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Abstract

Network measurement is a discipline that provides the techniques to collect data that are funda-
mental to many branches of computer science. While many capturing tools and comparisons have
made available in the literature and elsewhere, the impact of these packet capturing tools on ex-
isting processes have not been thoroughly studied. While nota concern for collection methods
in which dedicated servers are used, many usage scenarios ofpacket capturing now requires the
packet capturing tool to run concurrently with operationalprocesses.

In this work we perform experimental evaluations of the performance impact that packet cap-
turing process have on web-based services; in particular, we observe the impact on web servers.
We find that packet capturing processes indeed impact the performance of web servers, but on a
multi-core system the impact varies depending on whether the packet capturing and web hosting
processes are co-located or not. In addition, the architecture and behavior of the web server and
process scheduling is coupled with the behavior of the packet capturing process, which in turn also
affect the web server’s performance.
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Chapter 1

Introduction

Network measurement is a discipline that provides the foundation for many studies in networked
systems. From capacity planning to anomaly detection to network security, being able to measure
and collect data from the network is crucial for the success in these tasks. One such popular
method to collect data from the network is packet capturing.Because the collected data (the
packet) contains application-invariant and application-specific information, it is a good candidate
for one-time data collection that can support various typesof analysis. In addition, packet capturing
tools are widely available (e.g., Wireshark, TCPDump for Linux, NetMon for Windows), and there
are mature libraries for custom codes to tap into the packet monitoring process.

In the past network measurements are often collected by means of port mirroring at the router
and dedicated machines to collect the packets. Another way to monitor the network is to do so
at the edge of the network (i.e., capture at the server machines). This reduces the need to have a
dedicated machines and also amortizes the cost of packet capturing over all the machines.

Although not a concern if dedicated machines are used to capture packets, the performance
impact of capturing process becomes important if it is to co-locate in the same physical machine
as running processes. In fact, in some cases monitoring at the server machines is preferred, if
not essential. For example, there are works that attempt to discover application-level dependency
[17, 6] while others try to localize the source of faults frominformation derived from captured
packets [4]. Without capturing the network information at the server machines, details such as
application-level dependency is either impossible or muchmore difficult to capture elsewhere.

Recognizing the deficiency of research work in this area, we carry out experiments to examine
the impact that packet capturing process has on web-based services. In particular, we test packet
capturing process’ performance impact on web servers at their saturation point. This gives us some
insight into the maximum performance achievable for web services when packet capturing process
is also running, and whether it adversely impacts existing services.

The contributions of this work are:

• Experimental evaluation on the performance impact of capturing process to co-located web-
based services.

• Deployment of two web servers of different architecture to validate that results are consistent
across different web server architectures.
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• Measurement of both system-level statistics and user-perceived statistics to observe correla-
tion between the two.

In Section 2 we briefly go over the packet capturing process; Section 3 presents the evaluation
methodology and the results obtained; Section 4 discuss therelated works; Section 5 discusses
future works and concludes the work.
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Chapter 2

Packet Capturing Process

This section provides a high-level overview of the packet capturing process in Linux, as to make the
discussion in this work complete. The goal of this section isnot to provide a complete detail of the
internals of packet capturing, but to illuminate on the steps involved in delivering the packet from
the network card to the kernel and to the user application. This will help towards understanding
the behaviors observed in Section 3; details of the packet capturing process described here can be
found in [10, 11].

When packets are transmitted over the wire, the network interface card (NIC) normally picks
up the packet if the packet is destined for it; under promiscuous mode it will pick up all packets
sensed. Once the packet is recognized for reception, the NIC’s interrupt routine is invoked, in
which the routine allocates some space in memory and copies the packet into the allocated memory.
The packet is not immediately processed after moving to the memory, as the interrupt routine is
intended to perform as little operation as possible. When thepacket is picked up later by the
software interrupt handler, it passes the packet upwards tothe appropriate protocol handler based
on the packet’s protocol type.

For packets destined for packet capturing tools, a special handler is used so that all the packets
can be handled and subsequently forwarded to the capturing process. Corresponding to this special
handler is a special protocol family called PFPACKET, and the packet is copied1 and delivered
to a socket created specifying the PFPACKET family. Copying is needed because the packet
might be actually destined for an application at the local machine, so the packet must be copied for
separate consumption by the capturing process and the application.

While this overview is brief, it illuminates the many transactions involved in capturing the
packet, and these transactions will result in the use of CPU resource. The experiments to be dis-
cussed in Section 3 are aimed at observing how its uptake of CPUresource affects the performance
of web servers.

1The way in which the packet is copied is that an internal structure, skbuf, that holds information regarding the
data packet is copied. But only the fields are copied – the packet data itself is referred by pointers in the duplicate and
the original structure.
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Chapter 3

Evaluation

In this section we present the experimental results obtained when running the packet capturing
tool under various application scenarios. We will first discuss the set-up of our experiments and
the metrics we set out to collect; then we will discuss the results of the experiments and various
inferences drawn from them.

3.1 Experimental Set-up

To observe the effects of packet capturing on applications,we deployed two web servers and
collected various performance metrics. The web servers used are Apache version 2.2.17 with
worker MPM[3] and Nginx version 0.8.54[15]; the kernel usedis 2.6.35.11. We choose to use
Apache because it is rated the most-used web server according to the latest survey by NetCraft
(February 2011 at the time of writing) [14]; while Nginx is also used because its architecture is
fundamentally different from Apache and is also rated high on the NetCraft survey.

The Apache architecture offers various Multi-Processing Modules (MPM) as a way to scale
the web server with increasing user demand. These MPMs are either multi-processed, multi-
threaded, or both. In the model we use, the worker module1 is selected. Apache uses a parent
process to accept incoming connections and distributes them to multiple processes/threads, where
each process/threads handles one request at a time [9]2. One implication of such an architecture
means that in order to scale, the number of threads and process needed to spawn needs to increase.
On the other hand, Nginx [15] is a highly-scalable web serverdeveloped to address the ability
to serve high number of simultaneous user connections, alsoknown as the C10K problem [12].
Nginx operates under the asynchronous call model, so a single process can scale quite well against
increasing concurrent request volume.

To measure the performance impact of packet capturing, we monitor the CPU and bandwidth
utilization of all applications, and application-specificmetrics. The packet capturing tool we used
in this experiment is a vanilla TCPDump, as we would like to observe the impact of a free and
widely available tool without any performance modificationto it (e.g., mmap extension, PFRING
extension [7]). To stress the web servers, we use HTTPLOAD [13] to constantly fetch a small

1We choose this model based on the scalability and smaller memory footprint than pure process-based module
2We also consulted the documentation on the popular prefork module and it works in similar manner.
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(a) CPU Utilization For Apache and TCPDump When Pinned To Different CPU Core
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(c) Bandwidth Utilization When Apache and TCPDump Are Pinned To Different (left) Or The Same CPU Core (right)

Figure 3.1. Apache Results

static HTML page from the servers. In addition, for all the experiments the web server is hosted on
a Duo Core system, but we confine the web server to a single core.This allows us to experiment
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with co-locating and separating the packet capturing and web server process. By doing so, we
can observe the effect that sharing CPU resource has on the performance degradation of the web
servers.

For each web server, we test the co-location factor by movingTCPDump and the web server
processes onto the same or different CPU core, and we also varyTCPDump’s behavior in four
ways: no TCPDump running, normal TCPDump, quieter TCPDump, andTCPDump writing cap-
tured packets to disk. We have a total of eight settings, two of which are repeats (no TCPDump and
co-locate is the same as no TCPDump and do not co-locate). For each setting we use HTTPLOAD
on two different clients, where each client set the HTTPLOAD concurrency to 15, to fetch con-
tinuously from the server for five minutes; metrics are collected every five seconds to minimize its
impact on the experiment.

3.2 Web Servers

Figure 3.1 and Figure 3.2 show the CPU and bandwidth utilization for one run of the experiment,
when running the HTTPLOAD to retrieve files from the web servers.

Upon first glance, we note that the behavior of Apache and Nginx are visibly different, with
Apache more prone to CPU fluctuation, while Nginx is more stable in CPU usage. This could be
attributed to the fact that Apache’s method of scaling with demand results in much more context
switches between the various worker threads, resulting in the performance fluctuation. On the
other hand, Nginx is using much less number of processes, andis able to serve requests without
getting constantly interrupted.

With the web server and TCPDump pinned to different CPU core, both processes are shown
to take up significant amount of CPU resource. In both types of web servers, the web server
process takes up nearly one hundred percent of the process while the TCPDump process also
consumes significant CPU resource. When the server and TCPDump process are bound to the same
CPU core, the Apache server seems to be holding more share of the CPU resource while Nginx
predictably shares the resource equally with TCPDump. In fact, TCPDump has almost no access to
the CPU, using only a few percent of the CPU resource at any giventime. This phenomenon can be
explained by understanding the method in which Apache scales with increasing user demand. To
maintain scalability, the worker MPM in Apache has a parent process that monitors and distributes
incoming load. The parent process spawns a number of child process that actually serve the request,
with the maximum number of child processes constrained by the ServerLimit directive (defaults to
16, which is our setting). The kernel scheduling algorithm would then try to equally distribute the
available CPU resource to all active process, majority of which belongs to Apache. On the other
hand, Nginx and TCPDump predictably shares the CPU resource equally, due to the fact that only
one Nginx process is actively serving incoming requests. This result has significant implication
to the efficiency of the web server and packet capturing process. To ensure capturing process has
access to enough CPU to process the captured packet, it shouldbe scheduled on a separate core.
If the capturing process is to be co-located with the web server, care must be taken to understand

13
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Figure 3.2. Nginx Results

the structure and behavior of the web server, to ensure the capturing process also has access to
the CPU resource. It is interesting to also note that, in some cases the recorded CPU utilization is
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Figure 3.3. Web server performance in fetches/second averaged
over 24 runs, with 95% confidence interval shown

over one hundred percent. This is impossible because we confine the processes to a single core,
so the maximum possible is one hundred percent. After inspecting the source code of the tool
we used to collect the CPU utilization, we noticed the tool reads two pseudo-files to calculate the
CPU utilization for a process, and the two reads are not atomic. We believe that this behavior, in
addition to the CPU collection process running on another thread, means that there is a potential
race condition, and the calculation could be slightly off. However, we note that despite the observed
error, the general trend is still significant enough for us tomake the above observations.

Next we look at the bandwidth utilization result. For Nginx the achieved bandwidth utilization
is lower in the case when TCPDump is running and co-locating with the web server. On the other
hand, the bandwidth utilization for apache is about the sameas before. Comparing Figure 3.1(c)
and Figure 3.2(c) with Figure 3.1(b), Figure 3.2(b), the difference in bandwidth usage is correlated
with the difference in CPU usage: a higher CPU usage corresponding to higher bandwidth utiliza-
tion, and vice versa; however the variability in the bandwidth/CPU utilization are different, as the
bandwidth utilization remains more stable than CPU utilization.

While these metrics shed some light on the resource consumption and possible performance
of the system, they do not explicitly tell us the performancethat users can expect. To gain such
an insight, we scrape the reports generated by HTTPLOAD at each client machine at the end of
the experiments. Figure 3.3 shows the aggregate number of fetches per second that are observed
from all the clients. We note that the baseline experiment (i.e., TCPDump is not running) shows
the performance of Apache and Nginx is quite good. With the presence of TCPDump, the perfor-
mance of the web server varies depending on the co-location.When TCPDump is not co-located
with the server process, TCPDump seems to decrease the average performance of Apache more
significantly (up to 10%). However, when TCPDump co-locates with the server process on the
same core, the result is more dramatic. Correlating the results in Figure 3.3 with Figure 3.1(b) and
Figure 3.2(b), we can see that the CPU share TCPDump has obtained is directly proportional to the
decrease in the average fetches per second achievable. The significant performance degradation for
the case where TCPDump and Nginx are on same core – but little performance degradation when
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on different cores – suggests that CPU utilization could be a major source of the web servers’
performance degradation.

In summary, the experiments carried out in this section implies that CPU utilization can tell
us that performance degradation has occurred, but performance degradation can still occur even if
CPU utilization looks normal. In the case for Apache, even though it dominates the CPU when
co-located with TCPDump, the fetches per second achievable is considerably lower; while Nginx
consumes much less CPU but has similar performance degradation as Apache. However it is
undeniable that the presence of TCPDump has negative performance impacts to the web servers,
so care should be taken when running packet capturing process such as TCPDump, as to ensure
the performance impact to the web servers is minimal. In addition, when TCPDump has equal
opportunity to contend for the CPU resource it does consume a non-trivial amount, and this has
performance impact for admins looking to consolidate different types of task onto a single machine.
For tasks that are CPU-bound, consolidating it with machinesrunning packet capturing processes
could elongate the task completion time as well as diminishing the number of packets captured.
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Chapter 4

Related Works

For evaluation of packet capturing tools, the closest worksto this are works that either explicitly
evaluate packet capturing performance or attempts to improve the packet capturing performance.
This is because in both types of work, an evaluation of the various aspects of packet capturing tools
such as CPU utilization and packets captured are usually presented. Below we briefly describe both
types of work.

Deri [7] has suggested that the packet capturing process is inefficient due to overhead involved
in copying the packet. The work proposes a new socket type, PFRING, in which the packet can
be copied directly from the device driver buffer to user-accessible memory, drastically reducing
memory allocation and copying operations. A later work improved upon PFRING by proposing a
new architecture in which multi-core processor can be utilized to increase the monitoring capability
of the system [8]. In both of these works, Deri et al. discovered that the capturing process do not
handle high traffic volume well due to the memory operations from device driver to kernel and
from kernel to user level, as well as sub-optimal utilization of resource available at device and
kernel level.

In [18, 5], the authors investigate the performance of packet capturing tools in various software
and hardware platform. The metrics investigated in these works are the packets captured [18, 5],
with [18] having some emphasis on the CPU utilization and [5] focusing on the percentage of
packets captured. Both works are important because they evaluate the performance of packet
capturing tools using common platforms, so the valid conclusions can be drawn regarding the
hardware or software stacks involved in packet capturing.

Our work differs from these works in that we do not emphasize on the performance of the
packet capturing tool, but whether the packet capturing tool affects existing applications, and if so
to what degree. Even though the hardware used to host the capturing process and web server is
multi-core, we only utilize one core for either the web server or the packet capturing process. This
is so we could monitor the effect of co-locating the two processes, and have shown that co-location
causes dramatic performance degradation to the web servers.
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Chapter 5

Conclusion

In this work we examine the performance of web servers in the presence of packet capturing pro-
cess. We find that CPU sharing is directly proportional to the performance degradation experienced
by the web server, and separating the two processes onto different cores still has some performance
impact on the web server.

This work is a good start, but more environments can be considered:

• Serving larger web pages: We need to repeat the experiments for the case when web servers
are serving larger web pages. This would make the web server more I/O bound, and having
the capturing process write to disk should create another venue for resource contention.

• Serving dynamic pages: In this work we have looked at the case when web servers host
static pages, dynamic page would put more CPU demand on the server, and the performance
impact of such needs to be investigated.

• Caching pages: When serving static pages, the web page can be cached in memory, thus
avoiding the disk completely. More experiments should be performed to investigate the
effect of such a strategy.

• Monitoring technology: In this work we do not take advantage of the prototypes made
available from prior research works (e.g., PFRING), other techniques (e.g., sampling), or
other types of packet capturing tools (e.g., dumpcap), future work will investigate these
varieties.

We believe this work is the first step towards thoroughly understanding the behavior of co-
locating capturing process and web servers. From these experiments, we can understand how to
best capture packets when the capturing process has to be co-located with the on-line service, and
whether new techniques can be applied to perform network measurement.
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