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Abstract—In this paper, we propose a novel routing protocol, DTNs, nodes are free to move and no centralized network
PRO, for profile-based routing in pocket switched networks. infrastructure exists to provide communication among ehes
Differing from previous routing protocols, PRO treats node . hile nodes. So, DTN routing protocols exploit the capipbil

encounters as periodic patterns and uses them to predict the f nodes t f t dat h ith oth
times of future encounters. Exploiting the regularity of human O NOUES 10 periorm a peer-to-peer data exchange with other
mobility profiles, PRO achieves fast (low-delivery-latency) and Nnodes they encounter and strive to achieve data transfer eve

efficient (low-message-overhead) routing in intermittently con- when the connectivity in the network is intermittent. Howgv
nected pocket switched networks. PRO is self-learning, com- the above described smartphone networks also introduce new
pletely decentralized, and local to the nodes. Despite being S'mple’challenge for DTN routing protocolsThe nature of human

PRO forms a general framework, that can be easily instantiated bilit d the struct f ial network
to solve searching and querying problems in adhoc smartphone mobifity an € Slructure or social networks emerge as

networks. We validate the performance of PRO with the “Reality important factors in smartphone networks, while DTN rogtin
Mining” dataset containing 350K hours of celltower connectivity —algorithms have been oblivious to them.
and Bluetooth connection data, and compare its performance  Recently Pocket Switched Networks (PSNs) [6], [7], [8],
with that of previous approaches. . [9] have been formulated as a subfield of DTNs where each
o;;g%ng(r:n;_ost?r?ga Switched Networks, Human Mobility, node reprgsents a person with a communication device. &8ever
PSN routing protocols have been proposed [10], [11], [12],
. INTRODUCTION [13]. These work assume different models on human mobility
and community-structure, and use them for making routing

Cellphone technology has seen an adoption rate faster trE]aérgzisions. Compared to DTN protocols, PSN protocols make

any other technology in human history [1]: as of 2009, th&se of more information about the network (context aware-

number of cellphone subscribers has exceeded 3.3 b'”'ﬁ@ss), and in return aim to find faster paths to the destimatio

users. The rate of innovation in this field has also been

head-spinning. Nokia, Google, Microsoft, and Apple have a\1V|th low message overhead (by involving a small number of
' ' ' ! saelected nodes for message forwarding).

int.roduced cel.lphc.)ne operating systems (Symbian, Andr.0| In this work, we are motivated by the observation that
\éVlggogvs I,i\gg?ig?\, QZCSE) e?nsé)n?r;i ?rr]zv'cﬁdrﬁ) Fr)llessfo_lr_hegsaeblr':gaing smartphones it is possible to maintain more detailed
efn cel?phones which gre dubbed 'i hon ' enable contextual information about the nodes in the network, and
Celip ’ . BHArtphones, hence design faster and more lightweight routing protocols

location-aware services as well as empowering the users, o S o
than the existing work on PSNs. More specifically, we propose

generate and access multimedia c.ontent. AS SUCh’.Sma@.h% employ smartphones to learn the regularity of human
open new opportunities for searching and information ee&di

. . . . mobility profiles. Our previous analysis [14] of MIT’s Reli

applications. Consider the following scenario: Mining dataset, which is one of the biggest publicly avdidab

Scenario: Mike is about to go to funch with a colleague.cellphone connectivity data with 350K hours of celltower
He is trying to decide between an on-campus or off-campggnnectivity logs [15], shows that significant amount of faum
lunch location. He finds the Student Union cafes much moggopility (85%) exhibits spatial and temporal regularity avé
convenient than off-campus locations unless there is &studysers move between their top-k locations.
event in the Union that makes conversation impossible. SOHere, we propose a fast (|0W_de|ivery_|atency) and efficien
he uses his smartphone to query the noise level of thgw-message-overhead) routing protocol for PSNs, based o
Student Union. His query is forwarded hop-by-hop over th@e regularity of human mobility profiles and of intercoritac
smartphones of students, and reaches a smartphone indhénts. Our protocol, namely PRO (profile-based routing pro
Student Union, which answers the query by taking audioHevgcol), is simple yet general enough to be easily instasdiat
samples and re-routes the reply back to Mike's phone.  to solve the smartphone search application scenario we-intr

Delay Tolerant Networks (DTNs), which are also knowluced above. In particular the contributions of our paper ar
as intermittently connected networks, or opportunistiores  as follows:
and-forward networks [2], [3], [4], [5] investigate rougin « In a break from previous routing protocols, our protocol
techniques that would be of use in the above scenario. In treats node encounters as periodic patterns and exploit




them to predict the times of future intercontacts. Our « PRO routing protocol is completely decentralized and

profile-based estimation of intercontacts yields an accu- local to the nodes. PRO runs in an adhoc manner and
rate ranking of the potential forwarding nodes as to their does not depend on any central infrastructure or third
ability to deliver the message earlier to the destination. party like Telephone Service Providers.

Our PRO routing protocol uses self-learning nodes, ande Finally, we measure the performance of PRO on smart-
does not require pre-tuning. phone queries described above and show that PRO
We provide an analysis of the effect of forwarding quota  achieves similar query performance with Epidemic rout-

at each node and show that forwarding the message to 2 ing (in terms of delay and success) while using signifi-

other nodes is the most efficient strategy in terms of com- cantly less communication cost.

munication overhead and delay trade-off. Selecting 2 asQutline of the paper. In Section Il we discuss related

the quota improves the latency asymptotically comparggbrk on PSNs. In Section IIl, we present our PRO algorithm
to using 1 as the forwarding quota, whereas incrementifg profile-based forwarding of messages. Using the Reality
the quota to more than 2 leads to diminishing returnfining dataset, we evaluate the performance of PRO and

Due to the space limitations we relegate the details of oggmpare it with previous work on routing in PSNs in Section
theoretical analysis to our technical report [16]. Here Wg/. Finally, we conclude with Section V.

support our theoretical analysis with experimental rasult

in Section IV. Il. RELATED WORK

We give a simple algorithm for making routing deci- In this section, we categorize and present PSN routing
sions. A node selects the highest ranked 2 nodes in isotocols in three broad categories. In each category, wle pi
immediate neighborhood and forwards the message @aepresentative popular protocol and discuss it in moraildet
these nodes. Nodes that predict an intercontact with thater, in Section IV we use those three representative potgo
destination node in the near futumbgerved nodes) have to compare and contrast with our protocol.

priority over nodes that are unlikely to see the destination Flooding-based protocols. In DTNs, replication of the
node (on-observed nodes). Among the observed nodes,original message is an effective way to increase the prtibabi
nodes that are likely to meet the destination node soorarsuccessful delivery to the destinatidpidemic routing [20]
have more priority. If the current node is unable to fill its a representative example of these type of flooding-based
forwarding quota with eligible observed nodes, it uses theuting protocols. In epidemic routing, the messages in the
available quota on non-observed nodes. Among the naretwork diffuse like viruses by pairwise contacts between
observed nodes, nodes whose profiles differ most fronodes: when two nodes encounter they exchange all of their
the profile of the current node have more priority. Thenessages. A node is infected if it accepts a message from
rationale for this selection is to spread the message toasther node for forwarding.

diverse communities as possible to improve the probabil- The advantage of the epidemic routing is that it has low
ity of encountering observed nodes in those communitidatency, and it determines a lower limit for the latency of
Unlike the synthetic test sets generated by simulators, weessage delivery. On the other hand, too many copies of the
validate the performance of our routing protocol with @nitial message increase the overhead drastically in tesfns
real dataset. We use the “Reality Mining” dataset [18}affic congestion and energy. Several versions of the efile
which is one of the largest publicly available dataset®uting protocol [21], [22] have been proposed in order to
containing more than 350K hours of celltower and Bludimit the message overhead by imposing constraints such as
tooth connection data. We choose the Reality Mininggme limit, maximum hop count, forwarding probability, or
dataset for our validation since it is used as an evaluatiapplying different back-infection techniques to informdes
batch for several works [17], [18] and it is shown tabout the successful delivery of the message.

have similar user behavior with several other datasetsProbabilistic model-based protocols. A second category
which implies that the observed phenomenons are maft DTN routing protocols is based on proactive assump-
a specific artifact of the data itself [6], [19]. Using theions about node mobility. Random way-point model [23],
Reality Mining dataset, we compare the performance oéference point group mobility model [24], and entity based
our protocol with previous approaches over both celapproaches [25], [26] are examples of this category. These
based mobility datacparse granularity) and Bluetooth protocols assume/impose a mobility model a priori instelad o
connection datafifie granularity ). Our results show that constructing a model after studying real data.

PRO achieves similar success rate and latency (10% les# representative protocol in this categoryRsophet rout-
success and 10% more delay time) as the epidemic roig [5]. The idea behind Prophet is that the probability of
ing [20] with less than half the communication cost of thenessage delivery can be calculated by using transitiveetgli
epidemic routing. PRO also outperforms the Prophet [Bfobabilities. When nodemeets nodg, the delivery probabil-
and Bubble-rap [12] routing protocols (at least 20% lesty of node: for j is updated a®; ;(k+1) = (1— P, ;(k))* Py
delay time and 25% more success) with less communi- P, ;(k). Here, Py, = 0.75 is the initial probability given as
cation cost (at least 25% less communication than these input to the system. When nodeand j do not meet for
two protocols). m periods, the delivery probability is decreased exponkiyntia



using an aging factot?; ;(k+m) = o™«P; ;(k). Prophet uses is proportional to the logarithmic scale of the number of
the transitive delivery probability when making forwardin vertices. Recent works [19], [34], [35], [36], [37] refined
decisions. When nodeand j meet,i computes the delivery this model and showed that human networks can be modeled
probability to z throughj by using the formulaP?; .(k +1) as community graphs given in Figure 1. In the community
= (1—-P, .(k))xP; ;(k)«P; ,(k)*8 + P, .(k). Here = 0.25 model, a network contains densely connected group of esrtic
is a parameter denoting the impact of transitivitforwards with only sparsely connected vertices between the groups.
a message for destination to j, if 5 has higher delivery The neighbor vertices that belong to the same community
probability thani, which holds whenP; . < P; .. are called as local neighbors (black edges in Figure 1) and
History and social network based protocols. This last vertices attached to the two sides of edges between differen
category is the one most suited for routing in PSNs. Histogpmmunities are called as remote neighbors (gray edges in
based approaches [27], [28], [29], [5], [30] depend on tree prFigure 1).
vious observation data in order to predict future intecatdi

The idea is that if a mobile node has observed another mobile o o TN

node frequently, the probability of observing the same riede / E N\ 3 % 3

also high in the future. Social network based approachds [11 \ Qﬁ / '\\ Q%‘

[31], [12], on the other hand, use social network structure o N9 TN

humans in routing decisions. '/ N
Bubble-rap [12] is a representative protocol in this category, \ J

as it considers the importance of individuals in social reks N

for making forwarding decision. Bubble-rap is based on two
popularity ranking metrics, called global and local ramkin
Global ranking stands for the popularity of the individual i
the whole social network calculated as the average numbe#n @ recent work [18], the regularity of inter-contact ewent
of people the individual observed in recent time slices.(e.dn Bluetooth level is analyzed. This works showed that inter
the last six hour time slice). Local ranking is the rankingontact events between people that knows each other (folend
of each individual in its local community proportional tceth in the same community) shows regularity in terms of meeting
average number of peop|e observed in the same Commurﬁ*y_ration and the number of meetings. In our DFEViOUS work

Forwarding decisions in Bubble-rap are taken by considerifl4], we also discovered that the mobility profiles of cell
these two popularity metrics: phone users including the spatio temporal mobility pattern

« When two nodes meet, if the sender node is in the sarﬁ:éows regularity in days of week and 6 hour length time
ices domain. Here, we will use the similar observatiort tha

community with the destination of the packet, Buble-ra ) . .
checks for whether the encountered node is also in t gople in the same community (students in the same class,

same community, if so the local rankings of sender ar;,:&)—workers) are most likely to meet almost regularly in the

potential forwarder are compared; if the encountered nog@meé Se_t Of, Igcatipns. ) )
wins, the packet is forwarded. PRO is distinguished by the way it employs the regularity

If the sender is not in the same community with th@f intercontact events between nodes in the same community.

destination of the packet, Buble-rap forwards the pack@fthough this phenomenon is one of the most important

to the encountered node if the encountered node is in tREPPErties of human behavior, it has not been explored fully
same community with the destination of the packet or Iy Previous approaches. History based approaches [24], [29

the the global ranking of the encountered node is biggérl: [30], [27] consider frequent encounters in the neart pas

to predict encounters in the near future. However, the time

Our PRO routing protocol also falls in this social newVorlj(nterval between regular intercontacts does not need to be

based protocols category. Our approach differs from earl@nort’ there may be a regularity repeated with longer time

work in this category because it predicts future Contacegmintervals. As an example, for two people that encounter in

betweef‘ nodeg using regularity Of hyman bghawor i maiﬁ?ﬁy in the mornings history based approaches still inalye
forwarding decisions based on this information. In our expe

. . produce very high forwarding probability during afternson
iments section, we compare and contrast our protocol w y g gp y 9

) ) . - e same problem also occurs for routing protocols [11]],[31
Epidemic routing, Prophet, and Bubble-rap quantitatively [12] utilizinpg social network structure: tghg high chpu]tLEi

of a node in the social network does not guarantee its high

Fig. 1. Community structure in human networks

1. PRO: PROFILE BASED ROUTING FORPOCKET

SWITCHED NETWORKS popularity at certain time periods such as “mornings in the
. weekdays”.
A. Design Issues PRO also employs community structure of social networks

We begin with a discussion of social networks to identif§or fast and light weight routing. To this end, PRO selects th
dynamics of human behavior. Small world property [32], [33¢arrier nodes with the maximum information dissemination
is the most fundamental feature of the social networks whegain when the current carrier node does not have any local
the average distances between any two vertices of the netwmformation about destination. The idea here is to cover



maximum number of communities when there is no availabf@de in the near future. For a given node A, the observation
lead to the destination. But when there are some neighborisgpre of another node B is calculated as follows: If the aurre
nodes that are likely to be in the same community as tséice is X and the slice that corresponds to maximum delay
destination, PRO gives priority to those nodes. tolerance is X+K, then the observation score of node A with
B. PRO Protocol respect to destination node B becomes:
. rotocol
. ) ) . e OS(B,d)=[1/1]Rank(B), + [1/2]Rank(B)z+1 + - ..
In this section we present PRO in two parts. In the firstpart, | 1 /(K + 1)|Rank(B),.
we explain internal data structures stored in each nodédn t
second part we present the forwarding algorithm.
1) Internal Data Structures. In PRO, each mobile node . : . . N
. o nodes with earliest delivery times to the destination.
uses internal data structures to keep track of periodicdate . . S i . ) .
. . Information Dissemination Score: Information dissemi-
tact events with other nodes. Each node reflects intercontac

events as updates to observation scores that are stored innt%tlon Score measures whether the encountered node IS a
local observation table good candidate for distributing the packet to other nodégs T

Local Observation .Table' Each cell in the local observa- metric contributes significantly when no information about
tion table corresponds to a. periodic time slice in the “wee destination is available (neither current nor encounteedes

i o : ave high observation scores). In this case, PRO tries to
domain. The justification of this structure follows from l14forward the packet to other communities by using arav links
which analyzes the Reality Mining dataset. In our desig P y g gray

each cell in the local observation table (Figure 2) stor gwter community Imks) " Figure 1.
. . . . In PRO, we use a distributed approach based on the concept
observation rankings for other nodes which were previousl| ) S :
Ego networks [38]; only local topological information of

encountered at the time interval corresponding to that cell L : . L
; . nodes are used for calculating information disseminatiames
Inside each cell, we store a hash table which keeps ob

vation rankings for encountered nodes. Observation rgnk?ﬁg_e idea behind the information dissemination score isithat
' e potential receiver node observes different set of nttas

is a metric that denotes the probability of observing a no ﬁe node set of the current node, then that receiver node has

periodically at that time interval. The important point éer, . . . S L
is that the observation ranking is highly dynamic, the eﬁeg'gher probability of observing nodes in different comnis

. . in the near future. We calculate the information dissenmmat
of the most recent observations are higher than the effect 0 . .
. ) score between current node A and receiver node B as follows:
the previous observations. For each encountered node X, we

use the following iterative functions for updating obs¢isa ~ * [DS(A, B) = [1/1]Dif fu + [1/2]Dif forr + ... +

Clearly the closest time slice X has more effect on the
observation score which increases the probability of sieigc

ranking in the corresponding cell. (L/(L+k)Dif furr
o Rank(z), = (1—a) % Rank(z)n_1 + axisObserved, In this expression, we usPif f, as the number of nodes
wherea € (0,1), isObserveds {0,1} that the receiver node observes differently from the curren

The observation scorke step prior is reflected in the currentnoflj;In g;ef cu:_rent t:me interval x (which is the size of the
score with the factof1—«)* which goes to zero wheh is set| B\ |_ or ime slice x). , i
large, asa € (0,1). When a node is encountered, the value Forwarding: For the forwarding process, observation and

kept in the hash-table of the corresponding cell is updaiéfd Wmforma_tion disseminatipn scores are calcglated for alihef _
respect to ranking function by usingObserved— 1. At the nodes in the communlr_:at_lon range. During _the forward_mg
end of each day (or the time interval corresponding to eal fcess, PRO gives priority to thg o_bservatlon score since
column), the nonobserved nodes for the current column (the; nodes that observe the Qestmatmn regula_rly are more
ones that already exist in the hash-table inside the ceﬂls)sf“"tqble cand|dates_ forforvvardmg directly to_de_stlrlanBRO
updated withisObserved= 0. requires the foIIowmg observation score anerla to hoda f_
forwarding: the receiver node should have higher obsemati
bay, Day, score than the current node for destination of current gacke
If there is no candidate receiver node with enough obsenvati

T @52;; E’,j@._ Cell or (Days, Ty score, PRO checks for the information dissemination scbre o

other nodes in the communication range. If the current node
T encounters a candidate node with information disseminatio
score greater than the internal threshold stored in theeotrr
node, then the packet is forwarded to that candidate node. Th
Fig. 2. Structure of observation table threshold for the information dissemination score, Ndls,
is calculated by using a list of information dissemination
2) Forwarding Algorithm: Forwarding algorithm is de- scores of previously encountered nodes as discussed imisect
signed by using two important metrics: observation sco aiV-B3. If there are no suitable nodes in the communication
information dissemination score. range, the message is kept until a new node with suitable
Observation Score:Observation score is the metric whichconditions is encountered or time out.
is correlated with the probability of observing the dediima In addition to these two criteria PRO restricts the number




of copies that can be forwarded for each message. Forwadlildle cellular connectivity duration [9], Bluetooth conrien
ing_Quota represents the maximum number of copies that odurations [6], social networks [19] and human mobility [18]
be forwarded for a message by single node. QuObs and These work showed that the observed phenomenons in the
Quota Nobs are for restricting the number of copies that caReality Mining dataset is not a specific artifact of the exper
be forwarded using observation and information disser@nat ment itself and the dataset is a representative sample efalen
scores correspondingly. As explained in theoretical aigsly human mobility and social interaction events.

section of our technical report [16] and Section 1V-B, we use While the experimental data is collected for the duration of
Forwarding Quota= 2. The pseudo code for the forwarding® months period, the majority of the users did not parti@pat
algorithm of PRO is given in Algorithm 1.

Algorithm 1 Forwarding Algorithm of PRO

1:

/I Direct Delivery To Destination

in the experiments for the whole period. So we selected most
crowded 3 months time interval in terms of participant count
We also analyzed the duration of time slices which is used by
PRO routing protocol. In order to find suitable time slicegén

2: ForEach encounterechode; do we have used cosine vector similarity and histogram arslysi

3. If node; = p.dest and p.finalized = false Then techniques. Our analysis shows that 1 hour time slice aurati

4 If p ¢ node; Then is the most reasonable time slice length for PRO routing

5: Forwardp to node; protocol. Since our dataset is good representative of human

6: p.finalized = true behavior, these results can be used in different deploysnent

7: End For for PSNs. Due to the space limitations here, we refer thearead

8: /I Give Priority to Observed Nodes to our technical report [16] to find detailed discussion abou

9: ForEach encounterechode; do participant and time slice length analysis.

10: If (p.obs + p.nobs) < Forwarding QuotaThen For running routing protocols, we implemented a basic

11: tScore = calcObsScore(destination, node;) MANET simulator which can be fed with location information

12: If tScore > p.Score and of individuals [14] with cell connectivity data as well as
p.obs < QuotaObsand p ¢ node; Then Bluetooth connectivity data. Over this simulator, we then

13: Forwardp to node; implemented routing protocols mentioned in Section 3 ag-plu

14 p.obs + + ins. All of the components of the evaluation framework are

15: End For developed in Java and consist of more than 7K Lines of code.

16: // NonObserved Carrier Nodes .

17: ForEach encounterechode; do B. Bxperiments on PRO

18: If (p.obs + p.nobs) < Forwarding QuotaThen We present our experimental analysis of PRO in three

19: disScore = calcDisScorefis, node;) subsections: analysis of maximum forwarding quota, amalys

20: If disScore > Nobs Thr and of routing strategies for spending forwarding quota, andlffin
p.nobs < QuotaNobsand p ¢ node; Then reducing the communication overhead.

21: Forwardp to node; 1) Determining The Number of Maximum Forwarding

22: p.nobs + + Quota: In this section, we compare the performance of PRO

23: End For with varying forwarding quotas. Herer, we focus on determin

IV. EXPERIMENTAL RESULTS

ing the optimal maximum forwarding quota which corresponds
to Forwarding_Quota = Quota_Obs+ Quota_N obs value.
Due to the space limitations we only provide experimental

We start with an explanation of our dataset and experiment&pults related to success of different versions of PRCopobt

setup in Section IV-A. Section IV-B presents an evaluatiodrigure 5). The success is defined as the ratio of messages
of design parameters for PRO. We compare PRO with thrglﬁt arrived to the destination over the number of all gener-
well-known DTN protocols in Section IV-C. Finally, in Seoti ated messages. In Figure 5, for the line labeled with circle

IV-E, we present our results on smartphone queries. data points (Max-Obs), we fix Quaothobs to 1 and vary
Quota Obs from 0 to 10 copies. In the same figure, the line

A. The Dataset and Experimental Setup with the triangle data points (Max-Nobs) we fix QuoBbs=1

For our experimental evaluation we use the Reality Miningnd vary QuotaObs from 0 to 10 copies. The Figure 5 shows
dataset [15] from MIT Media Labs. This dataset was generatttt there is a significant tipping at point Forwardi@ota =
by an experiment involving 100 people for the duration of 2. The similar behavior is shown at point Forwardi@uiota =
months, where each person is given a Nokia 6600 cellphoi2ein the cost and delay analysis which supports our theailetic
Reality Mining data contains both cellular connectivitydanresults given in the technical report [16]. Therefore weided
fine granularity peer to peer Bluetooth connection data lvhito use ForwardingQuota = 2 in the PRO routing protocol.
makes it very suitable to use as evaluation batch for various2) How To Spend the Forwarding Quota: Here, we
routing protocols. We choose the Reality Mining datasetesinpresent experimental results about how to distribute Fatwa
it is one of the biggest publicly available one set which is aing_Quota among Quot®bs and Quota Nobs. We investi-
ready compared with several other datasets in differergcisp gate the following four combinations:
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Fig. 3. Experiments for analyzing quota spending strategies
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Fig. 4. Experiments for reducing communication overhead

Suiccess vs MAX Sender Quota states in the network where there is no observed nodes
(especially in the beginning stages of the routing), and in

* /3__(‘*“& this case using information dissemination score (noneeser
- / o Maons nodes) contributes significantly for the routing perforwan

Success
o
>
&

In the remaining of the paper, we use PRO with this second
combination as our base protocol.

3) Reducing Transmission Overhead: Here, we investigate
mechanisms for reducing communication overhead. Our key
observation is that the probability of delivery increasathw
the hop count. Thus, to reduce the communication overhead,
we reduce the probability of forwarding to nonobserved isode

Sg‘orwarding due to information dissemination scores) as th
p-count increases. We investigate these mechanisms of

O to this end.

5-Hop: Here, the message transmissions due to information

o The second combination corresponds to PRO as descril%%semm"’_‘t,'or_1 score are entirely stopp'gd'after 5—hpps.
in Section Ill. This is a flexible approach that gives Probabilistic Reduction: In probabilistic reduction sce-

priority to observed nodes (when available) over Norario, message transmissions due to information disseimma
observed nodes score are decreased with the factofk where k is the

« In the third combination (1-Obs-1-Nobs), we use strictifUTent nop countk > 1). In other words, the probability of
(1,1) for (Quota Obs, QuotaNobs). ransmission due to information dissemination score besom

. The fourth combination (2-Obs) is the dual of the first/* @t thek—th hop.

combination, we require the algorithm to spend the entire LSt Based Reduction: In this case, each mobile node
forwarding quota on observed nodes. keeps a sorted list of information dissemination scores of

previously encountered nodes. Each score is updated véth th

The results of these experiments are given in Figures 3(gleqt recent observation. At hog a message is transmitted
3(c). We observe that the second combination outperforms

the others ?n terms of success, _Overhead' and end t0 entlye go not cut back transmissions to observed nodes sinceptioiability
delay. The important result here is that there may be sonngivery is higher.

035

1 2 5 10
MAX Sender Quota

Fig. 5. Analyzing forward quota in terms of success

« In the first combination (2-Nobs), we require PRO to u
the entire forwarding quota on Non-observed nodes.
other words we use (0, 2) for (Quofabs, QuotaNobs)
combination.
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Fig. 6. Comparison with other routing protocols
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Fig. 7. Experiments on Bluetooth connection data

only if the candidate forwarder node has higher informaticio be self-contained and independent from the dataset. Here
dissemination score than the average of the t@p portion time slice length is the only information that we used for PRO
of the whole list. However as we explained in previous sections our dataset is
We compare these three scenarios with the original PRf©od representative of human behavior, our time slice kengt
with no transmission reduction (Figures 4(a)-4(c)). ltwdo still remains considerable value for other deployments.Fo
be noted that list based approach and probabilistic restuctiProphet [5], we use the delivery prediction function memtid
decreases communication overhead significantly (neaf§)30 in Section Il. Each of these protocols has passive back-
Among the three cases, list based approach gives the be&ction for the successfully delivered messages. That is
results in terms of both end to end delay and overhead wahorwarder node encounters another node which contains the
similar success rates as the original version. Thereforesee status of current message as delivered, then the forwaodier n
list based version of PRO as our base protocol and compatso changes the status of the current message as delivered.
it with other protocols in the next section. Then, this message is not forwarded to any other node and is
, ) ) deleted. We also use a timeout of 5 hours: when this timeout
C. Comparison with Other Routing Methods value is elapsed, the corresponding message is deleted from
In this section, we compare PRO with three populahe current node.
MANET protocols: Epidemic Routing, Bubble Rap and
Prophet routing. The details of the routing protocols are The results of our comparison experiments are given in
discussed in Section Il. For the Bubble-rap, we use a sindleo separate sets, on cell based location data (Figures 6(a)
community case, because using optimal k-community wit(f)) and Bluetooth connection data (Figures 7(a)-7(cpt F
distributed community detection requires testing and préie success comparison over cell based location data, we
knowledge of k [19], but we want all of the routing algorithmsprovide two figures including cumulative success distidmut
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Fig. 8. Experiments on smartphone point queries

and average success. Figures 6(a)-6(b) show that the suzfcesange Bluetooth communucation between them. Unlike the
PRO is closer to epidemic routing than other methods. Wheuccess performance, the cost performances of all methods
the average success is examined, the average success of BRGmproved since there is a trade off between the number of
is found to be 25% better than that of Bubble-rap and Prophetessages floodeed into the network and success rate (paralle
The success of PRO is around 47% whereas that of Bubble-taend to end delay).

and Prophet are under 38%. When we analyze the cumulativedur second observation is that relative performance of PRO
distribution of arrived messages with respect to arrivaleti protocol is similar the ones that we obtained from experimen
(Figure 6(c)), we also see that PRO outperforms Bubble-raper cellular connectivity data. The average success of BRO
and Prophet. The difference is even bigger in intermedia#@%-25% better than Prophet and Buble-rap while achieving
points such as 30 min where PRO is relatively 30%-35% betigignificantly less communucation overhead than Epidemic
than Bubble-rap and Prophet. routing. The reason is that the regularity of human mobility

We also measure the communication costs and the averag@lso inherently contained in the fine granularity Blughoo
number of hops needed for packages. Similar to the analygiga.

above we provide cumulative distribution and average views

for these results (Figures 6(d)-6(f)). For the communazati

cost, we count the transmitted copy of the initial messagdi urE. Experiments on Smartphone Queries

all copies are deleted. Each copy carries the initial tiamagt

of the original message and if the timeout value is elapséid wi In this section, we present our experimental results relate

respect to initial timestamp then the corresponding messadP the smartphone “point queries” we mentioned in the In-

are deleted. Mobile nodes also keep the status of each neesdigfluction. Here point queries are pushed to the system by

in terms of delivery success and use back-infection coregptrandom mobile nodes asking for random locations. In order

discussed above. to update PRO to handle point queries the only modification
Figures 6(d)-6(e) show that the communication cost ¥f€ make is adding new observation table which stores visited

PRO is 20% better than Bubble-rap and Prophet. From Figcations (cellular id) instead of observed nodes.

ure 6(e), the average communication cost of PRO is around 20rhe query forwarding phase for a point query is carried out

messages whereas Buble-rap and Prophet has communicadtidhe same manner as routing to a node id; the only difference

cost around 25 messages. That is, PRO outperforms Bubifein this case the node id is the id of the location the point

rap and Prophet in terms of delay performance, success, augry asks to sample. The observation score and information

communication overhead. Moreover, the delay and succekssemination scores with respect to the location id arel use

performance of PRO is very close to Epidemic routing whileithout any changes. When a node receives a query packet

its communication overhead is at least 2 times better thadich asks for an information related to its current locatio

Epidemic routing. near future location, the node replies to the query immetjiat
_ if it is already on query location, or later when it enters the
D. Experiments on Bluetooth dataset query location. The reply is rerouted back to the id of theenod

We provide three different figures for the experiments on tfiat initiated the query using PRO.
peer to peer Bluetooth connection data (Figures 7(a)-7Q)) For this section, we only compare with epidemic routing.
first observation is that the success performance of all oaksth Figures 8(a)-8(c) show that the success and delay perfagnan
are 30%-35% lower compared to celluar data experiments. TéfePRO is considerably close to epidemic routing (10% more
reason is that there is less connection opportunity betwedslay on the average, 8% less success). Yet, the communica-
the pairs due to nature of Bluetooth data. Remember that tien overhead of PRO is at least 2.5 time better than Epidemic
accept two nodes are connected if they are in the same celiting. In fact, the average communication cost per query i
in the celluar data experiments. However, in this experimearound 40 messages for PRO whereas this value is more than
two nodes are only connected if there is a peer to peer shbd0 messages for epidemic routing.



V. CONCLUDING REMARKS [10]

In this paper, we presented a novel routing protocol, PR@j]
for profile-based routing in PSNs. Differing from previous
routing protocols, PRO treats node encounters as perioﬂig
patterns and uses them to predict the times of future en-
counters. Exploiting the regularity of human mobility pte, [13]
PRO achieves fast (low-delivery-latency) and efficienivglo [14]
message-overhead) routing in intermittently connecteNS
Our experiment results using the Reality Mining datasetvshd!®]
that PRO achieves similar success rate and latency (10% less
success and 10% more delay time) as the epidemic routingj
with less than half the communication cost of the epidemic
routing. PRO also outperforms the Prophet and Bubble-rap
routing protocols (at least 20% less delay time and 25% mdte|
success) with less communication cost (at least 25% less
communication than these two protocols). 18

Despite being simple, PRO constitutes a general framework,
that can be easily instantiated to solve searching and opgery[1°!
problems in smartphone networks. In this paper we instizatia
PRO to solve the smartphone point queries, and presentzy
performance results for that scenario. Another intergssice-
nario for smartphone querying is what we call as I-spy quseriéﬂ]
inspired by the “l spy ...” children game. This scenario is on
image search. In contrast to the first scenario, in this saend?2]
the location is not well-defined. Rather the user asks for a
picture of an object that fits his description in this viginguch [23]
as a red signpost or a big oak tree. To instantiate PRO to query
for this description, the description is first hashed usitigTS [24]
descriptors [39] and an id is produced. PRO is then employed
to route a message to this id. Of course, this is not an ex&&t
match search, so approximate matching techniques should be
investigated. I-spy querying also requires that nodesaxgh [26]
the SIFT descriptors of the images they store when they me%
So, another open research question for I-spy querying is Bn]
performing this advertising and querying in a scalable and
peer-to-peer manner. The privacy and security aspectsiof pd28]
gueries and I-spy queries also need to be investigated.

[29]
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