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Abstract—This paper is concerned with the concept of equilib-
rium and quality of service (QoS) provisioning in self-configuring
wireless networks with non-cooperative radio devices (RD).
In contrast with the Nash equilibrium (NE), where RDs are
interested in selfishly maximizing its QoS, we present a concept of
equilibrium, named satisfaction equilibrium (SE), where RDs are
interested only in guaranteing a minimum QoS. We provide the
conditions for the existence and the uniqueness of the SE. Later,
in order to provide an equilibrium selection framework for t he
SE, we introduce the concept of effort or cost of satisfaction, for
instance, in terms of transmit power levels, constellationsizes, etc.
Using the idea of effort, the set of efficient SE (ESE) is defined.
At the ESE, transmitters satisfy their minimum QoS incurrin g in
the lowest effort. We prove that contrary to the (generalized) NE,
at least one ESE always exists whenever the network is able to
simultaneously support the individual QoS requests. Finally, we
provide a fully decentralized algorithm to allow self-configuring
networks to converge to one of the SE relying only on local
information.

I. I NTRODUCTION

In the last decade, game theory has played a central role
in the analysis of many problems regarding radio resource
allocation and quality of service (QoS) provisioning in self-
configuring wireless networks, see [1], [2] and references
therein. These kind of problems can be modeled by non-
cooperative games as long as radio devices (players) au-
tonomously set up their transmission configuration (actions)
to selfishly maximize their own QoS level (utility function).
As a consequence, the concept of equilibrium introduced by
Nash in [3] has been widely used. In the context of self-
configuring networks, a Nash equilibrium (NE) is a network
state at which radio devices cannot improve their QoS by
unilaterally changing their transmission scheme. At the NE,
each radio device attains the highest achievable QoS level
given the transmission schemes of its counterparts. However,
from a practical point of view, a radio device might be
more interested in guaranteeing a minimum QoS rather than
attaining the highest achievable one, due to several reasons.
First, a reliable communication becomes possible only when
certain parameters meet some specific conditions (minimum
QoS requirement), e.g., minimum signal to interference plus
noise ratio (SINR), minimum delay, etc. Second, higher QoS
levels often imply higher efforts for the transmitter, e.g.,
higher transmit power levels, more complex signal processing,
etc. Third, increasing the QoS for one communication often
decreases the QoS of other communications. This reasoning
implies that, in practical terms, the NE concept might fail to
predict the effective network operating point and therefore its
performance. In the presence of minimum QoS requirements,

a more suited solution is the equilibrium concept introduced
by Debreu in [4] and nowadays known as generalized NE
(GNE). In the context of self-configuring networks, a GNE is
a state at which transmitters satisfy their QoS constraintsand
their performance cannot be improved by unilateral deviations
(as in the NE). Nonetheless, depending on the QoS metrics
and network topology, the GNE might not exist [1]. In the
case where it does, a transmitter always ends up achieving
the highest achievable QoS, which is often costly, as men-
tioned above. In the most general case, one can consider that
players aim to exclusively satisfy their constraints instead of
considering that players aim to maximize their own utility
subject to a set of constraints. This reasoning leads to another
type of equilibrium concept: any state of a given game where
all players satisfy their own constraints is an equilibrium.
Recently, Rosset al. [5] have formalized this concept for
a particular type of constraints. Therein, such equilibrium is
called satisfaction equilibrium (SE). In our scenario, an SE
represents any network state where transmitters satisfy their
QoS requirements, independently of their achieved QoS.
In this paper, we generalize the idea of SE presented in [5]
such that it becomes independent of the type of constraints,
and we present a brief discussion on its existence and unique-
ness. Later, for each player, we arbitrarily define a function
from its set of actions to the interval[0, 1]. This function
quantifies the effort of the player while using a given action.
In this order of ideas, we introduce the concept of efficient
SE (ESE). An ESE is a network state where all players satisfy
their constraints by using the feasible action which requires the
lowest effort. Assuming that the set of constraints is feasible,
i.e., the minimum QoS requirements can be simultaneously
supported by the network, we proved that contrary to the
NE and GNE, at least one ESE always exists if the set of
actions is finite, independently of the explicit form of the QoS
metrics. Similarly, assuming the feasibility of the constraints,
the existence of at least one ESE is also ensured when the set
of actions is compact and the utility function is continuous
over a linear space with finite dimension containing the set
of SE action profiles. Finally, we present an algorithm which
allows a set of transmitters to achieve an SE using only local
information in a fully distributed fashion.

II. EXISTING GAME THEORETICSOLUTIONS FORQOS
PROVISIONING IN SELF-CONFIGURING NETWORKS

As explained in Sec. I, independently of the network
topology (multiple access channels (MAC), interference chan-
nels (IC), etc.), the QoS provisioning problem in self-
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configuring network can be modeled by a static non-
cooperative game. Consider a game in normal-formG =
(

K, {Sk}k∈K , {uk}k∈K

)

. The setK represents the set of
transmitters (players), and for allk ∈ K, the setSk represents
the set of actions of transmitterk, e.g., a power allocation
policy, a modulation scheme, etc. An action profile is a vector
s = (s1, . . . , sK) ∈ S, where S = S1 × . . . × SK . We

denote bys−k = (s1, . . . , sk−1, sk+1, . . . , sK) ∈ S−k
△
=

S1 × . . . × Sk−1 × Sk+1 × . . . ,SK , the vector obtained by
dropping off thek-th component of the vectors. With a slight
abuse of notation, we can write the vectors as (sk, s−k), in
order to emphasize itsk-th component. For allk ∈ K, the
function uk : S → R is the utility function of transmitter
k. This function determines how convenient (in the sense of
the QoS) a given actionsk ∈ Sk is with respect to the actions
adopted by all the other transmitterss−k. Hence, the higher the
utility the better the action for a given transmitter. When the
aim of each transmitter is to selfishly maximize its own utility
function regardless of the utility obtained by its counterparts,
a stable network configuration is the NE. An NE is defined as
follows.

Definition 1 (Pure Nash Equilibrium [3]): In the game
G =

(

K, {Sk}k∈K , {uk}k∈K

)

, an action profiles ∈ S is a
pure NE if it satisfies, for allk ∈ K and for all s′k ∈ Sk,

uk(sk, s−k) > uk(s
′
k, s−k). (1)

When constraints (QoS conditions) are imposed on the utilities
that each transmitter obtains in the gameG, the NE is not
longer a suited solution. In the presence of constraints, the set
of actions each transmitter can take reduces to the set of ac-
tions which verifies the individual constraints given the actions
adopted by the other transmitters. Let us characterize sucha
set of available actions by the correspondencefk : S−k → 2Sk

for each transmitterk ∈ K and denote the game with
constraints byG′ =

(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

. One
of the solutions to the gameG′ is known as the generalized
NE (GNE) [4], which is defined as follows:

Definition 2 (Generalized NE [4]): An action profiles∗ ∈
S is a generalized Nash equilibrium (GNE) of the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

if and only if

∀k ∈ K, s∗k ∈ fk
(

s
∗
−k

)

and

∀k ∈ K and∀sk ∈ fk
(

s
∗
−k

)

, uk(s
∗
k, s

∗
−k) > uk(sk, s

∗
−k).

Note that the classical definition of NE (Def. 1) is obtained
from Def. 2, when the action set of transmitterk ∈ K does
not depend on the actions of the other transmitters, i.e.,∀k ∈
K and ∀s−k ∈ S−k, fk (s−k) = Sk, which means that no
constraints are imposed on the utilities. In the next section,
we introduce a new game solution which is also suited for the
analysis of QoS provisioning in self-configuring networks.

III. A N EW GAME SOLUTION: SATISFACTION
EQUILIBRIUM

Consider now that the players in the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

are exclusively interested
on satisfying its own utility constraint, i.e., a given QoS
condition. Here, the idea of satisfaction becomes intuitive:
a player is said to be satisfied if it plays an action which
satisfies its constraints. Once a player satisfies its individual
constraints it has no interest in changing its action, and thus, an
equilibrium is observed if all transmitters are simultaneously

satisfied. We refer to this solution as satisfaction equilibrium
and we define it as follows.

Definition 3 (Satisfaction Equilibrium): An action profile
s
+ is a satisfaction equilibrium for the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

if

∀k ∈ K, s+k ∈ f−k

(

s
+
k

)

. (2)

Note that by taking the particular choice for allk ∈ K,
fk(s−k) = {sk ∈ Sk : uk (sk, s−k) > Γk}, whereΓk is the
minimum utility level required by playerk, then, Def. 3
coincides with the definition of SE provided in [5]. However,
in this paper we will refer to the SE concept as in Def. 3 for
the sake of generality. LetSSE be the set of SE of the game
G′. Hence,

SSE
△
= {s ∈ S : ∀k ∈ K, sk ∈ fk(s−k)} ⊆ S. (3)

Let alsoSGNE be the set of GNE of the gameG′. Then, from
Def. 2 and Def. 3, it follows that

SGNE ⊆ SSE ⊆ S, (4)

which verifies the intuition that the SE concept is less restric-
tive than the GNE concept. In the following, we analyze the
existence, uniqueness and efficiency issues for the SE in the
gameG′.

A. Existence and Uniqueness of the Satisfaction Equilibrium

The existence of an SE in the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

mainly depends on
the constraints imposed on the utility function, i.e., the
set of correspondences{fk}k∈K. For instance, let the
correspondenceF : S → 2S be defined as follows:
F (s) = (f1 (s−k) , . . . , fK (s−k)). Then, an SE exists if and
only if

∃s ∈ S : s ∈ F (s). (5)

This formulation allows us to use existing fixed point (FP)
theorems to provide sufficient conditions for the existenceof
the SE. For instance, from Kakutani’s FP theorem [6] we can
write the following proposition.

Proposition 4 (Existence of the SE): In the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

, let the set of actionsS
be a non-empty, convex and compact set. Let also the corre-
spondenceF (s) have a closed graph and be non-empty and
convex in the set of actionS. Then, the gameG′ has at least
one SE.
Note that in Prop. 4 no conditions (e.g., continuity) are
imposed over the utility functions{uk}k∈K, to ensure the
existence of the SE. Indeed, from Def. 3, it can be implied
that a necessary and sufficient condition for the existence of
an SE is the feasibility of the constraints, i.e., the existence
of at least one action profile which simultaneously satisfies
all the constraints. Note also that the feasibility condition is a
necessary but not a sufficient condition for the existence ofthe
GNE, which implies that one can observe games possessing at
least one SE and no GNE. The converse is not true. This result
implies that, by using the SE concept rather that the GNE
concept, any achievable network performance can be fixed as
the network operating point depending on the QoS requests
(the set of functions{fk}k∈K). Interestingly, this flexibility is
not offered neither by the NE nor the GNE but by the SE.
Finally, we underline the fact that the existence of one SE does
not necessarily imply its uniqueness. Indeed, it is difficult to



provide the conditions to observe a unique SE for a general set
of correspondences{fk}k∈K. However, as we shall see in Sec.
VI, the set of SE is often non-unitary and thus, an equilibrium
selection process might be required. In the following section,
we introduce a novel equilibrium selection for the case of SE.

IV. EQUILIBRIUM SELECTION: EFFICIENT SATISFACTION
EQUILIBRIUM

Assume now that the set of SE is non-empty and non-
unitary. Hence, might a given SE be better than any other
SE? To answer this question, consider that players care about
the cost or effort of using a given action. For instance, using
a higher transmit power level or using a more complex mod-
ulation scheme (in the sense of the size of the constellation)
might require a higher energy consumption and thus, reduce
the battery life time of the transmitters. Hence, high transmit
power levels and complex modulations can be considered as
costly actions. If players are able to measure their effort they
incur when using a specific action, then it becomes natural to
think that players would aim to be satisfied with the minimum
effort. Following this reasoning the efficient SE (ESE) is
defined as follows.

Definition 5 (Efficient SE): Define a functionck : Sk →
[0, 1] for all k ∈ K and consider the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

. For all (k, s∗k, s
′
k) ∈ K×

S2
k , the actions′k is said to be more costly that actions∗k if

ck (s
′
k) > ck (sk). An action profiles∗ ∈ S is an ESE if and

only if

∀k ∈ K, s
∗
k ∈ arg min

sk∈fk(s∗
−k)

ck (sk) . (6)

Then,s∗ is one of the efficient SE (ESE) of the gameG′.
From Def. 5, it is implied that the set of ESE of the game

G′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

coincides with the
set of GNE of a non-cooperative game in normal-form denoted
by G′′ = {K, {Sk}k∈K, {ck}∀k∈K, {fk}∀k∈K}, where players
aim to minimize their respective cost functionck subject to
the set of constraints imposed over their utility functionsuk

and represented by the functionfk.
An important remark on Def. 5 is that if all players assign

the same cost to all their actions, then the set of ESE and
SE are identical. This implies that the interest of an ESE is
precisely that players can differentiate the costs of playing one
action or another. Interestingly, the selection of the ESE is not
based on the utilities obtained by the players but rather on
their cost functions. This is because players are careless of
their achieved utility as long as they are satisfied.

A. Existence of an ESE

Our first step to determine the existence of at least one ESE
in the gameG′ is to show that the auxiliary gameG′′ is an
exact constrained potential game. We extend the definition of
potential games in [7] to exact constrained potential gamesas
follows.

Definition 6 (Exact Constrained Potential Game):
Any game in normal form defined by the4-tuple
(

K, {Sk}k∈K , {ck}k∈K , {fk}k∈K

)

is an exact constrained
potential game (PG) if there exists a functionφ (s) for all
s ∈ SSE such that for all playersk ∈ K and for any pair of
actions(sk, s′k) ∈ {fk (s−k)}

2, it holds that

ck(sk, s−k)− ck(s
′
k, s−k) = φ(sk, s−k)− φ(s′k, s−k).

Before we continue, we clearly state that not all the properties
of potential games [7] hold for the constrained potential games.
As we shall see later, the best response dynamics might fail
to converge to an equilibrium action profile.

Note that the effort functionck in the auxiliary game
G′′ is arbitrary chosen by each playerk ∈ K and it is
independent of the actions taken by all the other players.
Hence, following Def. 6, it becomes clear that the gameG′′

is an exact constrained potential game with potential function

φ (s) =

K
∑

k=1

ck (sk) , (7)

if the set of SE (3) is non-empty. This result leads us to the
following proposition.

Proposition 7 (Existence of the ESE): The gameG′′ =
(

K, {Sk}k∈K , {ck}k∈K , {fk}k∈K

)

, with Sk a finite set for all
k ∈ K, cost functionsck : Sk → [0, 1] and a non-empty set
SSE, always has at least one ESE.
The proof of Prop. 7 comes from the fact that by assumption,
the domain of optimization in (6) is non-empty. Additionally,
from Def. 2 and Def. 3 it becomes clear that the set of solutions
of the optimization problem in (6) is identical to the set of
GNE of the gameG′′ and, sinceG′′ is a potential game with
finite sets of actions it always has at least one equilibrium
in pure strategies (Lemma 2.3 in [7]). Note that following the
same argument, we can extend Prop. 7 for the case of compact
and convex sets of actions. For instance, if for allk ∈ K, Sk is
compact and convex and the functionck is continuous over a
finite dimensional linear space containingSk, then under these
conditions, at least one ESE always exists.

B. Uniqueness of the ESE

As in the previous section, here we use the fact that the set
of ESE of the gameG′ is identical to the set of GNE of the
gameG′′ with cost functions arbitrarily chosen by each player.
Hence, since the gameG′′ is an exact constrained potential
game, we can state the following proposition.

Proposition 8 (ESE in compact set of actions): The ESE
of the game G′′ =

(

K, {Sk}k∈K , {ck}k∈K , {fk}k∈K

)

with cost functionsck : Sk → [0, 1] is unique if the set
SSE ⊆ S is non-empty, compact, and the (potential) function
φ (s) =

∑

k∈K c (sk) is continuous and strictly convex over
a linear space with finite dimensions containingSSE.

The proof of Prop. 8 follows from the fact that any minimum
of the potential functionφ in the setSSE is a GNE of the game
G′′ (Def. 2). When the setSSE is compact, any GNE must be
a potential minimizer, and since the potential is strictly convex
(by assumption) the GNE is unique.

In the case of discrete sets of actions, one can relay on the
Tarski’s FP theorem [8] to write the following proposition.

Proposition 9 (ESE in finite discrete set of actions):
Consider the potential game G′′ =
(

K, {Sk}k∈K , {ck}k∈K , {fk}k∈K

)

with cost potential
function φ : s ∈ S →

∑

k∈K ck(sk) and non-
empty set SSE. Assume that the correspondence
F (s) = (f1(s−k), . . . , fK(s−k)) is monotone increasing in
the sense that

∀ (s, s′) ∈ S2, φ (s) < φ (s′) implies

∀
(

s
∗, s+

)

∈ F (s)× F (s′) , φ (s∗) < φ
(

s
+
)

.

Then, the gameG′′ has a unique ESE.



The proof of Prop. 9 stems from the fact that if the correspon-
denceF is monotone increasing in the sense discribed above,
its set of fixed point solutions (which is non-empty, Prop. 7)
is a complete lattice. Thus, there is a unique minimizer of the
potential functionφ.

C. Determination of the ESE

To determine the set of ESE of the gameG′ =
(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

, one can simply solve the
optimization problem in (6). However, this will require com-
plete information for each player. For instance, a player might
require the knowledge of the set of actions, actions actually
being played, and parameters such as channel realizations and
QoS requirements of all the other counterparts. Hence, this
approach might not be practically appealing since transmitters
only possess local information. In some particular scenarios,
the ESE can be achieved in a fully decentralized fashion by
using the best response dynamics (BRD)[1], which in some
cases requires a minimum feedback from the receivers. For
instance, in interference channels where the utility function
is the transmission rate, the set of actions is a compact
set of power levels and the QoS constraint is a minimum
transmission rate, the BRD might in some cases converge to
an ESE [9][10]. However, in the presence of clipping actions,
which we describe in the next section, then the BRD might
not necessarily converge. In the next section, we present a
general algorithm which is able to converge to any of the SE
of the gameG′ but not necessarily to an ESE, requiring only
the local information.

V. ACHIEVING SATISFACTION EQUILIBRIA

Now, we focus on the design of decentralized algorithms for
allowing self-configuring wireless networks to achieve anySE
(not necessarily an ESE) in the case when the QoS constraints
can be written asfk(s−k) = {sk ∈ Sk : uk (sk, s−k) > Γk},
whereΓk is the minimum utility level required by playerk.
At most, we assume that a transmitter knows its own set of
actions and is able to periodically observe its own achieved
utility.
Let us index the elements of each setSk, ∀k ∈ K, with
the index nk ∈ Nk

△
= {1, . . . , |Sk|}, in any particular

order. Denote bys(nk)
k the nk-th action of transmitterk.

Assume that transmitterk ∈ K chooses their actions at instant
t > 0 following the discrete probability distributionπk(t) =
(

πk,1(t), . . . , πk,|Sk|(t)
)

, where πk,nk
(t) is the probability

with which transmitterk chooses its actions(nk)
k at instant

t. Using this notation, we present the satisfaction equilibrium
search algorithm (SESA), a slightly modified version of the
algorithm presented in [11] (for the case of NE), which allows
the convergence to an SE in a fully distributed fashion:
1) At time t = 0, all transmittersk ∈ K set up their
initial action sk(0), following an arbitrary chosen probability
distributionπk(0).
2) At each timet > 0, each transmitterk ∈ K computes
bk,t =

Mk+ûk,t−1−Γk

2Mk
, whereûk,t is the observed utility and

Mk is the highest utility transmitterk can achieve (single user
scenario). Then, it updates its actions as follows

sk(t) =

{

sk(t− 1) if ûk,t − Γk > 0
sk(t) ∼ πk(t) otherwise.

and its probability distribution as follows,∀nk ∈ Nk,

πk,nk
(t) =

{

πk,nk
(t− 1), if ûk,t − Γk > 0

gk(πk(t− 1)) otherwise,

Here,

gk(πk,nk
(t)) =πk,nk

(t)+λk,tbk,t

(

1
{sk(t)=s

(nk)

k
}
−πk,nk

(t)

)

,

where∀k ∈ K, λk,t =
1

t+1 is the learning rate of transmitter
k.
3) If convergence is not achieved, then return to step (2).
It is important to remark that transmitters do not change their
action dumbly. Conversely, at each action change, transmitters
update their probability distribution so that higher probabilities
are allocated to the actions which bring higher utilities and
thus, reduces the time of convergence with respect to a
time-invariant uniform probability distribution [12]. Before
providing a result on the convergence of the SESA, we define
a clipping action as follows

Definition 10 (Clipping Action): In the game
G′ =

(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

, a playerk ∈ K is
said to have a clipping actionsk if and only if

∀s−k ∈ S−k, sk ∈ fk (s−k) . (8)

Once a player plays its clipping action, it remains indif-
ferent to the actions of all the other players, since it is
always satisfied. The existence of clipping actions in the game
G′ =

(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

might inhibit the
convergence of the SESA.

Proposition 11 (Non-convergence of SESA): Assume the
existence of at least one player with a clipping action in
the game G′ =

(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

and
denote it bysk ∈ Sk for player k. Then, if there exists
a player j ∈ K \ {k}, for which fj

(

sk, s−{j,k}

)

= ∅,
∀s−{j,k} ∈ S−{j,k}. Then, the SESA does not converge to an
SE with strictly positive probability.
The proof of Prop. 11 follows from the fact that at timet
before convergence, the probability of the clipping actionsk
is strictly positive and thus, playerk might play it. If so,
by definition, there exist a playerj 6= k which would never
be satisfied. Then, the SESA does not converge to any SE.
On the contrary, if none of the players possesses a clipping
action, the SESA converges to an SE with probability one.
This result comes from the fact that in the absence of clipping
actions, there always exists a non-zero probability of visiting
all possible action profiles. Once an SE action profile is visited,
none of the players changes its action, and the convergence is
observed.

VI. CASE STUDY: INTERFERENCECHANNELS

In this section, we considerK transmitter-receiver pairs
simultaneously transmitting independent information andsub-
ject to mutual interference (interference channel). The QoS
metric of each transmitterk ∈ {1 . . . ,K} is its transmission
rate (utility function) and its set of actions is the set of different
transmit power levels. Each transmitter aims to guarantee a
minimum transmission rate denoted byΓk for player k. For
all (j, k) ∈ {1, . . . ,K}2, let hj,k be the channel realization
from transmitterk to receiverj. At each channel use, channel
coefficients are a realization of a complex circularly symmetric
Gaussian random variable with zero mean and unit variance.
We assume that channels are time-invariant during the whole
transmission duration (e.g. a packet or frame duration). Let
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alsoxk(t) be the transmitted symbols of transmitterk at time
t. Here, pk(t) = E (xk(t)xk(t)

∗) 6 pk,max. The received
signal at receiverk can be written asyk(t) = hk,kxk(t) +
∑K

j 6=k hk,jxj(t) + wk, wherewk is a random variable with
varianceσ2

k which represents the noise power at receiverk.
The utility function of transmitterk is

uk(t) = log2

(

1 +
pk(t)|hk,k|2

σ2
k +

∑K

j 6=k pj(t)|hk,j |2

)

[bps], (9)

and the function fk is defined by fk(s−k) =
{sk ∈ Sk : uk (sk, s−k) > Γk}. The set of N > 0 (log-
spaced) power levels of transmitterk is

Sk =
{

pk = pk,max

(

10−
n

N−1 log10(N)
)

, n ∈ {0, . . . , N − 1}
}

.

(10)
For all k ∈ {1, . . . ,K}, we define the effort function as the
identity function, i.e.,ck(q) = q, for all q ∈ Sk.

We model this scenario by the non-cooperative game in
normal formG′ =

(

K, {Sk}k∈K , {uk}k∈K , {fk}k∈K

)

for the
case ofK = 2 receiver-transmitter pairs. For allk ∈ {1, 2},
the average signal to noise ratio (SNR) is set topk,max

σ2
k

= 10

dBs, Γ = (0.6, 1.2) bps. In Fig. 1, we plot the achievable
transmission rates (achievable utilities) for both links and we
identify the NE, GNE, SE and ESE. The (unique) NE is
obtained when both transmitters use their maximum transmit
power (strictly dominant action). The GNE is the solution
where players maximize their utility and satisfy the QoS
requirements. In this case, it is unique but might not be
necessarily the case. The set of SE is the setSSE. The ESE
is unique (Prop. 8) and corresponds to the solution to (6). In
Fig. 1 several statements are verified: (A) The unitary set of
ESE is a subset of the set of SE, as suggested in (4). (B)
The GNE requires a higher transmit power than the efficient
ESE, however, in both cases the transmitters satisfy the QoS
constraints, and (C) the NE is not necessarily an SE.
In Fig. 2, we plot the achieved transmission rate of both links
at each instantt when SESA is used. Therein, it becomes clear
that even though a transmitter is satisfied, and thus does not
change its action, its achieved rate changes due to the actions
of the other transmitters. Once both transmitters are satisfied,
then none of them changes its transmit powers.
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Fig. 2. Instantaneous achieved rates of transmitter1 (red) and2 (blue).
Average SNR

pk,max

σ
2
k

= 10 dBs, Γ = (0.6, 1.2) and N = 32. Channel

realizations in Fig. 2 and Fig. 1 are the same.

VII. C ONCLUSIONS

We presented a new framework for QoS provisioning in self-
configuring networks based on the concept of SE and ESE,
both inspired from the game theory domain. The practical
pertinence of these concepts is clearly evidenced here. How-
ever, several problems remain to be solved. In the one hand, a
general algorithm for converging to an ESE is still unknown.
In the other hand, as long as the network can satisfy the QoS
requirements, our approach provides a solution. However, in
the converse case, an approach on mixed strategies can be
used to satisfy at least in expectation the QoS requirements.
We let these two issues as interesting tracks for further works
on applying SE and ESE in self-configuring networks.
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