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Abstract—Cooperative positioning algorithms have been re-
cently introduced to overcome the limitations of traditional
methods, relying on GNSS or other terrestrial infrastructure.
In particular, SPAWN (Sum-Product Algorithm over a Wireless
Network) was shown to provide accurate position estimate even
in challenged indoor environments, thanks to exchange of local
information among peers based on terrestrial ranging. In this
paper we extend the SPAWN framework by considering a
hybrid scenario, where agents combine satellite and peer-to-peer
terrestrial measurements. The novel hybrid SPAWN (H-SPAWN)
approach allows increased availability and robustness compared
to GNSS-only positioning in light and deep indoor scenarios,
while keeping the advantages of a distributed implementation
of the original SPAWN. A parametric message representation
is proposed to reduce the communication overhead, and to
improve the estimation accuracy. Simulation results show that
the proposed solution outperforms traditional algorithms such
as cooperative least squares and the extended Kalman filter.

I. INTRODUCTION

Cooperative positioning methods, based on exchange of

information among peers are receiving a great attention. Some

methods using belief propagation (BP) have been proposed in

[1], [2], [3]. They have been especially designed for wireless

ranging systems operating in critical environments where

GNSS is not available. However, such cooperative schemes

can be also used in combination with GNSS, to improve posi-

tioning availability and accuracy in cases where pseudorange

measurements are available intermittently, or from a limited

number of satellites, or are strongly affected by noise/errors.

Hybrid cooperative positioning schemes can thus be designed

that fuse information from peers and from GNSS satellites.

In this paper we propose an efficient hybrid positioning

method, based on distributed BP, applying the sum product

algorithm (SPA) over a wireless network, similarly as it was

done in [1] for the peer-to-peer case. The new algorithm, called

H-SPAWN (hybrid sum product algorithm over a wireless

network), can be implemented in a fully distributed fash-

ion through local exchange of messages between pairs of

neighboring nodes. Compared to original SPAWN, an extra

variable – the bias with respect to satellite clocks that affects

pseudoranges – must be estimated along with nodes’ positions.

The rest of the paper is organized as follows: Sec. II

provides a mathematical description of the problem; in Sec. III

we develop the factor graph (FG) model for hybrid positioning;

in Sec. IV we focus on the implementation of H-SPAWN and

propose an efficient parameter-based message representation;

in Sec. V we test H-SPAWN via numerical simulations and

compare its performance to that of competing algorithms;

Finally Sec. VI concludes.

Comment: Sections II-B and III assume a background

knowledge in graphical models and Bayesian inference. The

reader unfamiliar with these topics may consult [1], [3], [4].

II. PROBLEM FORMULATION

A. Model

Consider a network of M agents and S satellites. Let M
be the set of agents and S the set of satellites. Referring to

a particular agent m ∈ M, denote by Mm the subset of

peers it can communicate with (“neighbors”) and by Sm the

subset of satellites it can see. Position variables are denoted

by xi (where i may be either a satellite or an agent). Our

focus will be 2-dimensional positions, as the extension to the

3-dimensional case is conceptually straightforward. The clock

bias of node m is denoted by bm and expressed in distance

units. Therefore, the state of each node m is identified by:

x̃m , [xm bm]. (1)

In the considered hybrid scenario, two types of measurements

are performed by nodes: (i) range measurements, i.e., distance

between peers:

rnm = ‖xn − xm‖+ vnm, (2)

and (ii) pseudorange measurements, i.e., measured distance

from satellites:

ρsm = ‖xs − xm‖+ bm + vsm, (3)

where the symbol ‖·‖ denotes Euclidean distance, m,n ∈ M,

s ∈ S, vnm and vsm are measurement noise. Notice that

pseudorange measurements are affected by the additional

unknown bm, that is one of the variables to be estimated1.

We introduce the following vector notation to group together

different nodes’ variables: X , {xm∈M}; b , {bm∈M};

X̃ , {x̃m∈M}; rm , {rnm ∀n ∈ Mm}; R , {rm∈M};

ρm , {ρsm ∀s ∈ Sm}; P , {ρm∈M}.

The localization problem can be formulated as follows: ev-

ery agent m wants to determine its a posteriori distribution of

x̃
(t)
m , at each time slot t, given all the available measurements:

p(x̃(t)
m |R(1:t),P (1:t)) ∀m ∈ M. (4)

1On the contrary, terrestrial ranges are typically estimated with methods
avoiding bias problem, like round-trip time of arrival or RSS measurements.



B. Assumptions

We will make the following assumptions, which hold ap-

proximately in many practical scenarios.

• A1: Peer-to-peer measurement noise samples are inde-

pendent Gaussian, with symmetric link variance (assumed

as known by both nodes):

vmn, vnm ∼ N
(

0, σ2
mn

)

. (5)

• A2: Satellite measurement noise samples are independent

Gaussian with:

vsm ∼ N
(

0, σ2
sm

)

. (6)

• A3: Nodes’ mobility is assumed as Markovian and mu-

tually independent:

p
(

X̃(t)
∣

∣

∣
X̃(0:t−1)

)

=p
(

X̃(t)
∣

∣

∣
X̃(t−1)

)

=
∏

m∈M

p
(

x̃(t)
m

∣

∣

∣
x̃(t−1)
m

)

. (7)

• A4: Measurement likelihood depends only on the current

state and can be split into two factors, since range and

pseudorange measurements are independent:

p
(

R̃(t), P̃ (t)
∣

∣

∣
X̃(0:t)

)

= p
(

R(t), P (t)
∣

∣

∣
X̃(t)

m

)

= p
(

R(t)
∣

∣

∣
X̃(t)

)

p
(

P (t)
∣

∣

∣
X̃(t)

)

. (8)

III. BAYESIAN INFERENCE ON FACTOR GRAPH

Due to our assumptions, we can compute the a posteriori

distribution (4) at each time slot recursively (similarly to [1]):

p
(

x̃(t)
m

∣

∣

∣
R(1:t),P (1:t)

)

=

ˆ

p
(

R(t),P (t)
∣

∣

∣
x̃(t)
m , X̃(t)

∼m

)

× (9)

∏

n∈M

p
(

x̃(t)
n

∣

∣

∣
x̃(t−1)
n

)

p
(

x̃(t−1)
n

∣

∣

∣
R(1:t−1),P (1:t−1)

)

dX̃(t)
∼m.

where X̃
(t)
∼m denotes all state vectors at time slot t except x̃m.

Hence, given p(x̃
(t−1)
n |R(1:t−1),P (1:t−1)) ∀n, we

create a factor graph of p(R(t),P (t)|x̃
(t)
m , X̃

(t)
∼m)×

∏

n∈M p(x̃
(t)
n |x̃

(t−1)
n ) – shown in Fig. 1 – taking into

account both the evidence (given by measurements

likelihood) and state temporal evolution (according to a

mobility model). Vertices on top have as downward messages

p(x̃
(t−1)
n |R(1:t−1),P (1:t−1)), so that performing the SPA on

this FG leads to approximations of (4).

Thanks to A1-A4, (9) can be factorized as follows:

∏

m∈M






fm

(

x̃(t)
m , x̃(t−1)

m

)

∏

n∈Mm
n<m

hnm

(

x̃(t)
m , x̃(t)

n

)

∏

s∈Sm

gsm

(

x̃(t)
m

)






,

(10)

where fm

(

x̃
(t)
m , x̃

(t−1)
m

)

≡ p
(

x̃
(t)
m

∣

∣

∣
x̃
(t−1)
m

)

represents tem-

poral evolution, hnm

(

x̃
(t)
m , x̃

(t)
n

)

≡ p
(

rnm

∣

∣

∣
, x̃

(t)
m x̃

(t)
n

)

rep-

resents the range measurement likelihood given the positions

of nodes m and n, and gsm

(

x̃
(t)
m

)

≡ p
(

ρsm

∣

∣

∣
x̃
(t)
m

)

repre-

sents the pseudorange measurement likelihood given the state

(position-bias) of node m. The resulting FG representation is

depicted in Fig. 1. The marginal posteriors at each time slot

Figure 1. FG model for hybrid cooperative positioning. Red boxes represent
physical nodes (i.e., factors inside a box are computed internally by a node).
Instead, factors connected to pairs of nodes imply message exchanges. This
representation allows a direct mapping of the FG onto the physical network,
hence a distributed implementation.

(4) can be estimated in a distributed manner by executing SPA,

similarly as in [1], leading to an algorithm we name HSPAWN.

IV. PARAMETRIC BELIEF PROPAGATION IN H-SPAWN

A. SPA and H-SPAWN

In the proposed H-SPAWN algorithm, nodes exchange mes-

sages according to the well-known belief propagation update

rules [4], [5]. Letting Fm be the set of factors connected to

variable node m and Vf the set of variables connected to factor

ϕ, messages from m to ϕ are of the form

Mm→ϕ(x̃m) =
∏

h∈Fm\ϕ

Mh→m(x̃m), (11)

and messages from ϕ to m are

Mϕ→m(x̃m) =

ˆ

ϕ
(

x̃m, {x̃j}j∈Vf\m

)

∏

j∈Vf\m

Mj→ϕ(x̃j) d {∼ x̃m} .

(12)

where the notation
´

. . .d {∼ x̃m} denotes integration over

all the variables involved in ϕ except x̃m.

Since in the considered model factors are connected to one

or, at most, two variables, the above expression simplifies

to the factor itself for satellite factors (Mgsm→m(x̃m) =
gsm(x̃m)) and for temporal or peer-to-peer factors the product

in (12) contains one term only. This message passing scheme

can be directly mapped on the network nodes, making pos-

sible a distributed implementation. Messages from satellite

factors (Mgsm→m) are computed by node m based on the

data received from the satellite; temporal messages (Mfm→m)

are computed internally by node m; peer-to-peer messages

(Mhmn→n) involve actual messages (i.e., packets over the

network) passed from node m to n, and are computed by

n based on the information received from m (rmn and x̂m).

As the messages are functions of continuous variables, care

must be taken in the message representation. We have chosen a

parametric message representation in H-SPAWN, since it has

lower computational and communication requirements com-

pared to a non-parametric (sample-based) approach. All beliefs

and messages are thus approximated by known probability

distribution families, therefore they can be represented by the

parameters of each family. In the remainder of this section, we

describe these families and how (11)-(12) can be computed for

those families.



(a) Physical network. (b) Corresponding factor graph.

Figure 2. Simulation scenario.

B. Distribution Families

1) Beliefs of position-bias variables x̃ are approximated by

multivariate Gaussian distributions Nx̃ (µx̃, Σx̃), whose

parameters are mean µx̃ =
[

µx µb

]

and covariance

matrix Σx̃. The p.d.f. is of the form

1
√

8π3|Σx̃|
exp

[

−
1

2
(x̃− µx̃)

T
Σ−1

x̃
(x̃− µx̃)

]

. (13)

2) Peer-to-peer messages are represented by “cylindrical

distributions” Cx̃
(

̺, µx, σ
2
̺

)

, characterized by radius ̺,

center µx (position of peer), variance σ2
̺. This family is

similar to the D distribution introduced in [6], but with

uniform bias probability (inside a certain interval) since

peer-to-peer messages do not carry any information

about bias. The p.d.f. is of the form

1

ZC
exp

[

−
1

2σ2
̺

(‖x− µx‖ − ̺)
2

]

, (14)

where ZC is a normalizing constant.

3) Satellite messages involve the b component as well

and are therefore represented by a “conic distribution”

family Vx̃

(

̺, µs, σ
2
̺

)

, with radius ̺, center µs (satellite

position) and variance σ2
̺ . The p.d.f. is of the form

1

ZV
exp

[

−
1

2σ2
̺

(‖x− µs‖+ b− ̺)2
]

, (15)

where again ZV is a normalization constant.

C. Message Filtering

The integration in (12) involves “filtering” the incoming

message with the factor itself. Three cases can be distin-

guished.

1) Messages from temporal factors are computed within

agents and propagate the beliefs x̃ at time t − 1 to

time t. Position update can be determined according

to a predefined mobility model, while bias update can

take into account a clock drift model. Based on these

two models, a new position µx̃(t) is estimated based on

µ
x̃(t−1) . In addition, since every prediction carries some

uncertainty, we assume that the variance is increased

by some function (e.g., linear with the elapsed time),

such that Σ
x̃

(t)
m

� Σ
x̃

(t−1)
m

. The temporal message is

then defined as

Mfm→m

(

x̃(t)
m

)

:= N
x̃

(t)
m

(

µ
x̃

(t)
m
, Σ

x̃
(t)
m

)

. (16)

(With a slight abuse of notation, symbol := means that

the message is the p.d.f. of the considered distribution).

2) Messages from satellite factors are computed by agents,

based on a satellite position and pseudorange. These

messages belong to the conic distribution V :

M
(t)
gsm→m

(

x̃(t)
m

)

:= V
x̃

(t)
m

(

ρ(t)sm, x(t)
s , σ2

ρ
(t)
sm

)

. (17)

3) Messages from peer-to-peer factors are computed by

agents, based on peer-to-peer ranges and peer informa-

tion. These messages belong to the cylindrical distribu-

tion C:

M
(t)
hnm→m

(

x̃(t)
m

)

:= C
x̃

(t)
m

(

r(t)nm,µ
x

(t)
n
, σ2

r
(t)
nm

+ trΣ
x

(t)
n

)

,

(18)

where for simplicity the uncertainty of the peer’s posi-

tion is assumed circular with a radial variance equal to

the sum of the variances of axes.

D. Message Multiplication

Message multiplication is used both for belief marginal-

ization and computation of messages from variable nodes to

factor nodes (11). Due to the different shapes of the incoming

messages, the multiplication is approximated as a multivariate

Gaussian distribution without any restriction on the covariance

matrix, so it can take any ellipsoidal shape:

Mm→ϕ(x̃
(t)
m ) := N

x̃
(t)
m

(

µ
x̃

(t)
m
, Σ

x̃
(t)
m

)

, (19)

p̂
(

x̃(t)
m

)

:= N
x̃

(t)
m

(

µ
x̃

(t)
m
, Σ

x̃
(t)
m

)

. (20)

The problem is then reverts to finding the parameters of the

chosen output distribution that best approximate the product

of the incoming parametric messages. This is achieved by

importance sampling, sample mean and variance estimators,

as described in Alg. 1.

Algorithm 1 Parametric Message Multiplication

Require: Initial estimate of µ̂x̃, Σ̂x̃.

1: repeat

2: Draw N samples x̃k from N
(

µ̂x̃, Σ̂x̃

)

.

3: Compute the probability of each sample q (x̃k) in the

distribution it was drawn from, using (13).

4: Evaluate the p.d.f. of each message in the multiplication

at the given samples pi (x̃k) using Eqs. (13), (14), (15).

5: Assign a weight to each sample as: wk =
∏

i
pi(x̃k)

q(x̃k)
,

then normalize them such that
∑N

k=1 wk = 1.

6: Estimate new parameters with the weighted sample

mean and covariance estimators:

µ̂x̃ =
∑N

k=1 wkxk,

Σ̂x̃ =
∑N

k=1 wk(xk−µ̂x̃)(xk−µ̂x̃)
T

1−
∑

N
k=1 w2

k

.

7: until convergence

8: return µ̂x̃, Σ̂x̃.



V. SIMULATION RESULTS

A. Simulation Setup

To test H-SPAWN performance we use the scenario depicted

in Fig. 2 (a). Each of the three agents sees two satellites and

can communicate with all other peers. The corresponding FG

is depicted in Fig. 2 (b). Clearly, none of the agents would be

able to localize itself without peer-to-peer information.

Agents are placed randomly in an area of 100m × 100m;

their clock bias values are random as well, drawn from a

uniform distribution between −10 m and 10 m. Satellites are

placed at distances on the order of 20.000 km from the agents.

Pseudorange measurement noise standard deviation is σsm =
4 m ∀s,m, while range measurement noise has a σnm = 20
cm standard deviation ∀n,m. All initial beliefs are set to

Gaussian distributions centered in the origin with very large

variances. The scenario is static (i.e., agents do not move),

hence temporal factor updates (16) are as follows: µ
x̃

(t)
m

=
µ

x̃
(t−1)
m

(positions are kept constant), Σ
x̃

(t)
m

= Σ
x̃

(t−1)
m

+ I

(position and bias uncertainty is increased by 1 m through the

identity matrix I). At each time slot, new measurements are

generated and H-SPAWN is run until convergence is reached

in the given slot. The number of iterations needed depends

on the network size and topology. In the example of Fig. 2,

convergence is reached after the second iteration.

H-SPAWN performance is compared to two other cooper-

ative positioning approaches. As a non-Bayesian approach,

we consider cooperative least squares (CLS), implemented

according to the iterative descent algorithm proposed in [1]

and extended to the hybrid GNSS and terrestrial ranging like in

[7]. As a Bayesian approach, we consider the hybrid extended

Kalman filter (EKF) algorithm presented in [8]. To make EKF

consistent with CLS and H-SPAWN, peer position variances

are summed to range measurement variances – as it is done

in H-SPAWN, eq. (18) – and the mobility model is the same

as in H-SPAWN (Sec. IV-C).

B. Performance Comparison

Fig. 3 depicts the convergence of position and bias estimates

for the three algorithms, with the network configuration of

Fig. 2. Faster convergence of H-SPAWN can be appreciated

compared to CLS and EKF. Also, the estimated covariances

of H-SPAWN always contain the true value inside the ±3σ
interval, whereas the EKF tends to be too optimistic. CLS, on

the contrary, does not provide any information to evaluate the

estimation uncertainty.

For a quantitative performance comparison, Fig. 4 shows the

CDFs of positions and bias error – computed as the difference

between true value and (mean) estimated value – for the 3

algorithms, averaged over 100 Monte Carlo simulations of 10
time slots each. At every Monte Carlo run, a new network

topology is created based on the same scenario of Fig. 2, with

random agents’ positions and biases in the given range.

Each panel shows error CDFs after 1 and 10 slots. In both

cases, H-SPAWN turns out to outperform CLS and EKF, and a

remarkable gap can be seen especially after 1 slot. This result

means that H-SPAWN requires significantly less measurements

to provide an accurate estimation.

Other advantages of H-SPAWN are: (i) it is not sensitive

to the initial guess (which, on the contrary, is very critical

for CLS), (ii) is less likely to get stuck in local minima than

both CLS and EKF, and (iii) can be extended to non-Gaussian

distributions and non-linear likelihood functions (whereas EKF

is intrinsically dependent on the Gaussian assumption and

linearization of the state and/or measurement equations).

C. Complexity

The complexity of H-SPAWN is dominated by message

multiplication (11). For an agent with its time message,

M peer-to-peer messages and S satellite-to-peer messages,

using N samples to represent its distribution and requir-

ing I iterations in Algorithm 1, the complexity scales as

O (N(M + S + 1)I). In contrast, the filtering step (12) can

be performed analytically in O(M + S + 1).

VI. CONCLUSION

The problem of hybrid positioning for wireless networks has

been addressed in this paper by proposing a novel, distributed

approach based on iterative message passing on a factor graph

model. The resulting H-SPAWN algorithm, which extends the

previous SPAWN proposed in [1] for peer-to-peer positioning,

combines terrestrial ranging from neighboring peers and pseu-

doranging from visible satellites, and provides an estimation

of the a posteriori probability of the state (position and clock

bias) of each node. Simulation results show the improved

performance of H-SPAWN compared to competing algorithms,

such as cooperative least squares and extended Kalman filter.
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Figure 3. Convergence of H-SPAWN, Cooperative LS and EKF. The plots show, for each time slot, the value obtained at convergence (2 iterations in the
considered network).

Figure 4. Cumulative density functions of H-SPAWN, CLS, and EKF position and bias errors averaged over 100 Monte Carlo runs with different positions
and biases of agents. Light lines = error after 1 time slot; bold lines = error after 10 time slots.


	CPL-IEEE-firstpage.pdf
	CacPenWymGar10

