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Abstract
This work proposes a low-complexity space-time adaptive processing (STAP) algorithm for
sensing applications built on a moving platform in the presence of strong clutters. The
proposed algorithm achieves low-complexity computation via two steps. First, it utilizes im-
proved fast approximated power iteration methods to compress the data into a much smaller
subspace. To further reduce the computational complexity, a progressive singular value de-
composition (SVD) approach is employed to update the inverse of the covariance matrix of
the compressed data. As a result, the proposed low complexity STAP algorithm can achieve
order-of-magnitude computational complexity reduction as compared to conventional STAP
algorithms. Simulation results are shown to confirm the validity of the proposed algorithm.
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ABSTRACT

This work proposes a low-complexity space-time adaptive
processing (STAP) algorithm for sensing applications built
on a moving platform in the presence of strong clutters. The
proposed algorithm achieves low-complexity computation
via two steps. First, it utilizes improved fast approximated
power iteration methods to compress the data into a much
smaller subspace. To further reduce the computational com-
plexity, a progressive singular value decomposition (SVD)
approach is employed to update the inverse of the covariance
matrix of the compressed data. As a result, the proposed low-
complexity STAP algorithm can achieve order-of-magnitude
computational complexity reduction as compared to conven-
tional STAP algorithms. Simulation results are shown to
confirm the validity of the proposed algorithm.

1. INTRODUCTION
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Fig. 1. Illustration of clutter interference spectrum.

In sensing applications built on a moving platform, re-
turned signals are commonly contaminated by clutter inter-
ference of different incoming angles and Doppler frequencies
as shown in Fig. 1. To accurately detect moving targets, ef-
fective clutter suppression techniques have become indispens-
able. Among many techniques developed for clutter suppres-
sion in the literature, space-time adaptive processing (STAP)
has emerged as one of the most promising techniques [1]. In
STAP, returned signals are filtered simultaneously over both

space and time domains. As a result, clutter interference can
be effectively removed regardless of its incoming angle and
Doppler frequency. However, the conventional STAP suffers
from prohibitively expensive computational complexity. De-
note by M and N the number of pulses and antennas, re-
spectively. The conventional STAP requires intensive matrix
inversion of dimension MN × MN . For practical systems
with MN on the order of hundreds, such a matrix inversion
requirement renders impractical the implementation of STAP.

To circumvent this obstacle, considerable research efforts
have been devoted to developing low-complexity STAP. Ac-
cording to Brennan’s rule, the rank of the clutter interference
covariance matrix is known to be much smaller than MN .
Thus, one way to achieve complexity reduction is to compress
the return signal into its signal subspace of rank r � MN
without incurring any information loss. In particular, [2] has
recently developed a low-complexity STAP scheme by ex-
ploiting a subspace tracking algorithm called fast approxi-
mated power iteration (FAPI) [3]. It was demonstrated in [3]
that FAPI can be employed to effectively compress the return
signal into a much smaller signal subspace, which enables
low-complexity STAP operating on the compressed data.

This work proposes a two-step low-complexity STAP
scheme in which the first step develops modified FAPI
schemes with improved convergence speed before applying
the modified schemes to compress the return data. Next, tak-
ing advantage of progressive singular vector decomposition
(PSVD) [4], we propose a PSVD-based low-complexity tech-
nique to compute the inverse of covariance matrix of the com-
pressed data recursively. The resulting low-complexity STAP
reduces the computational complexity from O (

(MN)3
)

to O ((MN)r). Finally, simulation results are shown to
demonstrate that the proposed STAP achieves near-optimal
performance as compared to the conventional STAP using
full matrix inversion.

Notation: Vectors and matrices are denoted by boldface
letters. ‖·‖ represents the Euclidean norm of the enclosed
vector and |·| denotes the amplitude of the enclosed complex-
valued quantity. IN is the N × N identity matrix. Fur-
thermore, we use (·)H for Hermitian transposition. Finally,
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[A]i,j denotes the i-th row and j-th column entry of matrix A
whereas A (j, :) the j-th column of A.

2. SIGNAL MODEL

Fig. 2. Illustration of return signal structure over range cells.

Received signals are arranged in range cells as shown in
Fig. 2. STAP first constructs data vectors x(k) of length MN
by stacking up the samples collected over M pulses from each
antenna in the k-th range cell, where k = 1, 2, · · · ,K. To
examine if a target is present in the k-th range cell, a clutter-
plus-noise covariance matrix C(k) of dimension MN×MN
is computed from its neighboring range cells assuming that
these neighboring range cells are impaired by the same clut-
ters and yet target-free. Denote by Ωk the index set of range
cells used to compute C(k). Thus, C(k) can be expressed as

C(k) =
1

|Ω(k)|
∑

�∈Ω(k)

x(�)x(�)H , (1)

where |·| stands for the cardinality of the enclosed quantity.
It has been shown that clutter can be optimally suppressed

by [1]:
z(k) = C(k)−1x(k). (2)

Upon obtaining z(k), target detection algorithms can be per-
formed. Despite the good performance of (2), the matrix in-
version C(k)−1 incurs prohibitively expensive computation.
To cope with this problem, different subspace-tracking algo-
rithms have been proposed to first reduce the dimension of
x(k) before performing the matrix inversion. Denote by W
of dimension MN × r the subspace concentration matrix,
where rank (C(k)) < r � MN . The compressed signal
after subspace concentration process can be mathematically
expressed as:

y(k) = W Hx(k), (3)

with W is given by the following optimization function

W = arg min
W̃

∥∥∥y(k) − W̃W̃ Hx(k)
∥∥∥2

. (4)

The optimization problem in (4) can be numerically solved
with subspace-tracking algorithms such as FAPI [2].

Next, target detection can be similarly performed after the
compressed signal is filtered with

r(k) = R(k)−1y(k). (5)

where R(k) is the corresponding compressed clutter-plus-
noise covariance matrix and it reads

R(k) =
1

|Ω(k)|
∑

�∈Ω(k)

y(�)y(�)H . (6)

It is worth noting that R(k) is of dimension r × r, which is
significantly smaller than C(k).

In the following section, we first develop a modified
FAPI with expedited convergence behavior by taking into
account noise impairment. Furthermore, a progressive SVD
approach is proposed to compute R(k)−1 from R−1

k−1 in a
low-complexity recursive fashion by exploiting the correla-
tion between R(k)−1 and R−1

k−1 for k > 1.

3. PROPOSED SCHEME
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…M Taps
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Progressive SVD

Fig. 3. Illustration of the proposed low-complexity two-step
STAP.

Figure 3 depicts the proposed two-step STAP comprised
of the fast subspace concentration step and the progressive
SVD step. In the following, we will discuss two steps in de-
tails. Since the proposed scheme is an iterative algorithm, we
use W (k) to denote W updated with the (k − 1)-th input
vector x(k) for k = 1, 2, · · · ,K.

3.1. Modified fast approximated power iteration (MFAPI)

The fast approximated power iteration (FAPI) algorithm de-
veloped in [3] is an efficient approximation of the conven-
tional projection approximation subspace tracking (PAST)
algorithm proposed in [5]. By exploiting the approximation
of W (k) ≈ W (k − 1), FAPI can reduce the computational
complexity of PAST from O (

NMr2
)

to O (
3NMr + 5r2

)
.
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However, the derivation of FAPI does not explicitly take into
account the impact of additive noise. As a result, its per-
formance degrades as signal-to-noise ratio (SNR) decreases.
More specifically, FAPI is derived from the approximated
power iteration (API) algorithm [6]. In API, the auxiliary
matrix Z is updated as

Z(k) =
1
β

Θ(k)H
[
Ir − g(k)y(k)H

]
Z(k − 1)Θ(k)−H ,

(7)
where

Θ(k) = W (k − 1)HW (k), (8)

and g(k) of length r has the same definition as that in [3].
It is important to observe that the last term in (7), Θ(k)−H ,

not only incurs O(r3) operation but also may enhance noise if
Θ(k) is noisy. Motivated by this observation, we propose the
following two modifications of (7). Recalling that Θ is nearly
orthonormal [3], it is reasonable to approximate Θ(k)−H as

Θ(k)−H = Θ(k). (9)

As a result, (7) becomes

Z(k) =
1
β

Θ(k)H
[
Ir − g(k)y(k)H

]
Z(k − 1)Θ(k). (10)

Note that (10) has the same computational complexity as (7).
Further computation reduction can be achieved by observing
that W comprises of orthonormal column vectors. Hence,
we can approximate Θ(k)−H ≈ Ir in (7) and Z(k) takes the
following form:

Z(k) =
1
β

Θ(k)H
[
Ir − g(k)y(k)H

]
Z(k − 1). (11)

It should be pointed out that (11) has O(r3) less operation as
compared to (7) and (10).

Following the same procedures proposed in [3], we can
derive the modified FAPI (MFAPI) by incorporating (10) and
(11). After some straightforward algebraic manipulations, we
can find the update functions for Z(k) using (10) and (11) are
given as follows, respectively.

Z(k) =
1
β

(
Z(k − 1) − g(k)h′(k) − ε(k)g(k)H

)
, (12)

and

Z(k) =
1
β

(Z(k − 1) − g(k)h′(k)) , (13)

where the definitions of h′(k) and ε(k) are the same as those
in [3] and given in Algorithm 1.

In the sequel, the MFAPI algorithms employing (12)
and (13) are referred to as the Noise-Robust MFAPI (NR-
MFAPI) and Low Complexity MFAPI (LC-MFAPI). The to-
tal computational complexity of NR-MFAPI and LC-MFAPI
is O (

3NMr + 5r2
)

and O (
3NMr + 3r2

)
, respectively.

The proposed NR/LC-MFAPI algorithms are summarized
in Algorithm 1.

Algorithm 1 Modified fast approximated power iteration
(NR/LC-MFAPI)

Initialization: W (0) =
[

Ir

0(n−r)×r

]
, Z(0) = Ir.

Procedure:
1: for k = 1, 2, · · · ,K do
2: y(k) = W (k − 1)Hx(k)
3: h(k) = Z(k − 1)y(k)
4: g(k) = h(k)

β+y(k)Hh(k)

5: ε2(k) = ‖x(k)‖2 − ‖y(k)‖2

6: τ(k) = ε2(k)

1+ε2(k)‖g(k)‖2+
√

1+ε2(k)‖g(k)‖2

7: η(k) = 1 − τ(k) ‖g(k)‖2

8: y′(k) = η(k)y(k) + τ(k)g(k)
9: h′(k) = Z(k − 1)Hy′(k)

10: NR-MFPAI:
ε(k) = τ(k)

η(k)

(
Z(k − 1)g(k) − (

h′(k)Hg(k)
)
g(k)

)
and (12) or
LC-MFPAI: (13)

11: e′(k) = η(k)x(k) − W (k − 1)y′(k)
12: W (k) = W (k − 1) + e′(k)g(k)H

13: end for

3.2. Progressive SVD (PSVD)

Despite the fact that the output of the subspace concentration,
y(k), has a much smaller dimension as compared to x(k),
computation of R(k)−1 in (5) for k = 1, 2, · · · ,K can remain
computationally expensive. To cope with this problem, it is
important to observe that R(k) and R(k − 1) are correlated.
This is because they are derived from some common com-
pressed data vectors and clutter variation between consecutive
pulse intervals is correlated. Thus motivated, we propose a
progressive SVD (PSVD) approach [4] to computes R(k)−1

in terms of R(k− 1)−1 and ΔR(k) = R(k)−R(k− 1), as-
suming R(k − 1)−1 is given and rank (ΔR(k)) � r. Upon
obtaining R(k)−1, the same procedures can be repeated to
derive ΔR(k + 1) recursively.

The low-rank assumption of ΔR(k) allows us to decom-

pose it into the following form: ΔR(k) =
Dk∑
d=1

αdqdq
H
d ,

where Dk
def= rank (ΔR(k)). Furthermore, qd and αd are

the eigenvectors and the associated eigenvalues, respectively,
with α1 ≥ α2 ≥ · · · ≥ αDk

. To achieve low-complexity
computation, we propose to employ the following rank-one
approximation to decompose ΔR(k):

ΔR(k) ≈ aaH . (14)

where a =
√

α1q1.
Finally, assuming that R(1)−1 is given and R(1) can be

decompose as
R(1) = USUH , (15)
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the rank-one PSVD algorithm is given in Algorithm 2.

Algorithm 2 Rank-one Progressive SVD (PSVD)

Initialization: R(1) = USUH

Procedure:
1: for k = 2, 3, · · · ,K do
2: Obtain R(k) according to (6);
3: Compute ΔR(k) = R(k) − R(k − 1);
4: Decompose ΔR(k) ≈ aaH ;
5: Obtain p and γ such that

γp =
(
I − UUH

)
a;

6: Construct an (r+1)×(r+1) diagonal matrix K whose
n-th diagonal element is given by

[K]n,n =

[[
S 0
0 0

]
+

[
UHa

γ

] [
UHa

γ

]H
]

n,n

,

for n = 1, 2, · · · , r + 1.
7: Denote by Ik = {ij} the index set satisfying

[K]in,in
≤ [K]im,im

for 1 ≤ n < m ≤ r + 1.

8: Define two auxiliary matrices: Ũ
def=

[
U p

]
and a

m × m diagonal matrix Λ with [Λ]n,n = [K]in,in
;

9: Update

U
def= Ũ (i1:m, :) ,

where m is a design parameter with 1 ≤ m ≤ r + 1;
10: Finally, compute

R(k)−1 = UΛ−1UH .

11: end for

Note that the computation complexity of Algorithm 2 is
O (

(3 + 2m)r2
)
, as compared to O (

r3
)

for direct matrix in-
version of R(k)−1. It should be emphasized that, rather than
(14), higher-rank approximation of ΔR(k) may lead to better
approximation accuracy at the price of higher computational
complexity. As shown in Sec. 4, simulation results suggest
that rank-one approximation in (14) is usually sufficient to
result in satisfactory performance.

3.3. Computational Complexity

The total computational complexity of the proposed two-step
STAP algorithm is thus given by O (

3NMr + (8 + 2m)r2
)

and O (
3NMr + (5 + 2m)r2

)
for PSVD in conjunction

with NR-MFAPI and LC-MFAPI, respectively. Clearly, this
stands for a substantial computational reduction as compared
to the full matrix inversion C(k)−1 required in (2), particu-
larly for practical values of N and M .

4. SIMULATION RESULTS

In this section, computer simulation is performed to verify
the performance of the proposed algorithm. Unless otherwise
specified, we use N = 8, M = 8 and K = 50 in our fol-
lowing simulation. From the Brennan’s rule, the rank of the
clutter covariance matrix is about 15. Thus, it is reasonable
to argue that setting r = 35 is sufficient to retain most of
the signal information contained in the original NM = 64-
dimensional space. Furthermore, we set parameters such as
pulse repetition frequency (PRF) and so on according to Table
2.1 in [1] and fix the look angel and platform mobile speed at
ϕL = π

3 and 90 m/s, respectively. Finally, we consider target-
free clutter signal corrupted by additive white Gaussian noise
(AWGN) with clutter-to-noise power ratio (CNR) given by ρ.

We first investigate the performance of the proposed
MFAPI in terms of the normalized error defined as:

J(W ) =
1
K

K∑
k=1

∥∥y(k) − WW Hx(k)
∥∥2

. (16)

Fig. 4 shows the convergence behavior of different subspace-
tracking algorithms as a function data vector index at ρ = 20
dB. Inspection of Fig. 4 suggests that NR-MFAPI approaches
the optimal curve derived from direct orthonormalization
whereas LC-MFAPI outperforms FAPI in terms of conver-
gence rate. After updating with 50 data vectors, all algorithms
converge to approximately the same signal subspace.

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

Data vector index

N
or

m
al

iz
ed

 E
rr

or
 (

dB
)

 

 
Optimal
FAPI
LC−MFAPI
NR−MFAPI

Fig. 4. Convergence behavior as a function data vector index
at CNR of 20 dB.

Next, we provide a holistic performance comparison us-
ing MFAPI in conjunction with PSVD. We first employ the
improvement factor (IF) as the performance metric. IF is
designed to measure the ratio of signal-to-noise ratio at the
output and input [1]. Fig. 5 depicts the IF as a function
of the normalized Doppler frequency normalized with re-
spect to PRF. For the given look angle and platform mobile
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speed, the clutter has a normalized Doppler frequency of
about 0.2. Fig. 5 shows that the proposed two-step low-
complexity algorithm using NR-MFAPI and PSVD has com-
parable performance as compared to the optimal algorithm
using full inversion of C(k) (i.e. without compression).
Furthermore, comparison between the performance curves
corresponding to the proposed algorithm and the algorithm
using NR-MFAPI to compressed the data but full inversion
of R(k) indicates that the PSVD incurs marginal perfor-
mance degradation. However, it should be borne in mind
that the proposed algorithm achieves the comparable perfor-
mance with an order-of-magnitude complexity reduction as
compared to the other two algorithms.
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Fig. 5. Performance comparison in terms of improvement fac-
tor (IF).

Finally, we compare the performance of different STAP
algorithms in terms of probability of detection as a function
of signal-to-jamming-noise ratio (SJNR) [1]. In this simula-
tion, we set M = 4, N = 16, K = 64 and r = 49. Further-
more, two jamming signals are simulated at angles of −40◦

and 25◦, respectively. Figure 6 shows that the conventional
sample covariance matrix (SCM)-based method suffers from
poor performance due to insufficient data as well as jamming.
In contrast, the proposed NR-MFAPI exhibits good perfor-
mance with about 5 dB degradation with respective to (w.r.t.)
the optimal detector using the true clutter-and-jamming co-
variance matrix whereas the LC-MFAPI and FAPI have simi-
lar performance of 15 dB degradation w.r.t. the optimal.

5. CONCLUSION

In this work, we proposed a low-complexity space-time adap-
tive processing (STAP) algorithm for sensing applications
built on a moving platform in the presence of strong clutters.
The proposed algorithm achieves low-complexity computa-
tion via two steps. It first utilizes improved fast approximated
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Fig. 6. Probability of detection obtained with different STAP
algorithms.

power iteration methods to compress the data into a much
smaller subspace followed by updating the inverse of the
covariance matrix of the compressed data in a progressive
singular value decomposition approach. As a result, the pro-
posed low-complexity STAP algorithms can achieve order-of-
magnitude computational complexity reduction as compared
to conventional STAP algorithms. Simulation results have
confirmed the validity of the proposed STAP algorithms.
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