ti(BS) ande(RS)
are then updated accordingly (Stépand Step7). The copy
of bits-per-slot vaIuesl?l(-;"), is also updated (set to zero) Jain’s fairness index [16] of instantaneous rates for frame
according to the availability of RBs, to ensure that alledat is given by
slots are not considered in the next iteration (Step8). Note

that bl(.;.”) [k]s do not change as the algorithm runs and are

used to find the user rates so far, on the other hafids, Tk = (M ZM,l(rm[k])QY (10)
change as the algorithm runs to find the best coupling for a "=
selected user in each iteration. To avoid the complex seamhich measures how similar the instantaneous rates are in
in Step3, we implement the proposed algorithm witli + 1  frame k. To compare the impact of time dependent dynamic
sorted lists containing SNRs of first-hop and the secondshopllocations on fairness of the rates, we use the Jain’s inflex
Our sorting approach for exploiting the structure of Stejs  the averaged rates
similar to [7]. Due to space limitation we omitted the detalil o 2
of implementation. _ (Zm:l Ry, [k])
The complexity of the algorithm per frame ©((M + JIk] = MM (RoED2
1)N10g(N)+MN%)correspondingto our previous algorithm ( 2om=1(EmlK]) )
for short-term rate allocation [5]. which shows how fair the averaged rates are up to frame
For e = 1/2, the algorithm is similar to the procedures |f the Jain's index is close to one, the rates are the most
proposed for single channel, single-hop, TDMA networkd [1Zimilar (flat), while for 7[k] close to-L, the rates are least

and for conventional single-hop OFDMA networks [14]. Theimilar so the system is in most unfgfr'point_

connection is not unexpected given the fact that both ourfigure 1 shows the Jain’s index of the averaged rates versus

approach and [13] use the same utility functions to achiefiggme time index for different ande. The number of available

fairness. However, unlike those approaches, which find-longme slots is7" = 8 and the number of available sub-channels

term fair rates, our algorithm can find either long-term o ' = 20. We observe that as is increased, the Jain's index

short-term fair rates. Also, note that, unlike [13], [14lro s improved. This is expected since by increasingthee are

algorithm is for two-hop AF relay. Fot = 1, the algorithm moying from throughput maximization to proportional faigs

is similar to the algorithm allocating short-term fair ®®]. and asymptotically to max-min fairness. Figure 1 shows that

In this case there is no interdependency between frames. Bgin's index of long-term averaged rates fot 1/2 is greater

v = 0, the algorithm is independent efand the algorithm than the Jain’s index of long-term averaged ratesefer 1.

reduces to a similar algorithm in [7] where no fairness is-corThjs is also expected due to the long-term fairness enabled

sidered. Indeed, this non-obvious extension of [5] combingy the scheduler foe = 1/2. For0.5 < ¢ < 1 the algorithm

both approaches neatly and with a smooth transition. allows us to change the time scale of fairness. As> 1

the response of system in terms of fairness become smoother

and we can avoid the overshoot and undershoot of the system
We consider a network of\/ = 15 users in a sector r€SpPonse.

connected to the BS through a RS in the sector. We randomly

“drop” the users with a uniform density in the area around

the relay. From the users’ locations, we calculate eachisuser We devise an optimization framework for GPF in different

OFDM channel coefficients to the RS and from RS to B&me scales with frequency switching capability for AF sela

using a detailed channel model [15] to find the number of biteetworks. We extend GPF to include a new input parameter

carried in an RB on each sub-channel for frames. Details ¢, which determines the time-scale of fairness notion. Far lo

of the simulation parameters are shown in Table I. values ofe, the time-scale of target fairness notion is long, so

(i i)’

: (11)

IV. SIMULATION RESULTS

V. CONCLUSION



Jain’s index vs. frame index
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Fig. 1. Jain’s index of the averaged rates vs. frame index. [16]

the scheduler providdeng-term ~-fairness among the rates.
On the other hand, for high values ef the time-scale is
short, so the scheduler providdg®ort-term ~-fairness among
the rates. To the best of our knowledge, our work is the first
to provide a scheduling framework for multi-user AF relays
with both flexible fairness and flexible time-scales undeicivh
the fairness is met. We devise a low-complexity gradiersila
algorithm to find schedules satisfying the given fairnessomo

in a given time-scale. Simulations show that the algorithm
indeed allows the flexibility to change the fairness and its
time-scale.
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