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Abstract— The rate optimization for wireless networks with two classes: unicast and multicast (broadcast is considese
low SNR is investigated. While the capacity in the limit of 3 special case of multicast). Where each pair of source and
disappearing SNR per degree of freedom is known to be linéani v caiver group in the network form a session for a particular
SNR for fading and non-fading channels, we study the problem . —
of operating in low SNR wireless network with given node class of traffic. Bu_t the. problem of sucgessfully estabfighi
locations that use network Coding over flows. The model we mU|t|CaSt connections In erellne or ereleSS netWOka haS
develop for low SNR physically degraded broadcast channelral  been long thought to be NP-Complete using arbitrary dicecte
multiple access channel respectively operates in a non-ial and undirected network models. With the advent of network
feasible rate region. We show that the problem reduces to the coding (ref., [4], [5], [6]), the breaking of the fluid modedf
optimization of total network power which can be casted as i ’ . - . .
standard linear multi-commodity min-cost flow program with data networks i.e. by _perfor_mmg c_odmg over '”Com'”g_ pack-
no inherent combinatorially difficult structure when network  €ts, has been able to intrinsically circumvent the combinait
coding is used with non integer constraints (which is a reasmble hardness of the multicast flow problem. Later, it was shown
assumption). This is essentially due to the linearity of theapacity that minimum cost setting up of multicast connections boils

with respect to vanishing SNR which helps avoid the effect of yqn imizin raph over ket n rks [7

interference in a low SNR physically degraded broadcast chanel dol to opt bl 9 sgbg aph ove c.:gded plac eéN(;t\No. SI [71.
and multiple access environment respectively. We proposefally n our pro emz since we conslaer "’.1 ow WIreless
decentralized Primal-Dual Subgradient Algorithm for achieving N€twork with physically degraded Gaussian broadcast alann

optimal rates on each subgraph (i.e. hyperarcs) of the netwk to  (where the number of hyperarcs is equaktdor n receiver
support the set of traffic demands (multicast/unicast connetions).  nodes, instead of” hyperarcs) to optimize the rates over
Index Terms - Low SNR degraded broadcast channel, network g4ch pyperarc (subgraph) to meet the network traffic demands
coding, rate optimization, Primal-Dual Subgradient Method. . L
(which we later show can be casted as a minimum cost
. INTRODUCTION multicommodity flow problem for optimizing power over each
Wideband fading channels have been studied since the edjyperarc). Also, we consider intra-session network codimg
1960’s. Kennedy showed that for the Rayleigh fading chanredtablishing traffic demand sessions.
at the infinite bandwidth limit, the capacity is similar toeth  This paper is organized as follows. Section Il is composed of
capacity of the infinite bandwidth AWGN channel with theyeneral problem formulation, where we define and develop our
same average received power [1, 2]. The robustness of thisderlying information theoretic set-up. Section 1l cists of
result in the case of with or without channel state inforwmati a proposal with decentralized solution. We present ourliesu
helps us to model generally the low SNR wideband wirele§s section IV that support our theory. Finally, we mention
networks. Using it as our underlying information-theareticoncluding remarks in section IV.
model to approximate the capacity over a link, we model the
general traffic (network demands) for this network and showI ”H' SET-UP AND PRSBLEM FOR“TLIJLAQSS h |
that the linearity of vanishing SNR in SNR per degree of free- n this sectl_on we intro uce a general ‘ow channe
dom makes for the fundamental reason for simplicity in ounr.]Odel (Gaussian) and extend it to physically degraded Gaus-

model. Hence, we claim, it is possible to do networking ovsian broadcast channel, then addressing the interfersage i

PP . . in multiple access. This approach becames our underlying
h model with simplistic an ntially linear roach . . .
such model with simplistic and essentially linear approac model and we further develop it to a simple networking model.

In the context of wideband multipath relay channel it is : .
shown in [3] that the min-cut could be achieved using a non—e'la" Low SNR physically degraded Gaussian broadcast chan-
coherent peaky frequency binning scheme. In our model the

rate tuples belong to a non-trivial feasible region which ivsvg\r);g?r;aisgfn;zl mgegstnpdu{a\?vg\?efohrarg‘rgl V;/E:r?ag:ﬁgmput
made of the convex hull of all tuples, i.e. capacity achigvin oefficient matrix is given bsh andn is the aaditive white

the limit of vanishing SNR, for subsequently defined low SNR™ he ch | gIve by:

physically degraded broadcast and multiple access channel?'S¢ The channel is given by:

The traffic model we use is quite general. It is divided into y=VSNR=xhx+n. (1)



n

r2 Where,z Ax < 1, which when combined appropriately gives

k=1
Cs the rate region of the set*. The equation (6) comes from the
Y r fact that the SNR is linear in the limit of disappearing SNR pe
C, degree of freedom, wherk; for all i € [1,n] is the location
(b) of the node and is the path loss exponent. We formalize the

above mentioned concepts and motivate our next definition.

Let \P; = Pk, k.

(c) Definition. 1: For a given senderwith total powerP; and

a receiver set/ = [1, K] in low SNR physically degraded
Fig. 1. (a): Two receiver physically degraded Gaussian doast channel G ian broad t[ ,h ] | the get Ft)) yd y gd' t
with Z; ~ N'(0, N1) and Z,, ~ N (0, N3 — Ny). (b): Rate region for the —>ausSStanbroadcast channél, the setan be decomposed Into
channel in (a), dotted line denotes the flatness of the raierreeurve in the K hyperarcs where each hyperarc is defined as the connection
limit of vanishing SNR withC; andC> as max rates for each receiver respecfrom the sendei to the receiver sef/* = [17 k], wherek C

tively. (c): Decomposition into hyperardgs, (d1)), (s, (d1,dz2))} with their Bp e . k
common rates for the case in (a) with receivdisanddz (corresponding to [1, K], with individual receiver ratesr(.][" VI € J*) equal

better and worse respectively). to an associated common rate; {«) of this hyperarc. The

The capacity of the channel, for both Gaussian channé#e for each receiver < k in the hyperarc is defined as

and fading channels increase sublinearly with the incraaser; = = i = m7 where,z Py < P, Vk e J
T 2

signal to noise ratid SN R) but in the low SNR regime the . k _ _
capacity in the limit is linear in SNR for fading and non-fagi and the seU” ranges from best to worst receiver (ref. Fig 1
channels: (©).

C(SNR) = SNR+ o(SNR)(nats/s/Hz). ~ (2)  B. Interference issues in multiple access at low SNR.
Clearly at low SNR limit, the signal-to-noise ratio per degr Now, let's consider the case of multiple access where more
of freedom (SNR) approaches unity in the limit [2, 8, 9].  than one node tries to access the channel at the given iestanc

We consider low SNR physically degraded Gaussian brogdst there bel/ nodes in the system at an instance, and U
cast channel, let's look at the standard model of a singldesenof them are trying to access the channel at this instance, if

and 2 receivers with noise variancas and N, respectively nodei € v intends to communicate with nogec U among

(ref. Fig 1(a)). The capacity region is given by: others inu, the signal to interference and noise ratio (SINR,
N P o) P denoted ag:;;) experienced at nodgis given by:
r < C(5=),r < C((Qi)). 3) F1ii) €XP s
Ny AP+ Ny - Zi—L;[[*72 7
where C(z) = W(in(1 + ), A + s = 1 and P is the B = 7 - O
total power (ref. Fig. 1(b)). As the channel in considenatio o+ Z | L, — L;]|*/22N,

is a degraded broadcast channel, the high-resolutionvecei veu, v

(in this caser;) always get enough information to decode foP'Ote_ that, since every node inis interested only in a common .

the second receiver and then cancels it out from the receif&gcVer W€ allocate the whole power of the node over this

signal to decode information for itself. single hyperarc, sé :_1 a_ndPijl = P, for every transrr_ntte_r._
The rate region defined in (3), when looked under th%Ut as we are operating in thg low SNR regime, the _|ntu_|t|on

low SNR lens comes across as a rather simpler picture. [_s&ggestg that the effec_:t of the |_nt(_erference shoulq begiblgi

the power limited low SNR regime, the effect of the poweWe straightforwardly include it in our assumption, thus we

allocated for the better receiver, as the contribution &tthtal gg‘me the rate (denoted withl) experienced at the receivgr

noise experienced by the worse receiver is negligible Fief. LW
1(b), for the rate region for low SNR in the limit). So, for the R;; = Win (1 + 12— L) 2 ) (8)
low SNR physically degraded Gaussian broadcast chanmel, th 2Ny + Z ”a/Q
rate for the worst receiver can be approximated as vEu v [ Lo = Lj|[*/?2No
< o2l ~ b

5 O(5): @) Win(Ut e ey ©)
Generalizing the same idea for the case of a given souwith P
power P; and n receiver nodes, where the receiver det ~ W(||Li — LjH“/QZNo)' (10)

(1,...,n) can be broken inta subsets ag* = (1,2, ..., k) for o _
k € [1,n]. The rate region defined for each hyperéic/*) The approximation (9) comes from the fact that the contri-

in the low SNR limit is given as bution of other signals being transmitted from other sosirce
() P, in the system with low SNR channel to the interference is
i & C(F5—), vk € [L,n] (5) negligible and the approximation (10) comes from the liitgar
(2>\k)P' of SNR in the limit of disappearing SNR per degree of freedom
,Vk € [1,n]. (6) (ref. Fig 2(a) and 2(c)). In Fig. 2(b), we can see that the SNR

| Li = L [["" N2 curve approaches the capacity curve in the limit, corroliga



problem. For that, we define another gragh= (N, A’),
which is simply the equivalent directed graph®t= (N, A)

with arcs instead of hyperarcs. This graph can be easily
obtained by decomposing the hypergraph appropriatelys Let
define the term (ref. [7] for detailed notation explanation)

T, e = Z X gk - (11)
((3,J%1)€ A|T*i21)

which simply describes the way to add all the flow entering
a node on all incoming hyperarcs, corresponding to the graph
G' = (W, A’). Notice thatz, , is not the same as, ,
defined in the previous sectllon:,ukm can be interpreteé as
the flow between and receiverl of the hyperarcJy,, and
it cannot exceed the common rate ;) associated to the

Fig. 2. (a): Two sender case for the low SNR multiple accessioél, where hyperarc which is also the hyperarc capacity, for each;.
Z ~ N(0, N). (b): Rate region for case in (a), the dotted line denotes the kg

respective SNR'su; and p2 for two senders and the arrow shows that in | et, Tigki = #’M = Y,k Pk]k . Then, the
limit of disappearing SNR, the SNR curve touches the capartitve. (c): As . t \i i kti_H Obl for th z(I i SNR net K
the effect of interference is negligible, the case is (a) lmampproximated as minimum cost opumizaton problem for the low networ

individual hyperarcs. can be formulated as:

our assumption that the SNR equals capacity in the limit of minimize Z Pk (A)

disappearing SNR per degree of freedom. Wt
We would like to point out here that in [3], it was shown

by the authors that with the hyperarc model the non-cohereuject to:

peaky frequency binning scheme is capacity achieving fer th  y,x (m) > ngax(:cjj]"'ki (m)),V(i, J") € A, ¥Ym (12)

multipath fading relay channel in the limit of large bandtkid

(i,Jki)eA

for low SNR regime, hence achieving the min-cut. 2ok = f: Y (m), Y, T e A (13)
C. Low SNR network rate optimization. m=1

Let us represent the wireless network as a directed hygggra Zigki < 'yi']kiPL.’f;km NG, JR) e A (24)

G = (W, A), where) is the set of nodes and is the set of K;

hyperarcs, where each hyperarc emanates from a node and Z Pik}ki <P.VieN. (15)

a terminates at a group of nodes, which we also refer to as biml;

the broadcast group of the hyperarc. A hyperarc represents o - . .
a subgraph which when combined in the appropriate w¥§ere F; is givenv i, ;7. (m) € F7 (m), and 7 (m) a
results in the original hypergraph of the problem. Note that Pounded polyhedron made of flow conservation constraints:

consider multicast in our multicommodity flow optimization Z mflk (m) — Z xt]";;ii(m) = s;(m),
model (as opposed to only unicast), thanks to network codingr:|; jkijcay F R eany

It's important to note that the common rate associated with Vie NV
each hyperare;;+, is the capacity of the hyperarc, beacause P (16)
this is the rate that can be guarantied to all the receivers
for a given transmit power. Also (as defined in the previous xfjg (m) = Z xf}k (m),
subsection),r, ;+, is a nonnegative function of the transmit o (JFi ek (k) e A) (17)

power P, ;. of the hyperard(i, J*). Now that we consider a . ,
network with more than one sender, update of notations is . _ kvv(z"]/l ) € A Vtm, ¥m
required. For a sender € A, that is capable of reaching .7 (m) = 0,V(i, J;*) € A',¥Ym, Vi, € [1, T (18)
k; € (1;, .., K;) nodes, where eadh € N'\i, the K hyperarcs l ) ) )
are denoted byi, J*), Vk; € (1;, .., K;). As_opposed to _standard multlcommodlty flow proble_m in
Imagine a set of traffic demands where = 1,..., M which flows are simply added over a link, the constréirf) in
sessions need to be established, each wjtk= 1, ...., T}, set fact catches the essence of network coding by taking only the
of receivers, in a given wireless network that experienoas | Maximum among all the flows of a session (note that we only
SNR channel physically degraded Gaussian broadcast charf@@sider intra-session network coding). Siricg;, (m) is the
and that is represented by the hypergrapk: (A, A). We polyhedron formed by the law of f_Iow conservation, conslra_m
know from the definition of hyperarc that a single node cald7) translates the flow conservation laws from the underlying
lie on multiple hyperarcs, therefore, we need a way to céiyefudirected graphd” to the hypergrapt (the wireless netw%rk)
count the incoming information and outgoing information t8Y adding the flows on all hyperarcs between noaad ;"
apply the law of flow conservation to the hypergraph arieg. flow in (i, .J5) € A’ is the sum of all the flows on the
finally be able to cast the problem as a flow optimizatiohyperarcgi, J*), V.J* > J]’C



As we can see, the above mentioned problem is a conwsery dual point as the objective function is a minimum over
optimization problem. The only nonlinear constraint is)(12sum of linear functions for fixed dual variables. To solve the
and could be readily replaced by the set of linear inequaliiual problem(C), we need to solve its subproblefa4). The
constraintsy, j», (m) > (m:(’}‘km (m)), Vtm € [1,Ty]. The subproblem24) (and the dual probleniC)) could be solved
modified problem results in a standard linear multicommpoditvith a lot of techniques, [10, Chapters 8-10], [11-Chapers
flow problem with linear objective and linear constraint. set 6, 12-Chapters 6] using some subgradient based technique bu

minimize Z Pi’f}m (B) they do not necessarily yield the primal solution (which is o
(i,JF) A ' our interest here). There are however, methods for reauyeri
primal solutions from the dual optimizers.

We will take a different technique than the above mentioned

approaches but before lets look into some inter-dependence

subject to:
Yo (m) > (2t (m)), Vi, Ym,V(i, J") € A (19)

M — characteristics of the dual and primal problem structusés-
Zigki = Z Yigr: (m), V(i J*) € A (20) ply having convex primal problem in hand does not guarantee
m=1 strong duality, but with some constraint qualifications we
Zigke < Yo P V(L TV € A (21) can assert that strong duality holds or not. One such simple
K; constraint qualification technique is call&tater’s condition
Z Pf}k-i < P,VicN. (22) In our case it can be easily seen for constrair) (or 19)
ki=1; of problem(A) (or (B)), there exist a vecto{mfj;ki (m)} for

. is a bounded which the inequality can be strict.
iJ %

polyhedron made of flow conservation constraints. Note that-€t US represent the set of primal vectorpas {x,y,z,P}
we optimize the power over each hyperarc, to determine tie Where Si is the feasible set for the primal problem,
optimal rates for each hyperarc that satisfies the netwdRd Similarly we can do it for the dual problend, =
demands, we simply need to multiply the optimal power with> Vs #:C} € S2. As we can see that the primal and dual
~:s: . We will prefer to solve the problem by proposing a dec_)ptlmal are equal (thanks to strong duality), we can exprass

centralized algorithm for generally understood and aipteg Problem in the standard saddle point fofmax min ¢(p.d) =

where zi7, (m) € F/7. (m), and F'7. (m)

reasons. misn gn&}sxqﬁ(p,d), where function¢ is the Lagrangian dual
peESL AESe
I1l. DECENTRALIZED ALGORITHM of the problem(B). This implies that for(C), we get the
For developing a decentralized solution for proble) we hyperarc separable saddle-point form
need to understand the structure of the primal problem firt a max g; y+; = min max ¢(p,d). (25)
transform it into a separable form. We know that the objectiv desy PES: dESy

function is a linear and increasing in its domain and so aRPW We are in the position where we can solve the problem,
the constraints. separable in hyperarcs using any saddle-point optimizatio

Taking the Lagrangian dual of the proble®) we get the method for npn—smooth function_s. For our problem set up, we
dual optimization problem as: propose a Prlm_al-_DugI Subgradient Algorithm by Nesterav fo
mammize< Z P ZC'P') ©) nonsmooth optimization [ref. 13]. Nesterov’s method gates
A v a subgradient scheme intelligently based on Dual-Averagin

(@ 7h)eA e method which beats the lower case complexity bound for any
subject to: (A1) >0 23) black-box subgradient scheme. The algorithm works in both
= primal and dual spaces, generating a sequence of feasible
where, points, and ultimately squeezing the duality gap to zero by
Gigri = digks (A V1, G %Y, 2, P) finally approaching the optimal solution. A positive conse-
_ min (P.’“k, n guence qf the PrimaI-DuaI gpproach i_s that at each iterasl}mn
wtm (m)EF'T (m) GJ% get a pair of pointgp,d) which are primal and dual feasible,
M T, hence, we get the primal feasible solution with essentiadly
Z Z (X;%i (m))(x%% () — gy o (M) + extra effort. As opposed to many subgradlent type meth_ods
ooyt (24) where there needs to be a method for primal recovery, special
M for large and ill-posed problems.
Viger (D Y (M) = 2,50, )+ A. Primal-Dual Subgradient Algorithm.
m=1 Since the dual function is hyperarc separable, we can aptimi
s ki (Zg ks — Yoo Pik;ki) s sz]ih). the.power over each hyperarc separgtely and .add each of the
‘ ' optimal solutions to construct the optimal solution of thead

The dual problem is clearly hyperarc separable and could B@blem(C), ultimately achieving the primal optimal solution
solved in a decentralized manner. But the dual problem is rf6f problem(B). The algorithm is as follows:

differentiable at all the points in the dual domain, thisigdo 1) Initialization: Setsg = 0 € (). Choosed > 0.

the fact that there might not be a unique minimizeg gk, for 2) lteration(k > 0):



« Computegy, = 0¢(p, d.). 2
o Chooses;, > 0 and sets;+1 = sg + gx-

o Choosefy1 > 6

k
[0
Setyy+1 = grargmax (z; oilg(yi), yi — y>)
i—
where (g, gq) is the set of primal and dual subgradients an
ok, Sk and Sy are aggregated sequence of points.

--&-- Inf ible path following optimal cost curve| o Vad
—=— Primal-Dual Subgradiant optimal cost curve \

IV. SIMULATIONS

We now show the results of our simulations that suppc
the claims of the algorithm presented. We solved the dt
problem in a decentralized way by solving it for every hypera
separately and then adding up the respective solutions
construct the dual optimal solution of the probl¢@), which L L
when optimal is the primal optimal solution for problem) 45 6 7 8 9101112 18 14 15 16 17 18 19 20 21 22 23
. Number of nodes
In our case. Fig. 3. Y-axis denotes 2 items, optimal primal costs comgpuising the

The setup consists of uniformly placed nodes on a choseigasible path following method when applied directly tnal problem
area ofa x a m?, with given node locations. We start ouré,ﬁ?nzﬂgag‘f gﬁgg}g'dic:ﬁttfléé?ﬁh%‘?; g’gg‘ﬂg&‘iﬁtmg' dsu";;j‘:r‘(n?g)‘."’he”
simulations with smaller networks of only 4 nodes om(ax . . i
10 m? area with the area size increasing as the number ofWPj use a pnmal-dual algorithm to _construct a decentralized
nodes in the network increase to keep the node density/ap@4tion for solving the problem, which has apparent advan-
in a controlled range. Each node has a single hyperarc dages for recovering the primal solution than standardsotep
it can communicate with all the nodes in the network, thiguPgradientmethods. In the simulation results shown, wét do
is just a simple generalization of our case where a node di§sSent the gains Qf routing using ne_twork coding over gmﬂpl
communicate with only a subset of total nodes in the networfeuting. But there is already a vast literature establigtims
For each network we randomly choose a setofnulticast fact: . o _
sessions and}, set of receivers for each session respectively Finally, we believe that realizing low SNR networks is a
with the required rate demand associated with each sessithwhile attempt as the linearity of SNR in the limit 0
that need to be established, but making sure the the traffievides a fundamental simplicity for networking to be done

demands are the respective min-cut for each session to malBsights reveal interesting and promising work could bédbui
the problem feasible. up and blended with our simple model (e.g. mobility, reliipi

£tc), which remains to be explored in this scenario.

Optimal Costs (Total network power)
Infeasible path following/Primal-Dual Subgradiant
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