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Abstract—Cognitive radio technology has become a promising
approach to increase the efficiency of spectrum utilization. Since
cognitive radio users are vulnerable to malicious attacks, security
countermeasures are crucial to the successful deployment of
cognitive radio networks in the future. In this paper, we focus
on defending against the jamming attack, one of the major
threats to cognitive radio networks, where several malicious
attackers intend to jam the secondary user’s communication
link by injecting interference. We model this scenario into a
jamming game, and derive the optimal strategy through the
Markov decision process approach. Furthermore, a learning
scheme is proposed for the secondary user to observe the wireless
environment and estimate parameters such as primary users’
access pattern and the number of attackers. Finally, simulation
results are presented to verify the performance.

I. INTRODUCTION

As a revolutionary communication paradigm that enables

more efficient and intelligent usage of spectrum resources,

cognitive radio technology [1] has been receiving a growing

attention in the last decade. In a cognitive radio network,

unlicensed users (secondary users) are allowed to access

licensed bands on a non-interference basis to legacy spectrum

holders (primary users). Since secondary users usually com-

pete for limited spectrum resources and are capable of acting

adaptively and intelligently, it is reasonable to assume they

are selfish in nature, and hence game theory has been widely

applied as a flexible and proper tool to model and analyze

their behavior in the network (see [2] and references therein).

Cognitive radio networks are extremely vulnerable to ma-

licious attacks, partly because secondary users do not own

the spectrum, and hence their opportunistic access cannot

be protected from adversaries. Moreover, malicious attackers

are also able to take advantage of technology evolution,

such as flexible software/hardware and capabilities of learning

and reasoning, which make them even more powerful and

dreadful than before. As a result, security countermeasures

are crucial to the successful deployment of cognitive radio

networks. For instance, in [3], the primary user emulation

attack was described and a transmitter verification scheme

was proposed to test whether the given signal came from a

primary user; [4] discussed one kind of attack where malicious

users attempted to mislead the learning process of secondary

users; a Hammer model was employed to identify, analyze and

assess denial of service attacks in [5]; in [6], a malicious user

reporting false sensing results would be found and excluded

from the collaborative spectrum sensing when the calculated

“suspicious” level was beyond a certain threshold.

In this paper, we mainly focus on the jamming attack, one

of the major threats to cognitive radio networks, where several

malicious attackers intend to interrupt the communications

of secondary users by injecting interference. Considering a

situation where a secondary user could hop across multiple

bands in order to reduce the probability of being jammed,

we derive the optimal defense strategy for the secondary user

using the Markov decision process (MDP) approach [7]. The

optimal strategy strikes a balance between the cost associated

with hopping and the damage caused by attackers.

Moreover, in order to determine the optimal strategy, the

secondary user needs to know some information, e.g., the

number of attackers, which may not be available directly. The

secondary user has to observe and learn from the environment.

Therefore, we propose a learning process in this paper that the

secondary user estimates the useful parameters based on past

observations using the maximum likelihood estimation (MLE).

The rest of this paper is organized as follows. In Section

II, some related works are briefly reviewed. In Section III, the

system model is described. The optimal defense strategy with

perfect information is derived in Section IV, while the learning

algorithm is discussed in Section V. Section VI presents

simulation results, and Section VII concludes the paper.

II. RELATED WORKS

There have been quite a few papers on jamming attacks in

wireless ad hoc networks, such as [8] and [9]. A jamming

game with transmission costs was formulated in [8], and the

blocking probability was analyzed for different kinds of attack

strategies and defense strategies in [9]. However, the problem

becomes more complicated in a cognitive radio network where

primary users’ access has to be taken into consideration.

In the context of cognitive radio networks, [10] modeled

an attack-and-defense problem as a stochastic game where

secondary users reserved several bands to transmit data or

control messages. [11] derived the optimal defense strategy

when the secondary user equipped with multiple radios could

access several bands simultaneously. However, in this paper,

we consider the scenario with a single-radio secondary user,

and hence the defense strategy is to hop across different bands.
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Hopping as a defense strategy was also considered in [12]

which derived the Nash equilibrium in a one shot game and

applied this equilibrium strategy to a multi-stage game. This

is different from our approaches. In our work, we explicitly

model transitions in time as Markov chains, take the cost

and damage into account in addition to communication gains,

and further develop a learning process to estimate unknown

parameters.

III. SYSTEM MODEL

Consider the situation where a secondary user (e.g., a

secondary base station) opportunistically accesses one of the

predefined M licensed bands, and m malicious attackers

intend to jam the secondary user’s communications.

Assume each licensed band is time-slotted and the access

pattern of primary users can be characterized by an ON-OFF

model [13]. As shown in Fig. 1, one band can either be busy

(ON) or idle (OFF) in one time slot, and the state can be

switched from ON to OFF (or from OFF to ON) with a

transition probability α (or β). We assume all bands share

the same channel model and parameters, but different bands

are used by independent primary users.

In order to avoid interference to primary users, the sec-

ondary user has to synchronize with the primary network, and

detect the presence of the primary user at the beginning of

each time slot, as shown in Fig. 2. We assume the secondary

user is equipped with a single radio, and hence can only sense

and use one of the M candidate bands at any time slot. When

the primary user is absent in that band, the secondary user

can utilize the spectrum yielding a communication gain R;

otherwise, the secondary user has to tune his/her radio to

another band and detect the availability of that band at the

beginning of the next time slot. The cost associated with this

spectrum hopping is denoted by C.

We assume there are m (m ≥ 1) malicious single-radio at-

tackers attempting to jam the secondary user’s communication

link. Because primary users’ usage of spectrum is enforced by

their ownership of bands, attackers do not want to interfere

with primary users either. We assume the attackers use energy

detectors which cannot distinguish primary users’ or secondary

users’ signals. As illustrated in Fig. 2, an attacker tunes the

radio to one of the bands at the beginning of a time slot to

sense the presence of the primary user. If the primary user is

absent, the attacker continues to detect whether the secondary

user is utilizing this band. On finding the secondary user, the

attacker will immediately inject jamming power which makes

the secondary user fail to decode data packets. When all the

attackers coordinate to maximize the damage, they detect m
channels in a time slot. We assume that the secondary user

suffers from a significant loss L when jammed, since normal

communication is interrupted and considerable effort is needed

to reestablish the link.

When there are no malicious attackers, considering the hop-

ping cost C, the secondary user should always stay in a fallow

licensed band until the primary user reappears. However, in

the presence of attackers, the longer the secondary user stays

Fig. 1. An ON-OFF model for primary users’ spectrum usage.

Fig. 2. The time slot structure where the secondary user and the attacker are
synchronized to the primary network. The secondary user can access the band
if no primary activity is sensed; the attacker senses secondary signals after
no primary signals are detected, and jams the band if finding the secondary
user.

in a band, the higher risk to be exposed to attackers. In other

words, sometimes proactive hopping to another band may help

to hide from attackers.

Therefore, this situation can be modeled into a multi-stage

game in which players are the secondary user and m malicious

attackers. At the end of each time slot, the secondary user

decides either to stay or to hop for the next time slot, based

on observation of the current and past slots. The secondary

user receives an immediate payoff U(n) in the nth time slot,

which is the gain minus the cost and damage,

U(n) =R · 1(Successful transmission)− L · 1(Jammed)

− C · 1(Choosing the action ‘hop’),
(1)

where 1(·) is an indicator function returning 1 when the

statement in the parenthesis holds true and 0 otherwise. The

average payoff U , which the secondary user wants to maxi-

mize but malicious attackers want to minimize, is a discounted

sum of immediate payoffs,

U =

∞
∑

n=1

δnU(n), (2)

where the discount factor δ (0 < δ < 1) measures how much

the secondary user values a future payoff over the current one.

IV. OPTIMAL STRATEGY WITH PERFECT KNOWLEDGE

In this section, we derive the optimal strategy that the

secondary user should adopt when perfect information is

available. Learning for unknown parameters will be discussed

in the next section.

In order to catch the secondary user as soon as possible, the

attackers should coordinately tune their radios randomly to m
undetected bands in each time slot, until this process starts

over when either all bands have been sensed or the secondary

user has been found and jammed. We will derive the optimal
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(a) Transition of states when taking the action ‘hop’.

(b) Transition of states when taking the action ‘stay’.

Fig. 3. Markov chains of state transitions when different actions are taken.

defense strategy for the secondary user assuming that attackers

stick to this attack strategy.

Under the assumption of the fixed attack strategy, the

jamming game can be reduced to a Markov decision process,

since only the defense strategy needs to be taken into account.

In what follows, we first show how to model the scenario as

an MDP, and then solve it using standard approaches.

A. Markov Models

At the end of the nth time slot, the secondary user observes

the state of the current time slot S(n), and chooses an action

a(n), that is, whether to tune the radio to a new band or

not, which takes effect at the beginning of the next time slot.

If the primary user occupied the band or the secondary user

was jammed in the nth time slot, denoted by S(n) = P and

S(n) = J , respectively, the secondary user has to hop to a

new band, i.e., a(n) = h; otherwise, the secondary user has

transmitted a packet successfully in the time slot, and possible

actions are ‘to hop’ (a(n) = h) and ‘to stay’ (a(n) = s). If

this is the Kth consecutive slot with successful transmission

in the same band, the state is denoted by S(n) = K. For

brevity, we drop the time index n wherever there is no room

for ambiguity in the rest of the paper. According to (1), the

immediate payoff depends on both the state and the action,

U (S, a) =















R, if S ∈ {1, 2, 3, . . . , }, a = s;
R− C, if S ∈ {1, 2, 3, . . . , }, a = h;
−L− C, if S = J ;
−C, if S = P.

(3)

The transition of states can be described by Markov chains,

as shown in Fig. 3. The transition probabilities depend on

which action has been taken. Hence, we use p(S′|S, h) and

p(S′|S, s) to represent the transition probability from an old

state S to a new state S′ when taking the action h and the

action s, respectively.

If the secondary user hops to a new band, transition prob-

abilities do not depend on the old state, and furthermore, the

only possible new states are P (the new band is occupied by

the primary user), J (transmission in the new band is detected

by an attacker), and 1 (successful transmission begins in the

new band). When the total number of bands M is large, i.e.,

M ≫ 1, we can assume that the probability of primary user’s

presence in the new band equals the steady-state probability

of the ON-OFF model in Fig. 1, neglecting the case that the

secondary user hops back to some band in very short time,

p(P |S, h) =
β

α + β

△
= γ, ∀S ∈ {P, J, 1, 2, 3, . . . , }. (4)

Provided that the new band is available, the secondary user

will be jammed with the probability m/M , since each attacker

detects one band without overlapping. As a result, transition

probabilities are

p(J |S, h) = (1− γ)
m

M
, ∀S ∈ {P, J, 1, 2, 3, . . . , };

p(1|S, h) = (1− γ)
M −m

M
, ∀S ∈ {P, J, 1, 2, 3, . . . , }.

(5)

On the other hand, if the secondary user stays in the same

band, the primary user may reclaim the band with probability

β given by the ON-OFF model. With the primary user absent,

the state will go to J if transmission is jammed, and will

increase by 1 otherwise. Note that s is not a feasible action

when the state is in J or P . At state K, only max(M−Km, 0)
bands have not been detected by attackers, but another m
bands will be detected in the upcoming time slot; therefore, the

probability of jamming conditioned on the absence of primary

user is given by

fJ(K) =

{

m
M−Km

, if K < M
m
− 1;

1, otherwise.
(6)

To sum up, transition probabilities associated with the action

s are as follows: ∀K ∈ {1, 2, 3, . . .},

p(P |K, s) = β,

p(J |K, s) = (1− β)fJ (K),

p(K + 1|K, s) = (1− β)(1− fJ (K)).

(7)

B. Markov Decision Process

If the secondary user stays in the same band for too

long, he/she will eventually be found by an attacker, as it

can be seen from (6) and (7) that p(K + 1|K, s) = 0 if

K > M/m − 1. Therefore, we can limit the state S to a

finite set {P, J, 1, 2, 3, . . . , K̄}, where K̄ = ⌊M/m − 1⌋ and

the floor function ⌊x⌋ returns the largest integer not greater

than x.

An MDP consists of four important components, namely, a

finite set of states, a finite set of actions, transition probabili-

ties, and immediate payoffs. As we have already specified all

of them, the defense problem is modeled by an MDP, and the

optimal defense strategy can be obtained by solving the MDP.

For an MDP, a policy is defined as a mapping from a state

to an action, i.e., π : S(n) → a(n). In other words, a policy π
specifies an action π(S) to take whenever the user is in state

S. Among all possible policies, the optimal policy is the one

that maximizes the expected discounted payoff. The value of

a state S is defined as the highest expected payoff given the

MDP starts from state S, i.e.,
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V ∗(S) = max
π

E

(

∞
∑

n=1

δnU(n)

∣

∣

∣

∣

the initial state is S

)

, (8)

where the optimizer is the optimal policy. The optimal policy

is the optimal defense strategy that the secondary user should

adopt since it maximizes the expected payoff.

An important but straightforward idea is that after a first

move the remaining part of an optimal policy should still

be optimal. Hence, the first move should maximize the sum

of immediate payoff and expected payoff conditioned on the

current action. This is the well-known Bellman equation [7],

V ∗(S) = max
a∈{h,s}

(

U(S, a) + δ
∑

S′

p(S′|S, a)V ∗(S′)

)

. (9)

The values of states can be calculated from a standard pro-

cedure called value iteration [7]. With all values known,

the optimal policy π∗(S) is the maximizer to the Bellman

equation.

Since the probability of being jammed will be larger when

the secondary user stays in the same band for a longer time,

we can expect that there is a critical state K∗(K∗ ≤ K̄)
beyond which the damage overwhelms the hopping cost. If the

secondary user stays in the same band for a short period (≤
K∗ time slots), he/she should stay to exploit more; otherwise,

he/she should proactively hop to another band since the risk of

being jammed becomes significant. K∗ can be obtained from

solving the MDP, and the optimal strategy becomes

a∗ = π∗(S) =

{

s, if 1 ≤ S ≤ K∗;
h, otherwise.

(10)

V. LEARNING THE PARAMETERS

In the previous section, we have shown that the secondary

user has an optimal strategy with perfect knowledge. Although

one may argue that sometimes it is a reasonable assumption

to know primary users’ parameters β and γ as a priori, in

general it is quite difficult to know the exact number of

attackers m beforehand, as the secondary user cannot expect

reliable information from adversaries. Both overestimating and

underestimating the threat may result in inappropriate degrees

of protection. Therefore, in this section, we propose a learning

scheme in which the secondary user learns the parameters of

the environment using the maximum likelihood estimation.

The secondary user simply sets a value K̂∗ as an initial

guess of the optimal critical state K∗, and follows the strategy

(10) with the estimate K̂∗ during the whole learning period.

This guess needs not to be accurate, as the goal is merely to

observe transitions occurred during the learning period that can

be used for parameter estimation. After the learning period,

the secondary user gains knowledge of the environment, and

updates the critical state K∗ accordingly.

With full history available including states and actions, the

secondary user is able to count the occurrences of transitions

given either action. For example, the notation N
(h)
S,S′ gives the

total number of transitions from S to S′ with the action h
taken, whereas N

(s)
S,S′ is the total number of transitions with

the action s taken. We define KL = max{K : N
(s)
K,K+1 > 0},

H = {P, J,KL + 1}, and S = {1, 2, . . . ,KL}. Given the

sequence of transitions in history, the likelihood that such a

sequence has occurred can be written as a product over all

feasible transition tuples (S, a, S′) ∈ {P, J, 1, 2, 3, . . . ,KL +
1} × {s, h} × {P, J, 1, 2, 3, . . . ,KL + 1},

Λ =
∏

(S,a,S′) : p(S′|S,a)>0

(p(S′|S, a))
N

(a)

S,S′ . (11)

Moreover, if we define ρ
△
= m/M and relax it to any real

number, the following proposition gives the MLE of the

parameters β, γ, and ρ.

Proposition 1: Given N
(h)
S,S′ , S ∈ H and N

(s)
S,S′ , S ∈ S

counted from history of transitions, the MLE of primary users’

parameters are

βML =

∑

K∈S
N

(s)
K,P

∑

K∈S

(

N
(s)
K,P + N

(s)
K,J + N

(s)
K,K+1

) , (12)

γML =

∑

S∈H
N

(h)
S,P

∑

S∈H

(

N
(h)
S,P + N

(h)
S,J + N

(h)
S,1

) , (13)

and the MLE of attackers’ parameters ρML is the unique root

within an interval (0, 1/(KL +1)) of the following (KL +1)-
order polynomial,

1

ρ

(

∑

S∈H

N
(h)
S,J +

∑

K∈S

N
(s)
K,J

)

=
∑

K∈S

N
(s)
K,P

1
K
− ρ

+
N

(s)
KL,KL+1
1

KL+1 − ρ
.

(14)

Proof: With transition probabilities specified in (4) – (7)

and the fact that the number of transitions into a state equals

the number of transitions out of that state1, the likelihood of

observed transitions (11) can be decoupled into a product of

three terms Λ = ΛβΛγΛρ, where

Λβ =β
∑

K∈S
N

(s)
K,P (1− β)

∑

K∈S

(

N
(s)
K,J

+N
(s)
K,K+1

)

,

Λγ =γ
∑

S∈H
N

(h)
S,P (1− γ)

∑

S∈H

(

N
(h)
S,J

+N
(h)
S,1

)

,

Λρ =ρ
∑

S∈H
N

(h)
S,J

+
∑

K∈S
N

(s)
K,J · (1− (KL + 1)ρ)

N
(s)
KL,KL+1

·
∏

K∈S

(1−Kρ)N
(s)
K,P .

(15)

Then, by differentiating ln Λβ , ln Λγ , and ln Λρ and equating

them to 0, we obtain the MLE (12) (13) and (14).

To ensure that the likelihood is positive, ρ has to lie in the

interval (0, 1/(KL + 1)). Within this interval, the left-hand

side of equation (14) decreases monotonically and approaches

positive infinity as ρ goes to 0, whereas the right-hand side

increases monotonically and approaches positive infinity as ρ
goes to 1/(KL + 1). Therefore, there must be a unique value

of ρ ∈ (0, 1/(KL + 1)) which is the root of the equation, and

meanwhile, is the MLE ρML.

After the learning period, the secondary user rounds M ·ρML

to the nearest integer as an estimation of m, and calculate the

optimal strategy using the MDP approach described in the

previous section.

1It is completely true if the beginning state and the ending state are
identical; otherwise, there will be a difference of one transition associated
with the beginning and ending states, but the impact could be negligible when
the learning period is long enough.
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VI. SIMULATION RESULTS

In this section, we present some simulation results to eval-

uate the proposed defense strategy against jamming attacks.

In the simulation, we fix a set of parameters to gain some

insight of the defense strategy. The parameters are as follows:

the communication gain R = 5, the hopping cost C = 1, the

total number of bands M = 60, the discount factor δ = 0.95,

and the primary users’ access pattern β = 0.01, γ = 0.1.

We show the critical state K∗ obtained from the value

iteration of the MDP, when we change the value of damage L
and the number of attackers m. We assume that the secondary

user has perfect knowledge of the environment. As shown in

Fig. 4, if the damage from each jamming L is fixed, say

L = 10 for example, the critical state K∗ decreases from

11 to 3 when the number of attackers m increases from 2

to 6. Similarly, when the number of attackers m is fixed, the

critical state K∗ also decreases as the value of L increases. The

reason is that the secondary user should proactively hop more

frequently (i.e., K∗ is smaller) to avoid being jammed when

the threat from attackers are more stronger (more attackers

and/or more severe damage if jammed).

In Fig. 5, we present the damage caused by attackers

when the number of attackers varies, in terms of percentages

of payoff loss compared with a network without malicious

attackers. The damage L is set to 20 in this simulation. Besides

the optimal strategy (10), another two naive strategies are

simulated and compared. If the “always hopping” strategy is

employed, the secondary user will hop every time slot; if the

“staying whenever possible” strategy is adopted, the secondary

user will always stay in the band unless the primary user

reclaims the band or the band is jammed by attackers. When

the number of attackers is small, it is better to stay than

to hop, but when the number of attackers is large, hopping

outperforms staying. The optimal strategy, however, beats both

naive strategies in the entire range, as shown by the smaller

decrease in payoffs in the figure. For all strategies, more

damage is caused when there are more attackers.

VII. CONCLUSIONS

In this paper, we have investigated the proactive hopping as

a defense strategy against jamming attacks in a cognitive radio

network with multiple available bands. Since the attackers

want to find the secondary user as soon as possible, they should

adopt the strategy that randomly scans all the bands, and

the attack-and-defense problem can be reduced to a Markov

decision process, in which the optimal defense can be obtained

from the value iteration of the MDP. Because not all the

information may be available, a learning scheme has been

proposed to estimate the parameters through the maximum

likelihood estimation. Simulation results have been shown to

verify the performance.
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