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Abstract—We devise an optimization framework for general-
ized proportional fairness (GPF) under different time scales for
amplify-and-forward (AF) relay networks. In GPF scheduling,
a single input parameter is used to change the fairness from
throughput optimal, to proportionally fair and asymptotic ally to
max-min fair. We extend the GPF scheduling to include a new
input parameter, which determines the time-scale of fairness from
short-term GPF to long-term GPF. We devise a low-complexity
near-optimal algorithm to find schedules satisfying the given
fairness criteria in a given time-scale. Simulations show that the
proposed algorithm indeed allows the flexibility to change the
fairness and its time-scale. To the best of our knowledge, this
paper is the first to provide a multi-user scheduling framework
for AF relays with both flexible fairness and flexible time-scales.

Index Terms—Long-term fairness, generalized fairness,
amplify-and-forward relays.

I. I NTRODUCTION AND MOTIVATION

We investigate combined short-term/long-term generalized
fair resource scheduling for multi-user amplify-and-forward
(AF) relays, which forward and multiplex data in orthogonal
frequency division multiple access (OFDMA) networks. These
relays are cost-effective, simpler to implement, and introduce
less delay in comparison to other decode-and-forward relay
based routers. As evident in today’s wired networks, imple-
menting hop-by-hop routing is a huge challenge at high data
rates due to the hardware complexities of fast packet header
inspection. AF relaying eliminates these issues from the very
high-data rate wireless networks.

We devise a mixed time-scale generalized proportional fair
(GPF) scheduling framework to make OFDMA-based AF
relay scheduling fair to users. GPF scheduling is also knownas
γ-fair scheduling in the wired networking literature [1]. This
framework is based on assigning utility functions to users,
which take user’s rate and a parameterγ as inputs. Depending
on the value of theγ parameter, the rates that maximize
the sum-utility gradually change resource allocation from
throughput optimal to proportionally fair, and asymptotically
to max-min fair.

To address the time-scale of fairness, our framework adds
an additional parameterǫ to γ-fair scheduling. For low values
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of ǫ, the time-scale is long, so the scheduler provideslong-
term γ-fairness among the rates. On the other hand, for high
values ofǫ, the time-scale is short, so the scheduler provides
short-term γ-fairness among the rates.

Previous works in AF relay networks found short-term fair
user rates with optimization [2]–[5]. If the fairness is enforced
in the constraints of the scheduling optimization [2], [3],[6],
the minimum rates must be known in advance and the their
feasibility must be checked by another mechanism. Another
approach is to provide fairness with careful selection of the
objective functions to achieve proportional fairness [4] or
generalized fairness [5] similar to this paper. However, in
those works fairness was limited to short-term time-scales.This
paper extends the previous work to a more general framework
where we can control the time-scale of the fairness.

We propose a gradient-based algorithm to quickly find
schedules in each frame. Our framework and our algorithm
consider AF frequency switching [7], which was not consid-
ered previously in fair multiuser cases [2], [3], [6], [8]–[10].
The algorithm allocates radio resources to users in iterations.
In each iteration, rates are allocated to maximize the gradient
of the sum-utility of user rates.

Our simulations show that the algorithm indeed allows
the flexibility to change the fairness and its time-scale. The
simulations also show that if the number of available resource
blocks (RBs) in the frame is large, the fairness of the short-
term fair scheduling approaches the fairness of long-term one.

To the best of our knowledge, our work is the first to provide
a scheduling framework for multi-user AF relays with both
flexible rate fairness notion and flexible time-scales.

II. SYSTEM AND NETWORK MODEL

We consider OFDMA where orthogonal sub-carriers are
grouped in time and frequency as RBs, with duration ofTb

seconds and a frequency span ofWb Hertz. There areN
available sub-channels andT RBs in each sub-channel in
the frame to be assigned toM users. The frame duration is
Tc = TTb seconds. In the sequel, we consider a sector where
a predetermined relay-station (RS) is serving the users. Our
results can be easily extended to scenarios with multiple RSs.

The RS is an OFDMA-based AF relay, which multiplexes
user data after receiving them from the BS. The relay amplifies
the received symbols before multiplexing and retransmitting



them on possibly different sub-channel. The received signal
is sampled and processed with fast Fourier transform (FFT)
to obtain the received modulation symbols, which are then
stored in the RS’s buffer. The RS may re-map the RBs from
sub-channel to a different sub-channel, before performingthe
inverse FFT to obtain the output signal, not to couple a good
sub-channel with a deep faded sub-channel. Multiple users
may have RBs on the same sub-channel in the same frame.

The number of bits carried in an RB depends on the
adaptive modulation and coding (AMC) used in the combined
transmission over the two hops. We denote the number of bits
in an RB, transmitted to userm on sub-channel coupling(i, j)
in framek with b

(m)
ij [k]. The sub-channel coupling(i, j) refers

to the “coupling” of sub-channeli, used by the BS, with sub-
channelj, used by the RS. We use[·] to signify the discrete
nature of time associated with OFDMA frames.

The rate of userm in frame k is determined from the
number of RBs it is allocated in the framek and the AMC
used in each RB:

rm[k] =
1

Tc

N
∑

i=1

N
∑

j=1

b
(m)
ij [k]x

(m)
ij [k], (1)

whereb(m)
ij [k] is the number of bits that can be transmitted to

user m on sub-channel coupling(i, j) in frame k, x
(m)
ij [k]

is the number of RBs assigned to userm on sub-channel
coupling (i, j) in frame k, and Tc is the frame duration in
seconds. We usex(m)

ij [k] to indicate that the slot allocations
in framek are the unknowns that the scheduling algorithm is
searching for.

The slot allocations are integer number of RBs and are
always allocated in pairs, since the AF relay cannot change the
AMC of the received signals. ThusT is an even number. This
model is flexible enough to allow for many different frame
structures. For example, if we limit allocation of a whole sub-
channels to one user at a time,x

(m)
ij [k] ∈ {0, T/2}, otherwise

a finer granularity is possible forx(m)
ij [k] ∈ {0, 1, . . . , T/2}.

The average rate is obtained from the instantaneous rates.
At the beginning of framek+1, after the scheduling algorithm
finds RB allocation for framek, the average rate of userm is

Rm[k] =
1

k

k
∑

j=1

rm[k], (2)

so the relationship between average rate in framek and the
average rate in framek − 1 is

Rm[k] =

(

1−
1

k

)

Rm[k − 1] +
1

k
rm[k]. (3)

In the sequel, we use a mixture of instantaneous and average
rates to derive an optimization, which obtains fairness for
different time-scales,

R̃(ǫ)
m [k] = (1− ǫ)

(

1−
1

k

)

Rm[k − 1] + ǫ
1

k
rm[k], (4)

where1/2 ≤ ǫ ≤ 1 is a parameter determining, which of the

two types of rates is more dominant. Forǫ = 1/2, the mixed
rate simplifies to the scaled average rate

R̃
( 1
2 )

m [k] =
1

2

[(

1−
1

k

)

Rm[k − 1] +
1

k
rm[k]

]

=
1

2
Rm[k],

while for ǫ = 1, R̃
(1)
m [k] = 1

k rm[k] is a scaled version of
the instantaneous rate. We show shortly that the scaling factor
does not change the results of the optimization framework. In
the sequel, we call̃R(ǫ)

m [k] the mixed time-scale rate for user
m in framek.

A family of utility functions, which result inγ-fair [1] user
rates is defined with

Um(R̃(ǫ)
m [k], γ) =







1
1−γ

(

R̃
(ǫ)
m [k]

)1−γ

if γ 6= 1

log
(

R̃
(ǫ)
m [k]

)

if γ = 1
(5)

whereγ ≥ 0 is the parameter influencing the kind of fairness
we expect and the term in the brackets is the mixed time-scale
rate (4). The constant factor is necessary to make the utility
concave forγ > 1. In addition it is interesting to note that,
with this kind of utility, the constant factor1Tc

does not change
the allocation. The allocation based on this utility is also
independent of frequency span, which is hidden inb

(m)
ij [k].

The sum utility over the user rates is the network utility

UN

(

R̃
(ǫ)
1 [k], . . . , R̃(ǫ)

m [k], γ
)

,

M
∑

m=1

Um

(

R̃(ǫ)
m [k], γ

)

. (6)

User rates, which maximize the network utility for a specific
γ andǫ are said to beγ-fair associated with time-scale ofǫ.

Different rate fairness types can be achieved by changing
the parameterγ, if the network utility function is used as
the objective of an optimization [1]. Forγ = 0 maximizing
the network utility corresponds to finding maximum averaged
throughput, forγ = 1, the averaged user rates maximizing
the network utility are proportionally fair, and asγ →∞ the
averaged rates maximizing the network utility become max-
min fair.

In the following section, we show how theǫ andγ param-
eters are used to design a flexible optimization framework,
which finds rates satisfying different types of fairness andin
different time-scales.

III. M IXED TIME-SCALE γ-FAIR AF RELAY SCHEDULING

Based on theγ-fair utility, we now formulate an opti-
mization for AF relay that runs in each frame and finds
instantaneous rates that maximize the network utility, which
takes the mixed time-scale rates as inputs. Since different
values of theǫ parameter change the time-scale of the mixed
time-scale rates, the same optimization can obtain short-term
fairness, long-term fairness and a range between them. This
framework unified the two separate optimizations, one may
develop for short-term and long-term fairness.

In each framek we use the following optimization to max-
imize the network utility, (6), over all feasible instantaneous



rates to find theγ-fair mixed time-scale rates

max
x
(m)
ij

[k]

M
∑

m=1

(

(1− ǫ)
(

1− 1
k

)

Rm[k − 1] + ǫ 1k rm[k]
)1−γ

1− γ

(7a)

s.t.rm[k] =
1

Tc

N
∑

i=1

N
∑

j=1

b
(m)
ij [k]x

(m)
ij [k], 1 ≤ m ≤M, (7b)

Rm[k − 1] =

(

1−
1

k

)

Rm[k − 2] +
1

k
rm[k − 1], (7c)

M
∑

m=1

N
∑

j=1

x
(m)
ij [k] ≤

T

2
, 1 ≤ i ≤ N, (7d)

M
∑

m=1

N
∑

i=1

x
(m)
ij [k] ≤

T

2
, 1 ≤ j ≤ N, (7e)

x
(m)
ij [k] ∈

{

0, . . . ,
T

2

}

, 1 ≤ i, j ≤ N, 1 ≤ m ≤M,

(7f)

whereM is the number of users,N is the number of sub-
channels,Tc is the frame duration,b(m)

ij [k] is the number of
bits that can be transmitted to userm on sub-channel coupling
(i, j) in the framek, x(m)

ij [k] is the number of RBs assigned to
userm on sub-channel coupling(i, j) in the framek, γ is the
parameter that sets the type of fairness, andǫ is the parameter
that sets the time-scale of the fairness.

The objective function maximizes the network utility of
mixed time-scale rates (6). Depending on the parameterγ, the
optimization results in rates satisfying different rate fairness
criteria. On the other hand, depending on the parameterǫ, the
optimization results in different time-scales for the fairness, so
it can obtain short-term or long-term fairness. Constraints (7b)
relate the time allocations to user rates. Constraints (7d)and
(7e) ensure that the total number of allocated RBs does not
exceed what is available in the frame. Constraint (7f) ensures
that the scheduling variables are integers.

The optimization variables, we are looking for, arex
(m)
ij [k].

All of x
(m)
ij [l], l < k are fixed past decisions which reflect

themselves inRm[k−1]. Previous allocations make the current
optimization biased.

We note that forǫ = 1/2 the network utility objective
simplifies to

UN

(

R̃
( 1
2 )

1 [k], . . . , R̃
( 1
2 )

m [k], γ
)

=

{

(

1
2

)(1−γ) 1
1−γ (Rm[k])1−γ if γ 6= 1

log
(

1
2

)

+ log (Rm[k]) if γ = 1,

(8)

so the constant factors,
(

1
2

)(1−γ)
, log

(

1
2

)

, can come out of the

objective function and the optimization in terms ofR̃
( 1
2 )

1 [k] is
indeed equivalent to the optimization withRm[k] in the given
γ-fairness.

If ǫ = 1, the optimization in each frame is independent of
past allocations, dealing with the satisfaction only in framek.

The optimization has a high computational complexity due

Algorithm 1 FIND-RATES(Rm[1], b
(m)
ij [k], M , N , T )

Initialize: 1 ≤ i, j ≤ N : T
(BS)
i = T/2, T (RS)

j = T/2

1: ∀i, j,m : b̃
(m)
ij ← b

(m)
ij [k] rm[k]← 0

2: while ∃ T (BS)
i > 0 and ∃ T (RS)

j > 0 do

3: (i∗, j∗,m∗)← arg max
1≤m≤M,
1≤i,j≤N

1/Tcb̃
(m)
ij

[(1−ǫ)(1− 1
k )Rm[k−1]+ǫ 1

k
rm[k]]

γ

4: x
(m∗)
i∗j∗ [k]← x

(m∗)
i∗j∗ [k] + 1

5: rm∗ [k]← rm∗ [k] + 1
Tc
b
(m∗)
i∗j∗ [k]

6: T
(BS)
i∗ ← T

(BS)
i∗ − 1

7: T
(RS)
j∗ ← T

(RS)
j∗ − 1

8: if T
(BS)
i∗ = 0 then

9: b̃
(m)
i∗j ← 0, 1 ≤ m ≤M, 1 ≤ j ≤ N

10: end if
11: if T

(RS)
j∗ = 0 then

12: b̃
(m)
ij∗ ← 0, 1 ≤ m ≤M, 1 ≤ i ≤ N

13: end if
14: end while
15: Rm[k] =

(

1− 1
k

)

Rm[k − 1] + 1
krm[k]

to non-linearity of the objective (7a) and constraint (7f),which
ensures the integrality of time allocations. In addition the
size of the optimization is very large. Therefore finding an
algorithm with acceptable complexity is of interest. We devise
a low-complexity sub-optimal algorithm to find mixed time-
scale rates, based on how the convex solver would find the
best solution. The convex solver works in iterations. In each
iteration, it finds the gradient of the objective function (in
terms of time allocations) and increases the time allocations in
the way that maximizes the gradient. Following this approach,
our algorithm is based on the observation that if we can
increase only one ofx(m)

ij [k] in iteration, we should increase
the time allocation of the sub-channel coupling(i, j) for
userm with the highest partial derivative, to maximize the
incremental change in the objective function.

Finding the sub-channel and user that maximize the partial
derivative of the objective function,

∂

∂x
(m)
ij [k]

UN

(

R̃
(ǫ)
1 [k], . . . , R̃(ǫ)

m [k], γ
)

=
1

Tc

b
(m)
ij [k]

(

(1− ǫ)
(

1− 1
k

)

Rm[k − 1] + ǫ 1krm[k]
)γ ,

(9)

is the basis for the low-complexity sub-optimal algorithm
(FIND-RATES). This can be also explained with Taylor ex-
pansion of the network utility.

Algorithm FIND-RATES works in iterations to find the
mixed time-scale rates for framek. VariablesT (BS)

i and
T

(RS)
j keep track of the available slots on each sub-channel for

the BS and the RS transmissions, respectively. The algorithm
uses a copy of coupling rates̃b(m)

ij and make it zero when a
sub-channel get exhausted. We use this copy because we need



the originalb(m)
ij [k] for updating the instantaneous rates. Since

b̃
(m)
ij is reset at each frame, there is no need for frame index

regarding this variable. To make the algorithm run smoothly
we initialize the average rates with a small value,Rm[1] = δ.
This approach is similar to [11], [12] where in the first step,
when the rates are all zero, the best user is selected in terms
of SNR.

In each iteration, the algorithm allocates time to the user
and sub-channel that maximizes the partial derivative of the
objective function. Step3 finds the sub-channel coupling
and user that maximizes the gradient decent of the objective
function, according to (9). After finding the best sub-channel
coupling, the allocation for that user is increased and the
user’s rate is updated in Step4 and Step5. T (BS)

i andT (RS)
j

are then updated accordingly (Step6 and Step7). The copy
of bits-per-slot values,̃b(m)

ij , is also updated (set to zero)
according to the availability of RBs, to ensure that allocated
slots are not considered in the next iteration (Steps8-13). Note
that b(m)

ij [k]s do not change as the algorithm runs and are

used to find the user rates so far, on the other handb̃
(m)
ij s,

change as the algorithm runs to find the best coupling for a
selected user in each iteration. To avoid the complex search
in Step3, we implement the proposed algorithm withM + 1
sorted lists containing SNRs of first-hop and the second-hops.
Our sorting approach for exploiting the structure of Step3 is
similar to [7]. Due to space limitation we omitted the detail
of implementation.

The complexity of the algorithm per frame isO((M +
1)N log(N)+MN T

2 ) corresponding to our previous algorithm
for short-term rate allocation [5].

For ǫ = 1/2, the algorithm is similar to the procedures
proposed for single channel, single-hop, TDMA networks [13]
and for conventional single-hop OFDMA networks [14]. The
connection is not unexpected given the fact that both our
approach and [13] use the same utility functions to achieve
fairness. However, unlike those approaches, which find long-
term fair rates, our algorithm can find either long-term or
short-term fair rates. Also, note that, unlike [13], [14], our
algorithm is for two-hop AF relay. Forǫ = 1, the algorithm
is similar to the algorithm allocating short-term fair rates [5].
In this case there is no interdependency between frames. For
γ = 0, the algorithm is independent ofǫ and the algorithm
reduces to a similar algorithm in [7] where no fairness is con-
sidered. Indeed, this non-obvious extension of [5] combines
both approaches neatly and with a smooth transition.

IV. SIMULATION RESULTS

We consider a network ofM = 15 users in a sector
connected to the BS through a RS in the sector. We randomly
“drop” the users with a uniform density in the area around
the relay. From the users’ locations, we calculate each user’s
OFDM channel coefficients to the RS and from RS to BS
using a detailed channel model [15] to find the number of bits
carried in an RB on each sub-channel for50 frames. Details
of the simulation parameters are shown in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value
BS-RS Channel Rician, K=10 dB [15]
BS-RS Shadowing Log-normal, variance3 dB
BS-RS Doppler Shift 4 Hz
RS-Users Channel Rayleigh ( [15])
RS-Users Shadowing Log-normal, variance5 dB
RS-Users Doppler Shift 37 Hz
Path Loss 38.4 + 2.35 log 10(d) dB
Cell Radius 1000 m
BS-RS Distance 500 m
Transmit Power 40 dBm BS,30 dBm RS
Antenna Gain 10 dB BS,5 dB RS,0 dB Users
Noise Figure 2 dB RS,2 dB Users

Jain’s fairness index [16] of instantaneous rates for framek
is given by

J [k] =

(

∑M
m=1 rm[k]

)2

(

M
∑M

m=1(rm[k])2
) , (10)

which measures how similar the instantaneous rates are in
framek. To compare the impact of time dependent dynamic
allocations on fairness of the rates, we use the Jain’s indexof
the averaged rates

J̄ [k] =

(

∑M
m=1 Rm[k]

)2

(

M
∑M

m=1(Rm[k])2
) , (11)

which shows how fair the averaged rates are up to framek.
If the Jain’s index is close to one, the rates are the most

similar (flat), while forJ [k] close to 1
M , the rates are least

similar so the system is in most unfair point.
Figure 1 shows the Jain’s index of the averaged rates versus

frame time index for differentγ andǫ. The number of available
time slots isT = 8 and the number of available sub-channels
is N = 20. We observe that asγ is increased, the Jain’s index
is improved. This is expected since by increasing theγ, we are
moving from throughput maximization to proportional fairness
and asymptotically to max-min fairness. Figure 1 shows that
Jain’s index of long-term averaged rates forǫ = 1/2 is greater
than the Jain’s index of long-term averaged rates forǫ = 1.
This is also expected due to the long-term fairness enabled
by the scheduler forǫ = 1/2. For 0.5 < ǫ < 1 the algorithm
allows us to change the time scale of fairness. Asǫ → 1
the response of system in terms of fairness become smoother
and we can avoid the overshoot and undershoot of the system
response.

V. CONCLUSION

We devise an optimization framework for GPF in different
time scales with frequency switching capability for AF relay
networks. We extend GPF to include a new input parameter
ǫ, which determines the time-scale of fairness notion. For low
values ofǫ, the time-scale of target fairness notion is long, so
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Fig. 1. Jain’s index of the averaged rates vs. frame index.

the scheduler provideslong-term γ-fairness among the rates.
On the other hand, for high values ofǫ, the time-scale is
short, so the scheduler providesshort-term γ-fairness among
the rates. To the best of our knowledge, our work is the first
to provide a scheduling framework for multi-user AF relays
with both flexible fairness and flexible time-scales under which
the fairness is met. We devise a low-complexity gradient-based
algorithm to find schedules satisfying the given fairness notion
in a given time-scale. Simulations show that the algorithm
indeed allows the flexibility to change the fairness and its
time-scale.

REFERENCES

[1] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 556–
567, Oct. 2000.

[2] M. Awad and X. Shen, “OFDMA-based two-hop cooperative relay
network resources allocation,” inIEEE International Conference on
Communications (ICC), May 2008, pp. 4414–4418.

[3] X. Zhang, S. Chen, and W. Wang, “Multiuser radio resourceal-
location for multiservice transmission in OFDMA-based cooperative
relay networks,”EURASIP Journal on Wireless Communicattions and
Networking, vol. 2009, pp. 1–13, 2009.

[4] W.-G. Ahn and H.-M. Kim, “Proportional fair scheduling in relay
enhanced cellular OFDMA systems,” inIEEE 19th International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC),
Sept. 2008.

[5] A. Sharifian, P. Djukic, H. Yanikomeroglu, and J. Zhang, “Generalized
proportionally fair scheduling for multi-user amplify-and-forward relay
networks,” in 71st IEEE Vehicular Technology Conference (VTC2010-
Spring), May 2010.

[6] G. Li and H. Liu, “Resource allocation for OFDMA relay networks with
fairness constraints,”IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 11, pp. 2061–2069, Nov. 2006.

[7] A. Hottinen and T. Heikkinen, “Optimal subchannel assignment in a
two-hop OFDM relay,” in IEEE 8th Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), June 2007, pp. 1–5.

[8] J. Wang, Y. Zhao, and T. Korhonen, “Cross layer optimization with
complete fairness constraints in OFDMA relay networks,” inIEEE
Global Telecommunications Conference (GLOBECOM), Dec. 2008.

[9] L. You, M. Song, J. Song, Q. Miao, and Y. Zhang, “Adaptive resource
allocation in OFDMA relay-aided cooperative cellular networks,” in 67th
IEEE Vehicular Technology Conference, (VTC2008-Spring), May 2008,
pp. 1925–1929.

[10] D. Zhang, Y. Wang, and J. Lu, “On QoS-guaranteed downlink co-
operative OFDMA systems with amplify-and-forward relays:Optimal
schedule and resource allocation,” inIEEE Wireless Communications
and Networking Conference (WCNC), April 2009.

[11] H. Rasouli and A. Anpalagan, “An asymptotically fair subcarrier alloca-
tion algorithm in OFDM systems,” inIEEE 69th Vehicular Technology
Conference (VTC Spring 2009), april 2009.

[12] W. Rhee and J. M. Cioffi, “Increase in capacity of multi-user OFDM
system using dynamic sub-channel allocation,” in51st IEEE Vehicular
Technology Conference (VTC2000-Spring), vol. 2, pp. 1085–1089.

[13] H. Kushner and P. Whiting, “Convergence of proportional-fair sharing
algorithms under general conditions,”IEEE Journal on Wireless Com-
munication, vol. 3, no. 4, pp. 1250–1259, July 2004.

[14] G. Song and Y. Li, “Cross-layer optimization for OFDM wireless
networks-part II: algorithm development,”IEEE Transactions on Wire-
less Communications, vol. 4, no. 2, pp. 625–634, March 2005.
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