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Abstract—In wireless mesh network (WMN), multiple service
providers (SPs) can cooperate to share resources (e.g., relay nodes
and spectrum), to serve their collective subscribed customers for
better service. As a reward, SPs are able to achieve more indi-
vidual benefits, i.e., increased revenue or decreased cost,through
efficient utilization of shared network resources. However, this
cooperation can be realized only if fair allocation of aggregated
payoff, which is the sum of the payoff of all the cooperative
SPs, can be achieved. We first formulate such cooperation as
a coalitional game with transferable utility, specifically, a linear
programming game, in which, each SP should obtain the fair
share of the aggregated payoff. Then we study the problem
of allocating aggregated payoff which leads to stable service
coalition of SPs in WMN based on the concepts of dual payoff
and Shapley value.

I. I NTRODUCTION

In wireless mesh network (WMN), the utilization of avail-
able resource, i.e., relay node and spectrum, and the cost of
routing, i.e., consumption of the network, can be substantially
improved and reduced, respectively, through cooperation.That
is, multiple service providers (SPs) may form a coalition to
pool their resources to serve all their subscribed customers
together, which leads to higher satisfied service [1].

Coalition of WMN benefits SPs in the following two ways.
First, SPs coalition may substantially lead to higher revenue. In
some WMNs, relay nodes (e.g., access points and routers) are
deployed dispersedly. For each SP, if there is no cooperation,
the limited number of nodes and their dispersive locations
largely confine the link capacity that can be provided for
flow transmission. Cooperation among SPs could increase
the number of available relay nodes for each SP which in
turn improves available link capacity. Accordingly, a larger
amount of flow rate requirement can be satisfied by efficiently
utilization of resources in the WMN, which leads to higher
aggregated revenue. Second, SPs coalition may lead to lower
network cost. A cost (e.g., due to the usage of energy and
spectrum) incurs when a node transmits or relays traffic flow.
Under non-cooperation, an SP can only use its own relay nodes
for flow transmission which largely constrains the routing.SPs
cooperation could increase the number of multi-hop routes
which in turn provides more options of packet forwarding for
flows. If the optimal route from source to destination node
under cooperation involves less relay nodes than under non-
cooperation, the cost for flow transmission is reduced.

Fig. 1 shows an example of two SPs cooperation. The

Fig. 1. An example of SPs cooperation in WMN.

dashed circle line represents the transmission range of the
source node S1. Due to the limited transmission range of
each node, when there is no cooperation, the three-hop route
represented as the semi-dashed arrow lines is the only route
available for SP1 to transmit flow from source node S1 to
destination node D1. This route incurs the cost of three nodes
for transmission. Cooperation between the two SPs can reduce
the cost as only two nodes are used for the transmission of
this flow with the route represented as the solid arrow lines.
Similarly, this is also the case with SP2 for flow transmission
from S2 to D2. Besides, under cooperation, multiple routes
can be utilized together to support a higher rate requirement
that a single route cannot satisfy, which leads to better service
for customers and higher revenue for SPs.

Although SPs coalition brings obvious benefits, a major
challenge arise in the formation of coalition. How the aggre-
gated payoff (i.e., revenue) shall be allocated to each SP so
that the coalition of them can be stabilized (i.e., none of them
has incentive to leave). In this paper, we first model the SPs
cooperation as a coalitional game with transferable utility [3].
An optimization problem based on linear programming game
is formulated. Then, to address the aforementioned problem,
we focus on the investigation of payoff allocation solutions
which always lead to cooperation among SPs.

The importances of payoff allocation solution in WMN
which motivate our study are1) from an individual point
of view, it is efficient to let each SP in the service coalition
achieve a fair sharing according to some common recognized
principles;2) from a social point of view, it encourages for-
mation of service coalition which provides improved network
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service for customers; and3) from a commercial point of view,
it helps each SP to form the stable coalition which helps each
one to gain. The analysis of cooperation behavior and payoff
allocation solutions are useful for SPs in WMN especially
from the economic perspective.

II. RELATED WORKS

Recently, many research interests have been focused on the
allocation problem of joint resource sharing in WMN [2].
Coalitional game theoretical framework, which is also adopted
in this paper, was widely used to model the network coopera-
tion. The existing approaches are mainly based on the concept
of Shapley value [4]. [5] presented a clean-state Shapley payoff
allocation solution, under which Internet service providers
have incentive to reach an equilibrium that maximizes both
individual profit and the system’s social welfare by performing
globally optimal routing decisions. In [6], with a similar
system model to that in [5], the Shapley value solution was
used under structured topologies, and a dynamic programming
procedure to calculate the Shapley value solution was devel-
oped for general topologies. Similarly, profit sharing scheme
based on Shapley value was also exploited in [7] for radio
access in cooperative networks, [8] for spectrum auction in
wireless network, and [9] for heterogeneous wireless assess in
4G networks.

III. N ETWORK MODEL AND ASSUMPTIONS

A. Wireless Mesh Network Model

We consider a WMN consisting of nodes belonging to
multiple SPs. LetM = {1, 2, . . . ,M} denote the set of SPs,
N (m) = {1, 2, . . . , Nm} the set of nodes of SPm, andNm

the total number of nodes belonging to SPm, m ∈ M. In
the SPs coalition, each nodei ∈ N (m) not only needs to
support internal flow transmission demand, but also serves as
a relay node for other cooperative SPs. In a WMN, multi-
hop relaying is usually used to route flow session from source
node to destination node. For optimality, we assume that
each flow session can be split for multi-path routing. Letbij
denote the frequency band assigned to link(i, j), andW (bij)
denote the bandwidth of frequency bandbij . Let Ti denote
the set of nodes that are within the transmission range of
nodei. B =

⋃

i∈N ,j∈Ti
{bij} represents the set of all assigned

frequency bands in the network. We assume that each SP owns
sufficient frequency bands and each link(i, j) between two
nodesi and j ∈ Ti is allocated with one frequency band at
the initial stage of WMN. To avoid channel interference, there
is no reuse of the same band within the interference range of
the nodes in WMN.

Let f(i,j)(l(m)) denote the data rate on link(i, j) attributed
to a flow sessionl(m), and L(m) denote the set of flow
sessions of SPm. Since, in WMN, a flow session from a source
node may traverse through multiple relay nodes to reach its
destination node, we consider the following two cases.

1) Let s(l(m)) and d(l(m)) denote the source node and
the destination nodes of flowl(m), respectively, andI(m)

andD(m) the set of source nodes and the set of destination

nodes of flow sessions owned by SPm, respectively. If node
i is the source or destination nodes of flow sessionl(m), i.e.,
i = s(l(m)) or i = d(l(m)), then

∑

j∈Ti

f(i,j)(l
(m)) = r(l(m)) or (1)

∑

p∈Ti

f(p,i)(l
(m)) = r(l(m)), (2)

wherer(l(m)) is the aggregated rate of flow sessionl(m).
2) If node i is an intermediate relay node of flow session

l(m), i.e., i 6= s(l(m)) and i 6= d(l(m)), then

j 6=s(l(m))
∑

j∈Ti

f(i,j)(l
(m)) =

p6=d(l(m))
∑

p∈Ti

f(p,i)(l
(m)). (3)

It is clear that if (1) and (3) hold, then (2) must be satisfied.
Therefore, it is sufficient to have only (1) and (3) in the
formulation.

Let cij denote the capacity of link(i, j). The aggregated
data rate on each link(i, j) cannot exceed the link’s capacity.
Thus, we have the following constraint,

i6=d(l(m)),j 6=s(l(m))
∑

l(m)∈L(m)

f(i,j)(l
(m)) ≤ cij . (4)

Let f⋆
(i,j)(l

(m)) denote the maximal rate that a flow session
l(m) can achieve on link(i, j), confined by (1), (3) and (4),
andF ⋆(l(m)) denote the maximal aggregated rate of a flow

sessionl(m). We haveF ⋆(l(m)) =
∑i=s(l(m))

j∈Ti
f⋆
(i,j)(l

(m)). The
aggregated rate of flow sessionl(m) ∈ L(m) is constrained by

r(l(m)) =

{

R(l(m)), R(l(m)) ≤ F ⋆(l(m)),

F ⋆(l(m)), otherwise,
(5)

whereR(l(m)) is the transmission rate requirement ofl(m).

IV. OPTIMIZATION FORMATION OF SPS COALITION IN

WMN

In this section, we develop a linear programming model for
the payoff optimization problem of cooperative SPs in WMN.
Coalition game with transferable utility [3], which allows side
payment among SPs, is adopted to model the SPs cooperation.

From a global perspective, we wish that, through SPs
cooperation, all the flows would choose feasible routings that
maximize the aggregated payoff of the entire network. This
SPs coalitional game in characteristic form is(M, v(S)) for
S ⊆ M. This SPs coalitional game in characteristic form
is (M, v(S)) for S ⊆ M, whereM is the set of players
and v(S) is the maximum aggregated payoff available for
division in any arbitrary way among the members ofS. Let P
denote the normalized revenue per unit data rate provided, and
C denote the normalized cost per unit data rate transmitted
by source node or forwarded by relay node due to energy
consumption and spectrum usage. Usually, for the commercial
reason, it is common to assumeP >> C. The optimization
problem for SPs coalition is to maximize their aggregated



max
f(i,j)(l(m))

: v(S) =
∑

m∈S

∑

l(m)∈L(m)

∑i=s(l(m))
j∈Ti

f(i,j)(l
(m))P −

∑

m∈S

∑

l(m)∈L(m)

∑

(i,j)∈Π(l(m)) f(i,j)(l
(m))C (6)

s.t. :
∑

j∈Ti
f(i,j)(l

(m))− r(l(m)) = 0, (i ∈ I(m), l(m) ∈ L(m),m ∈ S), (7)
∑

m∈S

∑

l(m)∈L(m)

∑j 6=s(l(m))
j∈Ti

f(i,j)(l
(m))−

∑

m∈S

∑

l(m)∈L(m)

∑p6=d(l(m))
p∈Ti

f(p,i)(l
(m)) = 0,

(i ∈ N (m) \ {{I(m)} ∪ {D(m)}}), (8)

f(i,j)(l
(m)) ≥ 0, P > 0, C > 0, (l(m) ∈ L(m), i ∈ N (m),m ∈ S, i 6= d(l(m)), j ∈ Ti, j 6= s(l(m))). (9)

payoff, i.e., revenue collected for providing service subtracts
the cost of using network nodes. Putting all the constraintsfor
routing aforementioned in Section III, we can formulate the
payoff optimization of coalitionS as the linear programming
problem defined in (6), subjected to (7) (8) and (9), where
Π(l(m)) is the set of links that are in use for the transmission
of flow sessionl(m).

The optimization problem (6) provides the maximum ag-
gregated payoff of SPs in a coalitionS. It is straightforward
to show that, for any disjoint coalitionS ⊆ M andT ⊆ M,
v(M) ≥ v(S)+ v(T ). In other words, the coalitional game is
super-additive. That is, the grand coalition of all SPs attains
the maximum possible aggregated payoff.

Definition 1. A coalitional game(M, v(·)) is called a linear
programming game if there exists anm × p matrix A, an
m × r matrix H , and vectorsg(S) ∈ R

p and t(S) ∈ R
r for

all S ∈ 2M \ {φ}, where{φ} represents empty set, such that
for the optimization problem,

v(S) :max
q

c · q

s.t. qA ≤ g, qH = t, q ≥ 0.

v(S) = vp(A,H, g(S), t(S), c) holds.

It is obvious that (6) satisfies all the requirements of
Definition 2. Thus, (6) is a linear programming game.

V. PAYOFF ALLOCATION SOLUTION

In this section, the concept of stability in coalitional game
is introduced. We then introduce two solution approaches of
payoff allocation in the coalitional game theory based on the
concepts ofdual payoff andShapley value.

A. Core of Coalitional Game

How to divide the aggregated payoff among the cooperative
players in coalitional game is the key for a stable coalition.
According to [3], core is the set of feasible payoff vectors
for players in the grand coalition that none of player has
incentive to leave, which is analogous to the idea behind a
Nash equilibriumof a non-cooperative game.

Definition 2. A real valued vectorx = (xi, i ∈ M) is said to
be an imputation if

∑

i∈M xi = v(M) andxi ≥ v({i}), ∀i ∈
M. The core of the coalitional game with transferable payoff
(M, v(·)) is the set of all imputationsx for which

∑

i∈S xi ≥

v(S), ∀S ⊆ M. In other words, the core can be represented
as follows:

C = {x ∈ R
M|

∑

i∈M

xi = v(M),
∑

i∈S

xi ≥ v(S), ∀S ⊆ M}.

In the proposed SPs coalitional game, any reasonable bases
for allocating the aggregated payoff need to be imperative to
motivate the SPs to join the grand coalition which maximizes
the aggregated payoff. In other words, any set of allocated
payoffs to the SPs should lie in the core of the game. Since the
SPs coalitional game defined in (6) is super-additive, the core
always exists [3]. The core may not be a unique imputation
and the set of imputations in the core may be quite large for
a coalitional game that is super-additive. Any imputation in
the core is stable; however, this imputation is only desirable if
it is obtained according to some principles that can guarantee
fairness and uniqueness. In the following, we address the fair
payoff allocation problem in SPs coalitional game by adopting
two well-known concepts from cooperative game theory, i.e.,
the dual payoff and Shapley value solutions.

B. Dual Payoff Solution

To every linear programming problem, there is a dual
problem that is intimately connected to the original one.
The dual optimal solutions for the optimization problem of
linear programming game can be obtained by solving the
dual problem of deterministic equivalent linear programming
of payoff allocation [3]. A linear programming game and its
dual problem are equivalent in some sense, e.g., the cores
of a game and its dual are the same. The dual problem of
SPs coalitional game defined by (6) can be expressed as (10),
whereyi, zi, e(i,j)(l(m)) are the dual variables corresponding
to the constraints (7), (8), and (9), respectively.

The payoff allocation of SPm in the grand coalition can be
expressed as follows:

µm(v(M)) =
∑

l(m)∈L(m)

∑

(i,j)∈Π(l(m))

e(i,j)(l
(m))f(i,j)(l

(m))

−
∑

i∈I(m)

yi · r(l
(m)). (11)

The dual payoff is the payoff vectors{µ1(v(M)), . . . ,
µm(v(M))} generated by the solution of dual problem. Two
important properties of dual payoff solution, making it suitable
for payoff allocation in SPs coalitional game, are the efficiency
and rationality. For efficiency, the sum of the allocated payoffs



min
yi,zi,e(i,j)(l(m))

:
∑

m∈M

∑

l(m)∈L(m)

∑

(i,j)∈Π(l(m)) e(i,j)(l
(m)) · r(l(m))−

∑

m∈M

∑

i∈I(m) yi · r(l(m)) (10)

s.t. : e(i,j)(l
(m)) + zi + yi = C − P, (i ∈ I(m), j ∈ Ti),

e(i,j)(l
(m)) + zi = C, (i ∈ N (m) \ {I(m)}),

e(i,j)(l
(m))− zi = C, (i ∈ N (m) \ {D(m)}),

e(i,j)(l
(m)) ≥ 0, zi ∈ R, yi ∈ R, (i ∈ N (m), j ∈ Ti, l(m) ∈ L(m),m ∈ M).

TABLE I
PROFILE OF FLOW SESSIONS IN THREE-SPNETWORK.

Session Source Destination Rate Req. (Kbps)

l11 n1(5) n1(2) 33
l12 n1(20) n1(1) 42
l13 n1(19) n1(8) 55
l21 n2(16) n2(6) 71
l22 n2(13) n2(9) 48
l23 n2(19) n2(8) 53
l31 n3(19) n3(12) 41
l32 n3(10) n3(11) 37
l33 n3(18) n3(16) 64

of all SPs equals to the maximum aggregated payoff, i.e.,
∑

m∈M µm(v(M)) = v(M). For rationality, the allocated
payoffs of all SPs must be more than or equal to those of
sub-coalitions, i.e.,

∑

m∈S µm(v(M)) ≥ v(S), ∀S ⊆ M.

C. Shapley Value Solution

Definition 3. The marginal contribution of playerm to a set
S ⊆ M \ {m} is defined as follows:

△m(v(·),S) = v(S ∪ {m})− v(S). (12)

Shapley value, first introduced in [4], is a unique value based
on the marginal contribution of each player to the coalition.

Definition 4. The Shapley value is obtained from

ϕm(v(M)) =
∑

S⊆M\{m}

|S|!(|M| − |S| − 1)!

|M|!
△m(v(·),S). (13)

The Shapley value is suitable for payoff allocation in SPs
coalitional game due to the efficiency and individual fairness.
The efficiency, as aforementioned, is the sum of the allocated
payoffs for all SPs equals to the maximum aggregated payoff,
i.e.,

∑

m∈M ϕm(v(M)) = v(M). For individual fairness,
Shapley value guarantees the allocated payoff of each SP to
be more than or equal to the value of the individual SP, i.e.,
ϕm(v(M)) ≥ v({m}), for all m ∈ M. Other properties
of Shapley value, i.e., symmetry, uniqueness, dummy, strong
monotonicity, and the details can be found in [10].

In the SPs coalitional game, the Shapley value of each SP
can be derived from the combination of (6), (12) and (13).

VI. N UMERICAL RESULTS

In this section, we present the numerical results of the two
aforementioned payoff allocation solutions. The fairnessand
stability of the solutions are demonstrated by comparison in
numerical simulations.

A. Simulation Setting

We consider a WMN consisting of three SPs, i.e.,M =
{SP1, SP2, SP3}. Each SP has20 nodes randomly locate in
a 600m× 600m area. The bandwidth of each frequency band
is set to beW (bij) = 200KHz , ∀bij ∈ B. The transmission
range of each node is set to be150m. As for channel quality,
we consider power propagation gaingij = 62.5 · d−4

ij like
adopted in [11], where dij is the length of link(i, j). The
capacity of each link is calculated according to Shannon
Theorem.

For each SP, there are3 internal flow sessions. For each flow
session, the source node and destination node are randomly
selected and the rate requirement is randomly generated within
[20, 80] Kbps. We assume that each SP charges its customers
for flow service at the same price level and the service fee for
providing a unit flow rate (i.e., 1 Kbps) is10. The cost for
each node to transmit or forward is1 per unit flow rate. Given
all the network and flow session profiles in the entire network,
the aggregated revenue is a constant. However, the coalition
provides more flexible routing options which could reduce the
cost and thus enhance payoff objective function (6).

B. Three-SP Coalition

This section considers the case of three SPs forming coali-
tion. The deployment of the nodes and flow sessions of
each SP are given in Fig.2(a), (b), and (c) while the flow
sessions under cooperation are shown in Fig.2(d). Table I
gives the details of the flow session profiles in the three-
SP network. Since the number of SPs in WMN is three, the
core can be presented bybarycentric coordinatesas shown in
Fig. 3. The shadow area represents the unstable imputations
with which the grand coalition would not be formed. With
this representation, the relationship of core, dual payoff, and
Shapley value is straightforward. As observed, dual payoffand
Shapley value both locate in the core area which means they
provide payoff allocations that stabilize the grand coalition.

Table II shows the results from two payoff allocation
solutions under different coalition structures. For three-SP
network, there are five possible coalition structures denoted



(a) Flow Sessions of SP1 (b) Flow Sessions of SP2

(c) Flow Sessions of SP3 (d) Flow Sessions of Three-SP Coalition

Fig. 2. Network topology and flow sessions of three-SP coalition

Fig. 3. Barycentric coordinates of the core, dual payoff andShapley value
for the numerical example.

by ω1 − ω5. As expected, the grand coalition, represented as
ω5, maximizes the aggregated payoff, and it is the only stable
coalition structure under which each SP gains a higher payoff
than that under any other coalition structures.

Taking a close look at the results in TableII , it can be
found that dual payoff solution allocates aggregated payoff to
each SP with an amount corresponding to the revenue minus

the cost of using the relay nodes. For example, the total flow
rate requirement of SP1 is 33 + 42 + 55 = 130Kbps. As this
rate requirement can be satisfied, a revenue of1300 shall be
collected according to the first term of (6). From Fig. 2(d)
we can observe that the number of nodes involved in the
transmission of flow sessionsl11, l12 and l13 are 3, 3 and 4,
respectively. The cost calculated according to the second term
of (6) is 33 × 3 + 42 × 3 + 55 × 4 = 445. The allocated
revenue subtracting the cost gives855 which equals to the
payoff of SP1 under dual payoff solution. This is also the
case with SP2 and SP3. It is because the dual payoff solution
allocates payoff based on the amount of occupied resource,
i.e., utilizing nodes in this SPs coalitional game. If an SP uses
links supported by other SP’s nodes, the cost of those nodes are
transferred from latter to former accordingly. However, there is
no such relationship in Shapley value solution. As described in
Section V, Shapley value solution allocates aggregated payoff
according to the marginal contribution of each SP. That is, if
a node of an SP is used by another SP, the payoff generated is
shared between the two SP according to (13). Each solution
provides the most fair solution based on its allocation principle
and both solutions are stable in this SPs coalitional game.



TABLE II
PAYOFF MATRIX FOR THREE-SP COALITIONAL GAME WITHOUT COALITION COST,

Coalition Structure µ1(v(M)) µ2(v(M)) µ3(v(M)) ϕ1(v(M)) ϕ2(v(M)) ϕ3(v(M)) v(M)

ω1 = {{SP1}, {SP2}, {SP3}} 767 1101 976 767 1101 976 2844
ω2 = {{SP1, SP2}, {SP3}} 800 1101 976 783.5 1117.5 976 2877
ω3 = {{SP1}, {SP2, SP3}} 767 1149 1058 767 1166 1041 2974
ω4 = {{SP1, SP3}, {SP2}} 822 1101 1013 813 1101 1022 2936
ω5 = {{SP1, SP2, SP3}} 855 1149 1058 817 1

6 1170 1
6 1074 2

3 3062

VII. C ONCLUSION

In this paper, we have modeled the payoff optimization
problem of SPs cooperation as a coalitional game with
transferable utility, specifically, a linear programming game.
Based on the concepts of dual payoff and Shapley value, we
have obtained the stable solutions for the formulated linear
programming game under general network topology. For the
future work, the distributed algorithm of payoff allocation
solution with coalition formation of SPs will be developed.
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