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On the Application of the Baum-Welch Algorithm
for Modeling the Land Mobile Satellite Channel

Balazs Matuz, Francisco Lazaro Blasco and Gianluigi Liva

Abstract—Accurate channel models are of high importance a sequence of measurement data. In literature there exist
for the design of upcoming mobile satellite systems. Nowagla several approaches, most of them being rather simple and
most of the models for the land mobile satellite channe[{LME) empirical. In [6] the authors propose first to associate with

are based on Markov chains and rely on measurement data, .

rather than on pure theoretical considerations. A key probem eac_h meqsureme.nt_sample a state of the underlying Markov
lies in the determination of the model parameters out of the Chain. This association is done manually. Then, for eade sta
observed data. In this work we face the issue of state identifation ~the distribution of the associated samples is approximated
of the underlying Markov model whose model parameters are py some known distribution by means of curve fitting. In
a priori_unknown. This can be seen as a hidden Markov 71 the weighted sum of some known distributions is fitted

model (HMM) problem. For finding the maximum likelihood . - .
(ML) estimates of such model parameters the Baum-Welch to the probability density functior{ (p.d.f) of the measure

m a|gorithm is adapted to the context of channel mode”ng_ data. This giVeS the parametel’s for the distributions in the
Numerical results on test data sequences reveal the capabilities different states. Then, each sample is associated withta sta

of the proposed algorithm. Results on real measurement datare  py placing thresholds on the signal level. The thresholés ar
finally presented. put according to the state probabilities from the fittingpsteor
highly overlapping distributions, this only works with litad

. INTRODUCTION accuracy, as we will show later. A more rigorous attempt is

Satellite services to mobile users are experiencing a redeWn® technique in[[7] based on reversible jump Monte Carlo
interest thanks to the licenses granted for S-band usage $gmputation([9]. It suggests fully blind estimation, makino
broadcast and interactive servicés [L]-[3]. The unde«gyir’Prior assumptions on the number of states, nor on the specific
communication channel, referred to as land mobile satellistributions, allowing huge flexibility. However, this sizhe
channel [LMSC), is characterized by strong variations @¥ice of a significant increase in complexity and the resglti
the received signal power. Obstacles in the propagatiom p&tates and distributions often lackfficient explanations in
between the satellite and the mobile terminal, such asinggd terms of underlying physical effects.
or trees may cause shadowing or even a complete blockage of _ )
the signal. With increasing frequency and decreasing tteva  Within this work we propose a further way to estimate
angle such events become more and more likely and stronﬂ'l? mpdel parameters. It explo!ts the fact that the state-ide
impact service availability. A further source of fading iged tfication can be seen as a hidden Markov model (HMM)
to multipath propagation: objects in the vicinity of the eae@r problem: out of the channel observation we would like to
are source of reflections that cause constructive or deisteuc draw conclusions about the underlying Markov process that
interference. In the past several authors proposed Markgnot directly observable. A solution to this problem isegiv
chain models to describe the behavior of fhe LMSC [4]y the Baum-Welch[(BW) algorithm, that has been widely
[B]. The modeling approach can be divided into two stagedSed in other fields, such as speech or pattern recognition.
First a Markov chain is set up to model slow transition" application to models of digital channels has alreadynbee
between different signal levels duertmcroscopic effects suchProvided in [10]. In the sequel our focus is on the LMSC.
as blockage, shadowing, etc. In practice models with two oVe impose some constraints on {he BW algorithm in order
three states are common, but also a larger number of stdfgdmprove its convergence and for sake of simplification.
is possible. Second, fast signal variations within eactestdn particular it is well-known that its convergence propest
due to multipathare taken into account assuming that thdepend on the initial model assumptions. Hence, unlik&jn [7
signal amplitude follows some specific distribution. To egivWe assume prior knowledge on the type of distributions aad th
an example, a Ricean distribution may be used to describe ffigtribution parameters (to be obtained by a precedingecurv
signal amplitude in line of sighE{LdS) conditions, wheréas fitting step). Also, we fix the number of states in advance.

amplitude in a blockage state could be assumed to be Rayleigh o . )

distributed. The remaining part of the paper is organized as follows. In
Knowing the underlying channel model, a major issugectiorll) we recap the BW algorithm. Further we introduce

consists in how to determine the model parameters out &f0g-domain computation of the forward-backward metric of

the[BW algorithm and discuss some adaptations. SeEfion I
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Il. OVERVIEW OF THEBW|ALGORITHM 3 o) = fulr) 20, a1 (s

ama() | b)) = X b Doy f (o) | besa (1)

Following the footsteps of[[11], we consider next the | =
problem of associating an observed sample with a state of our * :
HMMI] The [BW algorithm can be applied to maximize the
probability of a state given the entire observation segeenc
Let us denote as(; the state of thE_ HMM at time, and as
r = (ry,72,...,T,) the vector ofn observations. The problem
can be formalized as follows: given the vectormgfwe are
interested in locally calculating the probability of beiingstate
¢ at timet, i.e. Pr{X; = i|r}. We define

gu(i) £ Pr{X, = v} = %(f;:” 1)

For now, we focus on the joirft p.d.f. in the enumerator.
Under thd HMM assumption, after dropping the subscripts for
simplicity, this[p.d.{. can be rewritten as

t—1 ; t ' t+1

[, Xy =i)= f(r}, X, =14) - f(rP | X =14) Fig. 1.  Calculation of the forward-backward metric for 3teta (linear
. (2) domain).
a (i) be (i)
Here we used the shorthang’ to denote the elements
(rg, Tk+1,- - -, Tw) Of the observation sequeneewith w > k. Even if the[BW algorithm is in principle more general, we
Further, referring to[{2), we define a forward metui¢i) and restrict ourselves to the simple case where the density- func
a backward metrid, (7). It follows that tions f;(r), i = 1,...,m, are perfectly known, whereas we do
s (i)be (i) not have any knowledge about the transition probabilities

9t(l) = =+, (3) which we want to estimate. To do so, we chose some initial
2im1 @(D)bi(?) values forpijﬁl run the forward-backward algorithm and re-

where the normalization by"'"  a,(i)b.(i) corresponds to estimate the transition probabilitigs; and the initial state

fr(r) in (@) andm denotes the number of states. Beijng probabilitiesp; according to the re-estimation formulae

the transition probability from stateto j, p; the probability

n—1 .. m
of statei and f;(r) the probability density function given bij = nz;lt:lﬂ’jt(l’j)' —, pi=Y_2(i,])
statei, the forward and the backward metric can be computed t=1 Zj:l zt(i, ) j=1

iteratively as Former values op;; andp; are replaced by the new estimates

, m , and the forward-backward algorithm is run again, leading to
ar(i) = fi(re) Y ar-1(j)pji, (4)  updated estimates, which are then fed-back. This process is
j=1 iterated several times. The state identification step spoeds

m to the E-step of the expectation-maximization (EM) aldorit
be(i) = Z ber1(G)pij [i(rig1), (5) where the model parameters are assumed to be fixed. The re-
j=1 estimation step corresponds to the M-step, where the most
with the initial metricsas (i) = p; f;(r1) andb, (i) = 1Vi. likely model parameters are determined given the hiddee sta

Figure[l shows an excerpt of a state diagram for a Mark§¢duence. _ _
chain in the intervalt — 1, + 1]. The nodes of the trellis A final remarkis related to the convergence of the algorithm.

diagram at each time instance denote one of the three pess|bis Well known that thé EM algorithm, as well as its special
states, whereas the lines denote all possible transitos: instance, thé BW algorithm, increases the likelihood of the

sider for example state As indicated by the solid arrows, themodel iteration by iteration till it converges to a maximum
metrics from all the nodes at- 1, as well ag + 1 contribute value [12]. However, the algorithm may converge to a local
to the calculation of the probability of stateat timet. The Maximum of the likelihood function, rather than to a global
most likely state sequence can be determined by choosing @: The convergence of the algorithm can be facilitated
state with the highest probability at each time instance. ~ PY limiting the set of a priori unknown model parameters.

Further, we may wish to estimate the probability of havinélternatively, a set of various starting points can be coassd.
a transition from state at timet to statej at timet¢ -+ 1, given

the observationr. This can be expressed as A. Log-domain Implementation of the BW Algorithm
200, 5) 2 Pr{X, = i, Xy41 = jr}, Already for short observation sequences £ 100) the

. forward-backward metric may get numerically unstable. As
and it turns out that
N . 1in principle the choice is arbitrary. Nevertheless initialues not too far
2(i,7) = =m a (nll)p” fj_(rt+1)bt+1(]) —.  (6) from the real values facilitate the convergence of [fie] BWrlgm. Good
21:1 Zj:l at(l)pz‘j [ (7e+1)be41(5) starting points can be found in literature (e.g.[ih [4]).




a solution, for eaclt a normalization of the metric is usually

performed[[12]. Alternatively, a log-domain represematof 10° fa : : L] 9 Aoualvalue
the corresponding equations is proposed here. Let us define TAL Lot = A= Threshold unfitered
log-probabilities asy;(i) £ Ing(i), a:(i) £ Ina.(i) and A e |0 Thesnad (a2
B:(i) = Inbs(i), with In(-) being the natural logarithm. Then, B S e R E RN
(@) can be rewritten as 3‘\:\ A
Yi(t) = alt) + Bi(t) — I Sy explau(t) + Bi(1) fol N

exp(/ﬁ) Q__Q--.::::. f::EE$::ZZI:'
Note that the last term can be solved in the log-domain | 7~ 7777 3
by applying recursively the so-callethax* operator (also
known as Jacobi logarithm) that is definedmasx* (x1, o) = .
In (exp(k1) + exp(k2)). Exploiting the identity % 02 04 06 08 1 12

Bhattacharyya distance

max” (K1, ke) = max(ky, k2) + In (1 4 exp(—|r1 — K2l))

and noticing thatnax*(k1, k2, k3) can be recursively calcu- Fig. 2. Re-estimated transition probabilii> vs. Bhattacharyya distance
lated asmax*(k1, max*(ks, £3)), We have for the[BW algorithm and threshold methods.
) b )

7i(t) = ai(t) + Bit) — max*(ei(t) + Bi(t))-
e o Estimates of the distribution parameters are provided to

In aAsimiIar manner, using the shorthang(r;) = In f;(re), the[BW algorithm Such estimates can be obtained for
mi; = Inp;; andm; = Inp; we have that the recursions instance by a curve fitting step and are kept fixed through

the[BW re-estimation. Alternatively at each iteration the

o;(t) = ¢i(ry) + max (o (t — 1) + 7y ; . . . :
ilt) = 9ilre) j=1:m (aj(t = 1) +m5) estimates could be refined, given the intermediate results.

with a;(1) = 7; + ¢;(r1) and « The number of states is fixed in advance corresponding
i to some physical events, such as total blockage of the
Bi(t) = jmax (Bj(t +1) + mij + ¢5(re41)) signal by obstacles ¢r LoS

with 3;(n) = 0, Vi. Finally, for the re-estimation of tHe BW

| . . HBV
metrics we defin€, (i, j) £ 1n 2(i, 7). Taking [6) we have I1l. A PPLICATIONS OF THEBWIALGORITHM

The capabilities of thé_BW algorithm on different data

G (8, 5) = e ()44 (rev1)+Be1 ()= sets are evaluated next. First we generate artificiallest
— max * (_max * (s (4) + 5 4+ ¢ (regr) + 5”1(]-))) ) sequence of samples and run iterative re-estimation. Kmpwi
i=lm \j=lm the original model parameters, our goal is to assess the
The estimation of the parameters proceeds as quality of the re-estimations provided by the BW algorithm.
A comparison with the commonly used threshold method and
M5 = t:rrl{%gl*ét(z’,j) - tgllzi)il* (jIEIQX *Q(z’,j)) some derivatives is done. Second,[fhelBW algorithm is agplie

to data obtained from a measurement campaign.
while

M= o, SICGRE A. Application on Test Data Sequences

- - . Given a Markov chain with transition probabilities; we

B. Restrictions on the[BW Algorithm generate a sequence of states (21, za,...,2,). Forjeach
For modeling the LMSL applying tfie BW algorithm some atate, an observation sample according to the assogiaed p.

priori restrictions on the channel parameters have beelrealpp s produced. For simplicity, we fix the number of statesto

This is mainly motivated by two reasons. First, if reasopabp. For state 1, we choose a Gaussian distribution with standa

good estimates of some channel parameters are availabie, theviations; = 0.2. To perform different tests, the mean value

use may facilitate the convergence of the algorithm. Secong ranges from.4 to 0.9. The Gaussian distribution associated

we consider important that the obtained results hawdear \ith state 2 has meap, = 1 and variancer, = 0.2. Since

physical interpretationTo give an example, we would like typically the[LMSQ is highly correlated [6], we choose the

states to be associated with different physical eventd) a8c state transition probabilities of the Markov chain

blockage of the signal or dire€i LbS. During this watthe

following restrictions have been applied [7’11 P12

. The type of distributions to be used has been fixed in P21 P22
advance The original(BW algorithm allows estimatingwith corresponding state probabilitigs = 0.333 and p; =
the densitiesf;(r) iteratively as a mixture of Gaussian0.667. The length of the state sequence (observation sequence)
distributions[[11]. It is however well-established thapity was set ton. = 100000.
cal propagation conditions (blockageorlloS, for instance) Given the observations= (71,72, ..,r,) and the knowl-
can be accurately modeled by known distributions.  edge on th¢ p.d]f.s, our iterative re-estimation algoritsman

~10.950 0.050
~ 1 0.025 0.975 |’



. TABLE |
to determine the state sequengefort =1...n, as wellas  ; roRBWIAND vARIOUS THRESHOLD METHODS UNFILTERED (T1),

the transition probabilitiep;; and the state probabilitigs;. FILTERED WITH WINDOW SIZE10 (T10)AND 20 (T20)SAMPLES.
It should be obvious that the closer the mean values of both
Gaussian distributions are, the bigger shall be the dewiati (B | o—jp [ BW] T1 ] TI0] T20]
between the re-estimated state sequenee(iy, &o, . .., Iy), 1.13 0.60 0.33]0.33] 0.31 [ 0.29
the associated re-estimated transition probabiljjesas well 0.78 0.50 033]032)] 030 0.28
as state probabilitieg; and the actual values. To measure the g'gg 8"3‘8 g'gg 8'32 8'32 g'gg
distance of the two distributiong; (1), f2(r) associated with 613 020 10331 022 007 [ 004
the two states, we make use of the Bhattacharyya distance 0.03 0.10 0.33 | 0.08 | 0.00 | 0.00
o0
BUA) £a(r) =~ [ VARG R0 dr.
e 10° ‘ ‘ ‘ : :

For sake of comparison we also apply the threshold method T & CBaum-wech
to separate the states [4]. Samples below the threshaldc = O = Threshold (span=10)
associated with one state, the ones above with the other. We § [~ =@ = Theshor (span=20)
select the threshold, such that the average error probability g X ~ \:g Temaall

A o T ,Eloﬂf \\ ~::~~°— ~“A,.__
pe:pl/ fl(T)d7’+p2/ fa(r) dr, g L SegTTe +--11I:3
T e g ™ < R B
is minimized. In addition, we assume a priori knowledge of Z ‘\\ i
the state probabilities (which could be e.g. provided by a & TrelL
previous curve-fitting step). For two Gaussian distribogio il M.l
with variancess; = o2 = o, this yields T
— Ml + NJQ 02 ln g_; 0 0z O.Ll;hanacha?);sa distaxnc::‘)'8 ! 2
2 (2 — 1)

Further, to SUppress frequem state transitions (crosefng Fig. 3. Share of wrongly identified states vs. Bhattachamigéance for the

the thre_5h0|d) we apply moving average _fiItering on tm algorithm and threshold methods. A state at titnis considered to be
observation sequence. The span of the moving average isvgetgly identified ifis # ¢.

to 10 or 20 samples.
Figure[2 illustrates the estimated transition probabifity
versus the Bhattacharyya distance for (Re]BW algorithm agégorithm. The proceedings are as follows: we first perform
the threshold methods with and w/o filtering. Despite clogecurve-fitting step on the over@ll p.¢l.f. ofsimilar to [4]. We
mean values of both distributions, the BW algorithm prosideobtain parameters of the distributions in the differentesta
always accurate estimates for the state transition prébabyhich serve as input for the"BW algorithm. The resulting
ity pi2, whereas the threshold methods typically fail wheftate probabilities are used to initialize (t). The curve
B(f1(r), f2(r)) < 0.4. Empirically we found that best resultsfitting is performed using simulated annealiig {SAY[14], a
for the threshold methods can be obtained with an averagiif§t meta-heuristic method for global optimization. In eas
window span of 10 samples. It shall be noted however thattite function to be optimized has several local maximd SA
this case the resulting state probabilities deviate reatsyk may overcome these and converge to the global minimum.
as illustrated in Tablé]l. It turns out that with increasingrollowing literature, we chose three simple distributidns
averaging window size even fd8(f,(r), f2(r)) = 0.78 the characterize the fast signal variations in the differeatest.
estimated state probability, is too low. Figure[B depicts The signal amplitude is assumed to follow a Rice distributio
the share of wrongly labeled states in the estimated stétecase of dirediLdS to the satellite. We associate a logabrm
sequencex, obtained through a comparison of the originaﬂistl’ibution with the shadowing state and assume that the
state sequence with %. Again thd BW algorithm provides by signal amplitude in the blockage state is Rayleigh distetu
far the best results, followed by the threshold methods witks second step, a preprocessing stage is required. The fast
filtering. Note that for low Bhattacharyya distances thershasignal variations within a state are known to be correlated
of errors converges to 0.33 which correspondgto (see e.g.[[15]). Howevel ](2) implicitly assumes indeperge
among observation samples given a certain state. To comply
B. Application on Measurement Data with the independence assumption, the measurement data is
. ., down-sampled, taking into account the coherence time of the
In fall 2008 a vast measurement campaign was carried E&cesﬁ. This leads the final observation Finally, given

along the US East Coast in the framework of the Europe L
. . . three distributions and the observed sequencel_the BW
Space Agency(ESA) funded MILADY project [13]. Durlngalgorithm is applied as described in Sectian II.

the field trials the signal levels of the four satellite didjsaudio ; - ; ; ;
. . : . . Let's consider a typical US urban environment with a
radio service[(SDARIS) satellites were recorded with a neobil yp

vehicular receiver. A statistical channel model Was derive 2The spatial separatiobetween samples after down-sampling was chosen
out of the collected measurement data employing[Thel BWbe1 m in accordance witH]4].



of measurement data. The BW algorithm, allows estimating
iteratively the hidden state sequence and the transitiob-pr
abilities of the underlying HMM even for highly overlapping
states. Especially in environments with frequent shadgwin
events conventional methods, such as the threshold methods
may lead to inaccurate results on the state transition xatri
(STM) of the hidden Markov process. Adaptations of [helBW
algorithm presented here guarantee numerical stabititwedl

as proper convergence at manageable complexity. Adapsatio

to channels different from tHe LMSC are possible and may be

Data
=% =L0S H
= O = Shadowing
= O = Blockage H
= ¢ =Sum 3 states
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TABLE Il
MEAN STATE DURATION D IN METERS AND STATE PROBABILITYp; FOR
THE 3 PROPAGATION STATES

REFERENCES

[1] A. Bolea Alamanac, P. Burzigotti, R. De Gaudenzi, G. Litd N.

| Method | LoS [ Shadowing]| Blockage |

BW 0.66 0.14 0.20
pi T1 0.66 0.14 0.20

T10 | 0.70 0.12 0.18

BW | 22.42 711 26.88 2]
D; T1 7.25 1.48 8.90

T10 | 64.35 6.87 25.15

satellite elevation of30°. The solid line in Figurd]4 shows B3l
the[p.d.i of the measured signal envelope, whereas thedash4]
lines with markers give the results of curve fitting using the
three[p.d.j.s specified previously. The weighted sum of the
Rice, lognormal and Rayleigh distributions is also plotteds]
(dashed with diamonds) and turns out to be close t¢ the|p.d.f.
of the measured data. The Bhattacharyya distance between
the lognormal (Rayleigh) and Rice (lognormal) distribatio [6]
is 0.5 (1.1), thus posing challenges for state identificatio
Table[dl gives the mean state duratiobs = 1/(1 — p;;) and
state probabilitiep; obtained with different state identification
methods with minimum state duration setlton. Results for
the [BW algorithm, the threshold method froml [4], as wellg
as the modified threshold method with a filter length of 10
samples are shown. It can be observed thakthé BW algorith[&
and the threshold method yield the same state probabifities
as obtained by means of curve fitting. However, the mean stéite
durations obtained by the threshold method are very shart. A
illustrated in Figurd R the threshold method tends to ovep;
dimensionp;;, thus to under-dimensioB;. If a prior filtering

step is applied, the state durations become longer thamie o
obtained witrBW. This is caused by an under—dimensionirlnlgzl
of p,;; for Bhattacharyya distances greater than 0.5 (c.f. Figure
). Here, the state probabilities are no longer preserved. [13]

(7]

[14]
IV. CONCLUSION

This work investigates the application of the BW algorithritS]
to determine the parameters fof.a LMSC model out of a set

Pham, and S. Scalise, “In-depth analysis of the satellitmpmment
of DVB-SH: Scenarios, system dimensioning, simulationsl dield
trial results,” International Journal of Satellite Communications and
Networking, vol. 27, no. 4-5, pp. 215-240, 2009. [Online]. Available:
http://dx.doi.org/10.1002/sat.933

S. Scalise, C. Niebla, G. Gallinaro, M. Andrenacci, Rn&do, O. Del
Rio Herrero, M. Breiling, D. Finocchiaro, J. Cebrian Puyebnd
G. Schlueter, “System design for Pan-European MSS seniites-
band,” in Advanced Satellite Multimedia Systems Conference (ASMS)
and the 11th Sgnal Processing for Space Communications Workshop
(SPSC), 2010 5th, 2010, pp. 538 —545.

Satellite Digital Audio Radio Service (SDARS). [OnlijpeAvailable:
http://www.sirius.con/

E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papk&he
land mobile satellite communication channel - recordirgtistics, and
channel model,” inlEEE Trans. Vehicular Technology, vol. 40, no. 2,
May 1991, pp. 375-386.

Y. Karasawa, K. Kimura, and K. Minamisono, “Analysis ofagability
improvement in LMSS by means of satellite diversity basedtoere-
state propagation channel model,”IlBEE Trans. Vehicular Technology,
vol. 46, no. 4, November 1997, pp. 957-1000.

F. Perez-Fontan, M. Vazquez-Castro, C. Cabado, J. Gaacid E. Ku-
bista, “Statistical modeling of the Ims channel,”lBEE Trans. Vehicular
Technology, vol. 50, no. 6, November 2001, pp. 1549-1567.

C. Alasseur, S. Scalise, L. Husson, and H. Ernst, “A naygbroach
to model the land mobile satellite channel through revésjomp
Markov chain Monte Carlo techniquelEEE Transactions on Wireless
Communications, vol. 7, pp. 532-542, 2008.

S. Scalise, H. Ernst, and G. Harles, “Measurement andefirayl of the
land mobile satellite channel at Ku-bandghicular Technology, |[EEE
Transactions on, vol. 57, no. 2, pp. 693 —703, 2008.

P. Green, “Reversible jump MCMC computation and Bayesmaodel
determination,” inBiometrika, vol. 82, no. 40, 1995, pp. 711-732.
W. Turin and M. M. Sondhi, “Modeling Error Sources in [
Channels,1EEE Journal on Selected Areas in Communications, vol. 11,
pp. 340-347, 1993.

L. R. Rabiner, “A tutorial on hidden Markov models andested ap-
plications in speech recognition,” iAroceedings of the IEEE, February
1989, pp. 77(1):257-286.

W. Turin, Performance Analysis and Modeling of Digital Transmission
Systems (Information Technology: Transmission, Processing and Stor-
age), 1st ed. Springer, May 2004.

Mobile satellite channeL with Angle DiversitY. [Onkh. Available:
http://telecom.esa.int/telecom/www/object/index.efobjectid=29020
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optination by
Simulated Annealing,'Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671-680, 1983.

W. C. JakesMicrowave mobile communications.  Wiley, New York,


http://dx.doi.org/10.1002/sat.933
http://www.sirius.com/
http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=29020

	I Introduction
	II Overview of the BW! Algorithm
	II-A Log-domain Implementation of the BW! Algorithm
	II-B Restrictions on the BW! Algorithm

	III Applications of the BW! Algorithm
	III-A Application on Test Data Sequences
	III-B Application on Measurement Data

	IV Conclusion
	V Acknowledgements
	References

