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Abstract—In this paper, we propose a novel routing protocol,
PRO, for profile-based routing in pocket switched networks.
Differing from previous routing protocols, PRO treats node
encounters as periodic patterns and uses them to predict the
times of future encounters. Exploiting the regularity of human
mobility profiles, PRO achieves fast (low-delivery-latency) and
efficient (low-message-overhead) routing in intermittently con-
nected pocket switched networks. PRO is self-learning, com-
pletely decentralized, and local to the nodes. Despite being simple,
PRO forms a general framework, that can be easily instantiated
to solve searching and querying problems in adhoc smartphone
networks. We validate the performance of PRO with the “Reality
Mining” dataset containing 350K hours of celltower connectivity
and Bluetooth connection data, and compare its performance
with that of previous approaches.

Index Terms—Pocket Switched Networks, Human Mobility,
Opportunistic Routing

I. I NTRODUCTION

Cellphone technology has seen an adoption rate faster than
any other technology in human history [1]: as of 2009, the
number of cellphone subscribers has exceeded 3.3 billion
users. The rate of innovation in this field has also been
head-spinning. Nokia, Google, Microsoft, and Apple have all
introduced cellphone operating systems (Symbian, Android,
Windows Mobile, iPhoneOS) and provided APIs for enabling
open application development on the cellphones. These mod-
ern cellphones, which are dubbed assmartphones, enable
location-aware services as well as empowering the users to
generate and access multimedia content. As such, smartphones
open new opportunities for searching and information retrieval
applications. Consider the following scenario:

Scenario: Mike is about to go to lunch with a colleague.
He is trying to decide between an on-campus or off-campus
lunch location. He finds the Student Union cafes much more
convenient than off-campus locations unless there is a student
event in the Union that makes conversation impossible. So
he uses his smartphone to query the noise level of the
Student Union. His query is forwarded hop-by-hop over the
smartphones of students, and reaches a smartphone in the
Student Union, which answers the query by taking audio-level
samples and re-routes the reply back to Mike’s phone.

Delay Tolerant Networks (DTNs), which are also known
as intermittently connected networks, or opportunistic, store-
and-forward networks [2], [3], [4], [5] investigate routing
techniques that would be of use in the above scenario. In

DTNs, nodes are free to move and no centralized network
infrastructure exists to provide communication among these
mobile nodes. So, DTN routing protocols exploit the capability
of nodes to perform a peer-to-peer data exchange with other
nodes they encounter and strive to achieve data transfer even
when the connectivity in the network is intermittent. However,
the above described smartphone networks also introduce new
challenge for DTN routing protocols.The nature of human
mobility and the structure of social networks emerge as
important factors in smartphone networks, while DTN routing
algorithms have been oblivious to them.

Recently Pocket Switched Networks (PSNs) [6], [7], [8],
[9] have been formulated as a subfield of DTNs where each
node represents a person with a communication device. Several
PSN routing protocols have been proposed [10], [11], [12],
[13]. These work assume different models on human mobility
and community-structure, and use them for making routing
decisions. Compared to DTN protocols, PSN protocols make
use of more information about the network (context aware-
ness), and in return aim to find faster paths to the destination
with low message overhead (by involving a small number of
selected nodes for message forwarding).

In this work, we are motivated by the observation that
using smartphones it is possible to maintain more detailed
contextual information about the nodes in the network, and
hence design faster and more lightweight routing protocols
than the existing work on PSNs. More specifically, we propose
to employ smartphones to learn the regularity of human
mobility profiles. Our previous analysis [14] of MIT’s Reality
Mining dataset, which is one of the biggest publicly available
cellphone connectivity data with 350K hours of celltower
connectivity logs [15], shows that significant amount of human
mobility (85%) exhibits spatial and temporal regularity where
users move between their top-k locations.

Here, we propose a fast (low-delivery-latency) and efficient
(low-message-overhead) routing protocol for PSNs, based on
the regularity of human mobility profiles and of intercontact
events. Our protocol, namely PRO (profile-based routing pro-
tocol), is simple yet general enough to be easily instantiated
to solve the smartphone search application scenario we intro-
duced above. In particular the contributions of our paper are
as follows:

• In a break from previous routing protocols, our protocol
treats node encounters as periodic patterns and exploit



them to predict the times of future intercontacts. Our
profile-based estimation of intercontacts yields an accu-
rate ranking of the potential forwarding nodes as to their
ability to deliver the message earlier to the destination.
Our PRO routing protocol uses self-learning nodes, and
does not require pre-tuning.

• We provide an analysis of the effect of forwarding quota
at each node and show that forwarding the message to 2
other nodes is the most efficient strategy in terms of com-
munication overhead and delay trade-off. Selecting 2 as
the quota improves the latency asymptotically compared
to using 1 as the forwarding quota, whereas incrementing
the quota to more than 2 leads to diminishing returns.
Due to the space limitations we relegate the details of our
theoretical analysis to our technical report [16]. Here we
support our theoretical analysis with experimental results
in Section IV.

• We give a simple algorithm for making routing deci-
sions. A node selects the highest ranked 2 nodes in its
immediate neighborhood and forwards the message to
these nodes. Nodes that predict an intercontact with the
destination node in the near future (observed nodes) have
priority over nodes that are unlikely to see the destination
node (non-observed nodes). Among the observed nodes,
nodes that are likely to meet the destination node sooner
have more priority. If the current node is unable to fill its
forwarding quota with eligible observed nodes, it uses the
available quota on non-observed nodes. Among the non-
observed nodes, nodes whose profiles differ most from
the profile of the current node have more priority. The
rationale for this selection is to spread the message to as
diverse communities as possible to improve the probabil-
ity of encountering observed nodes in those communities.

• Unlike the synthetic test sets generated by simulators, we
validate the performance of our routing protocol with a
real dataset. We use the “Reality Mining” dataset [15]
which is one of the largest publicly available datasets
containing more than 350K hours of celltower and Blue-
tooth connection data. We choose the Reality Mining
dataset for our validation since it is used as an evaluation
batch for several works [17], [18] and it is shown to
have similar user behavior with several other datasets
which implies that the observed phenomenons are not
a specific artifact of the data itself [6], [19]. Using the
Reality Mining dataset, we compare the performance of
our protocol with previous approaches over both cell-
based mobility data (coarse granularity) and Bluetooth
connection data (fine granularity ). Our results show that
PRO achieves similar success rate and latency (10% less
success and 10% more delay time) as the epidemic rout-
ing [20] with less than half the communication cost of the
epidemic routing. PRO also outperforms the Prophet [5]
and Bubble-rap [12] routing protocols (at least 20% less
delay time and 25% more success) with less communi-
cation cost (at least 25% less communication than these
two protocols).

• PRO routing protocol is completely decentralized and
local to the nodes. PRO runs in an adhoc manner and
does not depend on any central infrastructure or third
party like Telephone Service Providers.

• Finally, we measure the performance of PRO on smart-
phone queries described above and show that PRO
achieves similar query performance with Epidemic rout-
ing (in terms of delay and success) while using signifi-
cantly less communication cost.

Outline of the paper. In Section II we discuss related
work on PSNs. In Section III, we present our PRO algorithm
for profile-based forwarding of messages. Using the Reality
Mining dataset, we evaluate the performance of PRO and
compare it with previous work on routing in PSNs in Section
IV. Finally, we conclude with Section V.

II. RELATED WORK

In this section, we categorize and present PSN routing
protocols in three broad categories. In each category, we pick
a representative popular protocol and discuss it in more detail.
Later, in Section IV we use those three representative protocols
to compare and contrast with our protocol.

Flooding-based protocols. In DTNs, replication of the
original message is an effective way to increase the probability
of successful delivery to the destination.Epidemic routing [20]
is a representative example of these type of flooding-based
routing protocols. In epidemic routing, the messages in the
network diffuse like viruses by pairwise contacts between
nodes: when two nodes encounter they exchange all of their
messages. A node is infected if it accepts a message from
another node for forwarding.

The advantage of the epidemic routing is that it has low
latency, and it determines a lower limit for the latency of
message delivery. On the other hand, too many copies of the
initial message increase the overhead drastically in termsof
traffic congestion and energy. Several versions of the epidemic
routing protocol [21], [22] have been proposed in order to
limit the message overhead by imposing constraints such as
time limit, maximum hop count, forwarding probability, or
applying different back-infection techniques to inform nodes
about the successful delivery of the message.

Probabilistic model-based protocols. A second category
of DTN routing protocols is based on proactive assump-
tions about node mobility. Random way-point model [23],
reference point group mobility model [24], and entity based
approaches [25], [26] are examples of this category. These
protocols assume/impose a mobility model a priori instead of
constructing a model after studying real data.

A representative protocol in this category isProphet rout-
ing [5]. The idea behind Prophet is that the probability of
message delivery can be calculated by using transitive delivery
probabilities. When nodei meets nodej, the delivery probabil-
ity of nodei for j is updated asPi,j(k+1) = (1−Pi,j(k))∗P0

+ Pi,j(k). Here,P0 = 0.75 is the initial probability given as
an input to the system. When nodei and j do not meet for
m periods, the delivery probability is decreased exponentially



using an aging factor:Pi,j(k+m) = αm∗Pi,j(k). Prophet uses
the transitive delivery probability when making forwarding
decisions. When nodei and j meet,i computes the delivery
probability to z throughj by using the formula:Pi,z(k + 1)
= (1−Pi,z(k))∗Pi,j(k)∗Pj,z(k)∗β + Pi,z(k). Hereβ = 0.25
is a parameter denoting the impact of transitivity.i forwards
a message for destinationz to j, if j has higher delivery
probability thani, which holds whenPi,z < Pj,z.

History and social network based protocols. This last
category is the one most suited for routing in PSNs. History
based approaches [27], [28], [29], [5], [30] depend on the pre-
vious observation data in order to predict future interactions.
The idea is that if a mobile node has observed another mobile
node frequently, the probability of observing the same nodeis
also high in the future. Social network based approaches [11],
[31], [12], on the other hand, use social network structure of
humans in routing decisions.

Bubble-rap [12] is a representative protocol in this category,
as it considers the importance of individuals in social networks
for making forwarding decision. Bubble-rap is based on two
popularity ranking metrics, called global and local ranking.
Global ranking stands for the popularity of the individual in
the whole social network calculated as the average number
of people the individual observed in recent time slices (e.g.,
the last six hour time slice). Local ranking is the ranking
of each individual in its local community proportional to the
average number of people observed in the same community.
Forwarding decisions in Bubble-rap are taken by considering
these two popularity metrics:

• When two nodes meet, if the sender node is in the same
community with the destination of the packet, Buble-rap
checks for whether the encountered node is also in the
same community, if so the local rankings of sender and
potential forwarder are compared; if the encountered node
wins, the packet is forwarded.

• If the sender is not in the same community with the
destination of the packet, Buble-rap forwards the packet
to the encountered node if the encountered node is in the
same community with the destination of the packet or if
the the global ranking of the encountered node is bigger.

Our PRO routing protocol also falls in this social network
based protocols category. Our approach differs from earlier
work in this category because it predicts future contact times
between nodes using regularity of human behavior and makes
forwarding decisions based on this information. In our exper-
iments section, we compare and contrast our protocol with
Epidemic routing, Prophet, and Bubble-rap quantitatively.

III. PRO: PROFILE BASED ROUTING FORPOCKET

SWITCHED NETWORKS

A. Design Issues

We begin with a discussion of social networks to identify
dynamics of human behavior. Small world property [32], [33]
is the most fundamental feature of the social networks where
the average distances between any two vertices of the network

is proportional to the logarithmic scale of the number of
vertices. Recent works [19], [34], [35], [36], [37] refined
this model and showed that human networks can be modeled
as community graphs given in Figure 1. In the community
model, a network contains densely connected group of vertices
with only sparsely connected vertices between the groups.
The neighbor vertices that belong to the same community
are called as local neighbors (black edges in Figure 1) and
vertices attached to the two sides of edges between different
communities are called as remote neighbors (gray edges in
Figure 1).

 

Fig. 1. Community structure in human networks

In a recent work [18], the regularity of inter-contact events
in Bluetooth level is analyzed. This works showed that inter-
contact events between people that knows each other (friendor
in the same community) shows regularity in terms of meeting
duration and the number of meetings. In our previous work
[14], we also discovered that the mobility profiles of cell
phone users including the spatio temporal mobility patterns
shows regularity in days of week and 6 hour length time
slices domain. Here, we will use the similar observation that
people in the same community (students in the same class,
co-workers) are most likely to meet almost regularly in the
same set of locations.

PRO is distinguished by the way it employs the regularity
of intercontact events between nodes in the same community.
Although this phenomenon is one of the most important
properties of human behavior, it has not been explored fully
by previous approaches. History based approaches [28], [29],
[5], [30], [27] consider frequent encounters in the near past
to predict encounters in the near future. However, the time
interval between regular intercontacts does not need to be
short, there may be a regularity repeated with longer time
intervals. As an example, for two people that encounter in
only in the mornings history based approaches still incorrectly
produce very high forwarding probability during afternoons.
The same problem also occurs for routing protocols [11], [31],
[12] utilizing social network structure; the high popularity
of a node in the social network does not guarantee its high
popularity at certain time periods such as “mornings in the
weekdays”.

PRO also employs community structure of social networks
for fast and light weight routing. To this end, PRO selects the
carrier nodes with the maximum information dissemination
gain when the current carrier node does not have any local
information about destination. The idea here is to cover



maximum number of communities when there is no available
lead to the destination. But when there are some neighboring
nodes that are likely to be in the same community as the
destination, PRO gives priority to those nodes.

B. PRO Protocol

In this section we present PRO in two parts. In the first part,
we explain internal data structures stored in each node. In the
second part we present the forwarding algorithm.

1) Internal Data Structures: In PRO, each mobile node
uses internal data structures to keep track of periodic intercon-
tact events with other nodes. Each node reflects intercontact
events as updates to observation scores that are stored in the
local observation table.

Local Observation Table: Each cell in the local observa-
tion table corresponds to a periodic time slice in the “week”
domain. The justification of this structure follows from [14]
which analyzes the Reality Mining dataset. In our design,
each cell in the local observation table (Figure 2) stores
observation rankings for other nodes which were previously
encountered at the time interval corresponding to that cell.
Inside each cell, we store a hash table which keeps obser-
vation rankings for encountered nodes. Observation ranking
is a metric that denotes the probability of observing a node
periodically at that time interval. The important point here
is that the observation ranking is highly dynamic, the effect
of the most recent observations are higher than the effect of
the previous observations. For each encountered node X, we
use the following iterative functions for updating observation
ranking in the corresponding cell.

• Rank(x)n = (1−α) ∗ Rank(x)n−1 + α∗isObserved,
whereα ∈ (0, 1), isObserved∈ {0, 1}

The observation scorek step prior is reflected in the current
score with the factor(1−α)k which goes to zero whenk is
large, asα ∈ (0, 1). When a node is encountered, the value
kept in the hash-table of the corresponding cell is updated with
respect to ranking function by usingisObserved= 1. At the
end of each day (or the time interval corresponding to each
column), the nonobserved nodes for the current column (the
ones that already exist in the hash-table inside the cells) is
updated withisObserved= 0.

 Day1 Day2 
T1   
..   
Tk [Nodex, 0.64] 

[Nodey, 0.73] 
… 
… 

 

Tk+1   
..   
..   
Tn   

 

 

 

Cell for (Day1, Tk) 

Fig. 2. Structure of observation table

2) Forwarding Algorithm: Forwarding algorithm is de-
signed by using two important metrics: observation score and
information dissemination score.

Observation Score:Observation score is the metric which
is correlated with the probability of observing the destination

node in the near future. For a given node A, the observation
score of another node B is calculated as follows: If the current
slice is X and the slice that corresponds to maximum delay
tolerance is X+K, then the observation score of node A with
respect to destination node B becomes:

• OS(B, d) = [1/1]Rank(B)x + [1/2]Rank(B)x+1 + . . .
+ [1/(K + 1)]Rank(B)x+k

Clearly the closest time slice X has more effect on the
observation score which increases the probability of selecting
nodes with earliest delivery times to the destination.

Information Dissemination Score: Information dissemi-
nation score measures whether the encountered node is a
good candidate for distributing the packet to other nodes. This
metric contributes significantly when no information about
destination is available (neither current nor encounterednodes
have high observation scores). In this case, PRO tries to
forward the packet to other communities by using gray links
(inter community links) in Figure 1.

In PRO, we use a distributed approach based on the concept
of Ego networks [38]; only local topological information of
nodes are used for calculating information dissemination score.
The idea behind the information dissemination score is thatif
the potential receiver node observes different set of nodesthan
the node set of the current node, then that receiver node has
higher probability of observing nodes in different communities
in the near future. We calculate the information dissemination
score between current node A and receiver node B as follows:

• IDS(A,B) = [1/1]Diffx + [1/2]Diffx+1 + . . . +
[1/(1 + k)]Diffx+k

In this expression, we useDiffx as the number of nodes
that the receiver node observes differently from the current
node in the current time interval x (which is the size of the
set |B \ A| for time slice x).

Forwarding: For the forwarding process, observation and
information dissemination scores are calculated for all ofthe
nodes in the communication range. During the forwarding
process, PRO gives priority to the observation score since
the nodes that observe the destination regularly are more
suitable candidates for forwarding directly to destination. PRO
requires the following observation score criteria to hold for
forwarding: the receiver node should have higher observation
score than the current node for destination of current packet.
If there is no candidate receiver node with enough observation
score, PRO checks for the information dissemination score of
other nodes in the communication range. If the current node
encounters a candidate node with information dissemination
score greater than the internal threshold stored in the current
node, then the packet is forwarded to that candidate node. The
threshold for the information dissemination score, NobsThr,
is calculated by using a list of information dissemination
scores of previously encountered nodes as discussed in Section
IV-B3. If there are no suitable nodes in the communication
range, the message is kept until a new node with suitable
conditions is encountered or time out.

In addition to these two criteria PRO restricts the number



of copies that can be forwarded for each message. Forward-
ing Quota represents the maximum number of copies that can
be forwarded for a message by single node. QuotaObs and
Quota Nobs are for restricting the number of copies that can
be forwarded using observation and information dissemination
scores correspondingly. As explained in theoretical analysis
section of our technical report [16] and Section IV-B, we use
Forwarding Quota= 2. The pseudo code for the forwarding
algorithm of PRO is given in Algorithm 1.

Algorithm 1 Forwarding Algorithm of PRO
1: // Direct Delivery To Destination
2: ForEach encounterednodei do
3: If nodei = p.dest and p.finalized = false Then
4: If p /∈ nodei Then
5: Forwardp to nodei

6: p.finalized = true
7: End For
8: // Give Priority to Observed Nodes
9: ForEach encounterednodei do

10: If (p.obs + p.nobs) < Forwarding QuotaThen
11: tScore = calcObsScore(p.destination, nodei)
12: If tScore > p.Score and

p.obs < Quota Obs and p /∈ nodei Then
13: Forwardp to nodei

14: p.obs + +
15: End For
16: // NonObserved Carrier Nodes
17: ForEach encounterednodei do
18: If (p.obs + p.nobs) < Forwarding QuotaThen
19: disScore = calcDisScore(this, nodei)
20: If disScore > Nobs Thr and

p.nobs < Quota Nobs and p /∈ nodei Then
21: Forwardp to nodei

22: p.nobs + +
23: End For

IV. EXPERIMENTAL RESULTS

We start with an explanation of our dataset and experimental
setup in Section IV-A. Section IV-B presents an evaluation
of design parameters for PRO. We compare PRO with three
well-known DTN protocols in Section IV-C. Finally, in Section
IV-E, we present our results on smartphone queries.

A. The Dataset and Experimental Setup

For our experimental evaluation we use the Reality Mining
dataset [15] from MIT Media Labs. This dataset was generated
by an experiment involving 100 people for the duration of 9
months, where each person is given a Nokia 6600 cellphone.
Reality Mining data contains both cellular connectivity and
fine granularity peer to peer Bluetooth connection data which
makes it very suitable to use as evaluation batch for various
routing protocols. We choose the Reality Mining dataset since
it is one of the biggest publicly available one set which is al-
ready compared with several other datasets in different aspects

like cellular connectivity duration [9], Bluetooth connection
durations [6], social networks [19] and human mobility [18].
These work showed that the observed phenomenons in the
Reality Mining dataset is not a specific artifact of the experi-
ment itself and the dataset is a representative sample of general
human mobility and social interaction events.

While the experimental data is collected for the duration of
9 months period, the majority of the users did not participate
in the experiments for the whole period. So we selected most
crowded 3 months time interval in terms of participant count.
We also analyzed the duration of time slices which is used by
PRO routing protocol. In order to find suitable time slice length
we have used cosine vector similarity and histogram analysis
techniques. Our analysis shows that 1 hour time slice duration
is the most reasonable time slice length for PRO routing
protocol. Since our dataset is good representative of human
behavior, these results can be used in different deployments
for PSNs. Due to the space limitations here, we refer the reader
to our technical report [16] to find detailed discussion about
participant and time slice length analysis.

For running routing protocols, we implemented a basic
MANET simulator which can be fed with location information
of individuals [14] with cell connectivity data as well as
Bluetooth connectivity data. Over this simulator, we then
implemented routing protocols mentioned in Section 3 as plug-
ins. All of the components of the evaluation framework are
developed in Java and consist of more than 7K Lines of code.

B. Experiments on PRO

We present our experimental analysis of PRO in three
subsections: analysis of maximum forwarding quota, analysis
of routing strategies for spending forwarding quota, and finally
reducing the communication overhead.

1) Determining The Number of Maximum Forwarding
Quota: In this section, we compare the performance of PRO
with varying forwarding quotas. Herer, we focus on determin-
ing the optimal maximum forwarding quota which corresponds
to Forwarding Quota = Quota Obs+Quota Nobs value.
Due to the space limitations we only provide experimental
results related to success of different versions of PRO protocol
(Figure 5). The success is defined as the ratio of messages
that arrived to the destination over the number of all gener-
ated messages. In Figure 5, for the line labeled with circle
data points (Max-Obs), we fix QuotaNobs to 1 and vary
Quota Obs from 0 to 10 copies. In the same figure, the line
with the triangle data points (Max-Nobs) we fix QuotaObs=1
and vary QuotaObs from 0 to 10 copies. The Figure 5 shows
that there is a significant tipping at point ForwardingQuota =
2. The similar behavior is shown at point ForwardingQuota =
2 in the cost and delay analysis which supports our theoretical
results given in the technical report [16]. Therefore we decided
to use ForwardingQuota = 2 in the PRO routing protocol.

2) How To Spend the Forwarding Quota: Here, we
present experimental results about how to distribute Forward-
ing Quota among QuotaObs and Quota Nobs. We investi-
gate the following four combinations:



 

 

 

36

38

40

42

44

46

48

2-Nobs PRO 1-Obs-1-Nobs 2-Obs

S
uc

ce
ss

Methods vs Success

(a) Success comparison

 

 

 

24,00

26,00

28,00

30,00

32,00

34,00

2-Nobs PRO 1-Obs-1-Nobs 2-Obs

A
ve

ra
ge

 C
om

m
un

uc
at

io
n 

C
os

t

Methods vs Average Communuction Cost

(b) Cost comparison

 

 

 

0

10

20

30

40

50

60

2-Nobs PRO 1-Obs-1-Nobs 2-Obs

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

Methods vs Average End to End Delay

(c) Delay comparison

Fig. 3. Experiments for analyzing quota spending strategies
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Fig. 4. Experiments for reducing communication overhead
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• In the first combination (2-Nobs), we require PRO to use
the entire forwarding quota on Non-observed nodes. In
other words we use (0, 2) for (QuotaObs, QuotaNobs)
combination.

• The second combination corresponds to PRO as described
in Section III. This is a flexible approach that gives
priority to observed nodes (when available) over Non-
observed nodes.

• In the third combination (1-Obs-1-Nobs), we use strictly
(1, 1) for (Quota Obs, QuotaNobs).

• The fourth combination (2-Obs) is the dual of the first
combination, we require the algorithm to spend the entire
forwarding quota on observed nodes.

The results of these experiments are given in Figures 3(a)-
3(c). We observe that the second combination outperforms
the others in terms of success, overhead, and end to end
delay. The important result here is that there may be some

states in the network where there is no observed nodes
(especially in the beginning stages of the routing), and in
this case using information dissemination score (nonobserved
nodes) contributes significantly for the routing performance.
In the remaining of the paper, we use PRO with this second
combination as our base protocol.

3) Reducing Transmission Overhead: Here, we investigate
mechanisms for reducing communication overhead. Our key
observation is that the probability of delivery increases with
the hop count. Thus, to reduce the communication overhead,
we reduce the probability of forwarding to nonobserved nodes
(forwarding due to information dissemination scores) as the
hop-count increases1. We investigate these mechanisms of
PRO to this end.

5-Hop: Here, the message transmissions due to information
dissemination score are entirely stopped after 5-hops.

Probabilistic Reduction: In probabilistic reduction sce-
nario, message transmissions due to information dissemination
score are decreased with the factor1/k where k is the
current hop count(k > 1). In other words, the probability of
transmission due to information dissemination score becomes
1/k at thek−th hop.

List Based Reduction: In this case, each mobile node
keeps a sorted list of information dissemination scores of
previously encountered nodes. Each score is updated with the
most recent observation. At hopk, a message is transmitted

1We do not cut back transmissions to observed nodes since theirprobability
delivery is higher.
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Fig. 6. Comparison with other routing protocols
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Fig. 7. Experiments on Bluetooth connection data

only if the candidate forwarder node has higher information
dissemination score than the average of the top1/k portion
of the whole list.

We compare these three scenarios with the original PRO
with no transmission reduction (Figures 4(a)-4(c)). It should
be noted that list based approach and probabilistic reduction
decreases communication overhead significantly (nearly 30%).
Among the three cases, list based approach gives the best
results in terms of both end to end delay and overhead with
similar success rates as the original version. Therefore weuse
list based version of PRO as our base protocol and compare
it with other protocols in the next section.

C. Comparison with Other Routing Methods

In this section, we compare PRO with three popular
MANET protocols: Epidemic Routing, Bubble Rap and
Prophet routing. The details of the routing protocols are
discussed in Section II. For the Bubble-rap, we use a single
community case, because using optimal k-community with
distributed community detection requires testing and pre-
knowledge of k [19], but we want all of the routing algorithms

to be self-contained and independent from the dataset. Here
time slice length is the only information that we used for PRO.
However as we explained in previous sections our dataset is
good representative of human behavior, our time slice length
still remains considerable value for other deployments.For
Prophet [5], we use the delivery prediction function mentioned
in Section II. Each of these protocols has passive back-
infection for the successfully delivered messages. That isif
a forwarder node encounters another node which contains the
status of current message as delivered, then the forwarder node
also changes the status of the current message as delivered.
Then, this message is not forwarded to any other node and is
deleted. We also use a timeout of 5 hours: when this timeout
value is elapsed, the corresponding message is deleted from
the current node.

The results of our comparison experiments are given in
two separate sets, on cell based location data (Figures 6(a)-
6(f)) and Bluetooth connection data (Figures 7(a)-7(c)). For
the success comparison over cell based location data, we
provide two figures including cumulative success distribution
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Fig. 8. Experiments on smartphone point queries

and average success. Figures 6(a)-6(b) show that the success of
PRO is closer to epidemic routing than other methods. When
the average success is examined, the average success of PRO
is found to be 25% better than that of Bubble-rap and Prophet.
The success of PRO is around 47% whereas that of Bubble-rap
and Prophet are under 38%. When we analyze the cumulative
distribution of arrived messages with respect to arrival time
(Figure 6(c)), we also see that PRO outperforms Bubble-rap
and Prophet. The difference is even bigger in intermediate
points such as 30 min where PRO is relatively 30%-35% better
than Bubble-rap and Prophet.

We also measure the communication costs and the average
number of hops needed for packages. Similar to the analysis
above we provide cumulative distribution and average views
for these results (Figures 6(d)-6(f)). For the communication
cost, we count the transmitted copy of the initial message until
all copies are deleted. Each copy carries the initial timestamp
of the original message and if the timeout value is elapsed with
respect to initial timestamp then the corresponding messages
are deleted. Mobile nodes also keep the status of each message
in terms of delivery success and use back-infection conceptas
discussed above.

Figures 6(d)-6(e) show that the communication cost of
PRO is 20% better than Bubble-rap and Prophet. From Fig-
ure 6(e), the average communication cost of PRO is around 20
messages whereas Buble-rap and Prophet has communication
cost around 25 messages. That is, PRO outperforms Buble-
rap and Prophet in terms of delay performance, success, and
communication overhead. Moreover, the delay and success
performance of PRO is very close to Epidemic routing while
its communication overhead is at least 2 times better than
Epidemic routing.

D. Experiments on Bluetooth dataset

We provide three different figures for the experiments on the
peer to peer Bluetooth connection data (Figures 7(a)-7(c)). Our
first observation is that the success performance of all methods
are 30%-35% lower compared to celluar data experiments. The
reason is that there is less connection opportunity between
the pairs due to nature of Bluetooth data. Remember that we
accept two nodes are connected if they are in the same cell
in the celluar data experiments. However, in this experiment
two nodes are only connected if there is a peer to peer short

range Bluetooth communucation between them. Unlike the
success performance, the cost performances of all methods
are improved since there is a trade off between the number of
messages floodeed into the network and success rate (parallel
to end to end delay).

Our second observation is that relative performance of PRO
protocol is similar the ones that we obtained from experiments
over cellular connectivity data. The average success of PROis
20%-25% better than Prophet and Buble-rap while achieving
significantly less communucation overhead than Epidemic
routing. The reason is that the regularity of human mobility
is also inherently contained in the fine granularity Bluetooth
data.

E. Experiments on Smartphone Queries

In this section, we present our experimental results related
to the smartphone “point queries” we mentioned in the In-
troduction. Here point queries are pushed to the system by
random mobile nodes asking for random locations. In order
to update PRO to handle point queries the only modification
we make is adding new observation table which stores visited
locations (cellular id) instead of observed nodes.

The query forwarding phase for a point query is carried out
in the same manner as routing to a node id; the only difference
is in this case the node id is the id of the location the point
query asks to sample. The observation score and information
dissemination scores with respect to the location id are used
without any changes. When a node receives a query packet
which asks for an information related to its current location or
near future location, the node replies to the query immediately
if it is already on query location, or later when it enters the
query location. The reply is rerouted back to the id of the node
that initiated the query using PRO.

For this section, we only compare with epidemic routing.
Figures 8(a)-8(c) show that the success and delay performance
of PRO is considerably close to epidemic routing (10% more
delay on the average, 8% less success). Yet, the communica-
tion overhead of PRO is at least 2.5 time better than Epidemic
routing. In fact, the average communication cost per query is
around 40 messages for PRO whereas this value is more than
100 messages for epidemic routing.



V. CONCLUDING REMARKS

In this paper, we presented a novel routing protocol, PRO,
for profile-based routing in PSNs. Differing from previous
routing protocols, PRO treats node encounters as periodic
patterns and uses them to predict the times of future en-
counters. Exploiting the regularity of human mobility profiles,
PRO achieves fast (low-delivery-latency) and efficient (low-
message-overhead) routing in intermittently connected PSNs.
Our experiment results using the Reality Mining dataset show
that PRO achieves similar success rate and latency (10% less
success and 10% more delay time) as the epidemic routing
with less than half the communication cost of the epidemic
routing. PRO also outperforms the Prophet and Bubble-rap
routing protocols (at least 20% less delay time and 25% more
success) with less communication cost (at least 25% less
communication than these two protocols).

Despite being simple, PRO constitutes a general framework,
that can be easily instantiated to solve searching and querying
problems in smartphone networks. In this paper we instantiated
PRO to solve the smartphone point queries, and presented
performance results for that scenario. Another interesting sce-
nario for smartphone querying is what we call as I-spy queries,
inspired by the “I spy ...” children game. This scenario is on
image search. In contrast to the first scenario, in this scenario
the location is not well-defined. Rather the user asks for a
picture of an object that fits his description in this vicinity, such
as a red signpost or a big oak tree. To instantiate PRO to query
for this description, the description is first hashed using SIFT
descriptors [39] and an id is produced. PRO is then employed
to route a message to this id. Of course, this is not an exact
match search, so approximate matching techniques should be
investigated. I-spy querying also requires that nodes exchange
the SIFT descriptors of the images they store when they meet.
So, another open research question for I-spy querying is on
performing this advertising and querying in a scalable and
peer-to-peer manner. The privacy and security aspects of point
queries and I-spy queries also need to be investigated.
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