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Abstract—Interference Alignment (IA) is the process of designing 

signals in such a way that they cast overlapping shadows at their 

unintended receivers, while remaining distinguishable at the 

intended ones [1]. Our goal in this paper is to come up with an 

algorithm for IA that runs at the transmitters only (and is 

transparent to the receivers), that doesn’t require channel 

reciprocity, and that alleviates the need to alternate between the 

forward and reverse network as is the case in [2], thereby 

inducing significant overhead in certain environments where the 

channel changes frequently. Most importantly, our effort is 

focused on ensuring that this one-sided approach does not 

degrade the performance of the system w.r.t. [2] (since it cannot 

improve it). As a first step, we model the interference in each 

receiver’s desired signal as a function of the transmitters’ 

beamforming vectors. We then propose a simple steepest descent 

(SD) algorithm and use it to minimize the interference in each 

receiver’s desired signal space. We mathematically establish 

equivalences between our approach and the Distributed IA 

algorithm presented in [2] and show that our algorithm also 

converges to an alignment solution (when the solution is feasible).  
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I. INTRODUCTION 

Interference Alignment (IA) is a recent technique that 

proved the achievability of the sum-rate capacity of the K-user 

MIMO Interference Channel (IC),
  

( / 2) log(1 ) (log( )) (1)SRC KM P o P    

(first presented implicitly in [4] and then further elaborated in 

[1], [5]). The key to the achievability of this result is forcing 

each transmitter to use only half of its signaling space, and 

each receiver to partition its received space into two equally 

sized subspaces: one is intended for the desired signal, while 

the other is left for the interference [3]. As a result, each 

transmitter-receiver pair is able to communicate over an 

interference-free space, irrespective of the number of 

interferers.  

In a nutshell, the problem of IA boils down to finding 

transmit precoding ( , ...,[1] [K]V V ) and receive interference 

suppression matrices ( , ...,[1] [K]U U ), to cancel all the 

unwanted interference at each receiver. An elegant iterative 

algorithm that exploits channel reciprocity to alternate 

between the forward and reverse network, and find such 

matrices in a distributed way, was presented in [2]. However, 

such an approach exhibits several aspects that might be 

perceived as drawbacks if one wishes to apply this algorithm 

to certain environments. For instance, alternating between the  

 

 

 

 

 

 

 

forward and reverse network requires tight synchronization at 

both ends (which may be hard to achieve, especially at the 

receivers’ side). Moreover, this alternation might induce 

significant overhead in a dynamic environment where the 

channel varies rapidly. Furthermore, the receivers, having 

generally limited computational complexity, might be a 

bottleneck for the execution time of the algorithm. And 

finally, the assumption of channel reciprocity practically limits 

the applicability of such an algorithm to TDD systems.  

As is the case in [2], most of the IA algorithms presented 

in the literature such as [6] and [7], perform the optimization 

of some cost function over both the precoding matrices and 

interference suppression filters i.e. , ...,[1] [K]V V , , ...,[1] [K]U U . 

Although such an algorithm is desirable in terms of 

performance, an inevitable consequence is the fact that both 

the transmitters and receivers are active in the algorithm, an 

implication that we may wish to avoid for the reasons that we 

previously stated. Our aim in this paper is to present an 

approach that decouples the IA problem, by restricting the 

optimization to the transmitters’ side only. A clear advantage 

of such an approach is the fact that, as seen by the receivers, 

the algorithm is transparent (g1), i.e. all a receiver has to do is 

to pick the subspace with the lowest interference (not more 

than what is already in use). Moreover, following such an 

approach bypasses the overhead and other complications 

generated by alternating between the forward and reverse 

network (g2). Furthermore, by adopting this approach, we 

relax the assumption of channel reciprocity and make our 

algorithm applicable to both TDD and FDD systems (g3). We 

keep in mind that we do not expect our approach to 

outperform the results of [2], and especially other non-

subspace methods [7], at low SNR. In fact, by reducing the 

search space from , ...,[1] [K]V V to  , ..., , ...,,[1] [K] [1] [K]V V U U  

only, it is unlikely that we end up with a better solution. 

However, from the start, our aim was to design a simple 

algorithm with the above guidelines in mind (g1-g3). This 

said, the bulk of the effort is to ensure that this approach is 

feasible and does not incur a significant loss in performance. 

Interference Alignment: A one-sided approach 
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Figure 1: 3-user 2x3 MIMO IC 



 

The rest of the paper is organized as follows. In Section II 

we present our signal model, in Section III we put forth the 

algorithm derivation, consisting of the mathematical model 

and of the proposed algorithm, and in Section IV we present 

numerical results and discuss them. 

In the following, bold uppercase letters denote 

matrices/vectors. We assume that the eigenvalues of a matrix 

A, and their corresponding eigenvectors, are sorted in 

increasing order. Therefore, ][i A  denotes the ith eigenvalue 

of A. The '  symbol denotes the transpose of a matrix, * its 

complex conjugate, 
H
 its conjugate transpose (Hermitian), 

while the operator ,Z Z  denotes the inner product of a 

vector/matrix. Moreover, we denote by {1, ..., }K  the set 

of integers from 1 to K. Finally, In denotes the nxn identity 

matrix. 

 

II. SIGNAL MODEL 

We build upon the model introduced in [2]. We consider a    

K-user MIMO Interference Channel (IC) where the kth 

transmitter-receiver pair is equipped with 
[ ]kM and 

[ ]kN  

antennas, respectively. 
[ ]kd is the desired number of streams 

between the kth transmitter-receiver pair, where                      
[ ] [ ] [ ]min( , )k k kd M N . Moreover, 

[ ]kjH denotes the 
[ ] [ ]j k
MN  channel matrix from transmitter j to receiver k, 

and is assumed to have i.i.d complex Gaussian random 

variables, drawn from a continuous distribution. Finally, 
[ ]jV denotes the jth transmitter’s 

[ ] [ ]k kM d precoding matrix 

(1 ≤ j ≤ K), whose orthonormal columns span the d-

dimensional space at the transmitter. We denote the received 

signal vector at receiver k after interference suppression by  

 

 

 

 

where U[k] is the N[k]xd[k] interference suppression filter at 

receiver k, X[j] is the d[k]x1 vector of independently encoded 

Gaussian symbols of transmitter j, with covariance matrix 

(P[j]/d[j])Id, and Z[k] is the i.i.d complex Gaussian noise at 

receiver k with unit variance. 

III. ALGORITHM DERIVATION 

A. Motivation 

As we previously stated, the IA conditions imply that we 

need to make the interference at each receiver align by 

occupying an (N-d)-dimensional subspace, creating an 

interference-free, d-dimensional space for the desired signal 

(where d must equal N/2 to achieve the MIMO IC capacity, 

i.e. KM/2 degrees of freedom (DoFs); only feasible when K ≤ 
3). Equivalently, if we are able to create at each receiver a d-

dimensional signal space that is free from interference, we 

have implicitly aligned the interference in the other remaining 

space. This done, all a receiver has to do is to ―hide from the 

interference‖ by projecting the received signal onto the d-

dimensional subspace that has the lowest interference, thereby 

suppressing all the undesired interference (Fig. 2).  

In that sense, our 

algorithm should aim at 

creating a d-dimensional 

subspace that is free 

from interference, at 

each receiver. The 

natural question that 

arises is: what is a good 

metric (cost function) for 

such a purpose? We 

know from Principal / 

Minor Component 

Analysis that the 

eigenvectors of the interference covariance matrix correspond 

to the dimensions along which a receiver ―sees‖ interference, 

and their corresponding eigenvalues indicate the variance / 

power of interference along that dimension (Fig. 2). Assuming 

that the eigenvalues and their corresponding eigenvectors are 

sorted in increasing order, this implies that the d-dimensional 

subspace with the lowest interference is spanned by the d-

eigenvectors corresponding to the d-smallest eigenvalues, and 

the variance of interference in this subspace is given by the 

sum of the d-smallest eigenvalues (used in [2]). Summing up, 

we wish to track the variance of interference in the desired 

signal space, by tracking the sum of the d-smallest eigenvalues 

of the interference covariance matrix at each receiver, as the 

transmitters vary their precoding matrices. 

 

B. Problem formulation 

This said, at each receiver, we seek to minimize the sum of 

the d-smallest eigenvalues of the interference covariance 

matrix, over the set of transmit precoding 

matrices , ...,[1] [K]V V . Thus, we define our cost function: 

[1] [ ]
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[ ] [ ]
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Q[k] is the kth receiver’s interference covariance matrix:

 [ ]
[ ] [ ] [ ] [ ] [ ]

[ ]
1

(4)
jK

k kj j j H kj H

j
j
j k

P

d


Q H V V H  

Now that we defined the cost function, we need a way to 

minimize it. Intuitively, one first thinks about derivatives. 

However, in this case, the variables in question are matrices 

(we need derivatives of the form dQ/dV, where both Q and V 

are matrices).  

C. Mathematical Model 

Although our goal is to propose an algorithm for IA, 

another notable feature of this work is the novel model that we 

derive, for modeling the interference in the network. It draws 

its foundations in matrix differential calculus (matrix 

differentials [10]). By using matrix differentials (which can be 
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Figure 2: 3D signal space at Rx 
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thought of as derivatives for matrices), we hope to find 

expressions of the form df = DF.dV where df and dV are 

the differential of the function and of the variable, 

respectively, and where DF is a Jacobian matrix (a matrix of 

partial derivatives) that translates infinitesimal changes in V 
(i.e. dV), to changes in f [10]. The reason for seeking such 

matrices is the fact that Jacobian matrices go hand-in-hand 

with numerical minimization. Moreover, differentials are easy 

to work with since they exhibit linearity. Due to space 

limitations, we omit most of the mathematical derivations and 

only present the results. The model consists of two building 

blocks that are chained together.
 

 
1) Modeling Covariance Matrices 

We show mathematically that for a K-user MIMO IC, the 

interference covariance matrix at receiver k satisfies:     

1

[ ] [ ] [ ] [ ][ ]( ( ) ( ), (5))
K

j
j k

kj j kj j

R R I I

kvec vec vec k 



   dQ DQ dV DQ dV  

where the vec() operator stacks the columns of the operand 

matrix vertically; VR and VI denote the real and imaginary 

parts of V, respectively. The above equation answers the 

following question:

 

How do the entries in Q[k] vary (1 ≤ k ≤ 
K), when any element in V[j] changes (1 ≤ j ≤ K)? In other 

words, the above equation relates the changes in any signaling 

vector at any transmitter, to all the changes that they induce at 

the corresponding covariance matrices.

 
 

2) Modeling Eigenvalues of Covariance Marices 

Since we are interested in minimizing sums of eigenvalues 

(3), the second logical step would be to derive a model that 

relates the differential of a sum of eigenvalues of a given 

covariance matrix, to the differential of the covariance matrix 

itself. We extend a result presented in [9], and derive the 

following model. For a given covariance matrix Q[k] (real 

eigenvalues, since Q[k] is Hermitian), the differential of the 

sum of its d-smallest eigenvalues can be written as: 
[ ]

[ ] [ ] [ ] [ ] [ ]

1
( ) ( ) ( ),( ( )) (6)

k

S

dk k k k k

Si i vec vecd k 


    DL dQ dQQ DL  

where
[ ]

1

[ ] [ ]
( )( )

k

S i

dk k

i


 QQ   

represents the sum of the d-smallest eigenvalues of a 

covariance matrix Q[k], and [ ]k
iDL is the Jacobian matrix 

associated with the ith eigenvalue of Q[k] (here we also omit 

the expression for [ ]k
iDL ).  

 

3) Chaining the two blocks 

To combine the two blocks, we substitute the expression of 

vec(dQ[k]) in (5) into (6), to get: 

[ ][ ] [ ] [ ] [ ] [ ]

1

( ) ( )( ( )) (7),
K

S S R R I I

k k kj j kj j

j
j k

vec vecd k 



  DL DQ dV DQ dVQ

where k  . In this equation, we address the issue of how 

does the sum of the eigenvalues of the interference covariance 

matrix at each receiver (the variance of interference in the 

desired signal space) change, as any element in 

, ...,[1] [K]V V changes (the transmitters’ vectors). 

Using the above equation and exploiting the linearity of 

differentials, we write the differential of our cost function 

[ ] [ ] [ ] [ ] [ ]

1 1

( ) ( ) (8){ ( )}
R R I I

K K
k kj j kj j

S
k j

j k

vec vecdf
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We also notice that the above expression can be conveniently 

placed in matrix form (shown at bottom of page) 

  

 

 

 

where in the last two equations, the A superscript denotes the 

augmented matrix formed by concatenating all the sub-

matrices together. By examining the last expression for df, two 

statements can be made. Firstly, we have achieved our goal and 

expressed the differential of our cost function as df = DF.dV  

(actually, in our case, we have two Jacobian matrices). Thus, 

we have derived the Jacobian matrices that we need to perform 

our minimization. It is worth mentioning here that a direct 

analytical attempt to find the derivative of f would be tedious 

due to the non-linear [...]i  operator in our cost function. 

Secondly, we note that it is easy to show that (8) is nothing but 

the first order linear approximation of a scalar function of a 

vector x, using the gradient ( ) ( ) ( ) ( )o oxof x f x f x x    . 

Thus, effectively, we have transformed a seemingly complex 

optimization problem involving a set of K matrices, into a 

simple gradient-like expression suitable for any gradient 

descent algorithm. 

D. Proposed Algorithm 

As previously said, the motivation behind our model that 

employs differentials and Jacobian matrices, is the fact they go 

hand-in-hand with numerical minimization problems. The 

general structure of our Steepest Descent (SD) algorithm is 

inspired by Algorithm 15 in [8], with the extension that every 

variable vec(dV[j]) has a Jacobian matrix, a steepest decent 

direction and a step size associated with it. Since the algorithm 

is intuitive, and due to the space limitations, we have omitted 

most of the mathematical derivations (we refer the reader to 

[8]). The full algorithm is presented in Table 1. Below we 

comment on some of its steps. 

Step 1: By comparing (9) & (11), it can be easily verified that  

and[ ] [ ] [ ] [ ] [ ] [ ]

1 1

(10)
R R I I

K K
j k kj j k kj
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k k
k j k j
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Step 3 is required for steps 4 & 5. Note that the GS{.}operator 

denotes the Gram-Schmidt Orthogonalization of a matrix, and  

is described in detail in [11].  

Steps 4,5: They can be thought of as ―calibration steps‖ for the 

algorithm step size (Armijo’s rule), to ensure convergence 

(initially presented in [12], then later used by [8]).  
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Table 1: Proposed SD Algorithm 

 

In a nutshell, step 4 ensures that the choice of γ will 

significantly reduce the function, while step 5 ensures that the 

step is not too big to overshoot the optimal point. 

Steps 6,7: Step 6 is simple and intuitive. However, the newly 

computed solution , ...,[1] [K]V V does not satisfy the unitary 

constraints. This can be effectively accomplished by using 

step 7 that will project the solution back onto the constraint 

surface (the surface of a hypershpere) [11]. 

Step8: It was shown in [8] that 

1 / 2, { ( ( ) )}H Htr    XXZ Z Z I Z where X is the 

optimization variable and Z is the SD direction. Exploiting the 

fact that ( ) ( ) ( )HHtr vec vecA X A X , we show that: 
[ ] [ ] [ ] [ ] [ ] [ ]

(1 / 2), { ( ) ( ) ( )} (12)
HHj j j j j jvec vec   dZ Z Z I V V Z

 
where  denotes the Kronecker product for matrices. 

 

IV. NUMERICAL RESULTS 

Before we move to presenting our simulations, we remind 

the reader that we do not expect our approach to outperform 

other ones (Section I). Rather, we want to ensure that this one-

sided approach does not entail any significant loss in 

performance compared to [2]. 

First, we simulated a 3-user 2x2 MIMO IC where the desired 

DoFs per user are 1 (d = 1). As we can see, in this given 

example (Fig. 3), after the algorithm converges, the cost 

function had decreased by a factor of 1.12x106 in 22 iterations, 

and remains at this level, a clear indication of the algorithm’s 

performance. We note that more sophisticated algorithms can 

be used for faster and more accurate convergence, such as 

Newton-type methods [8] or RLS-type algorithms [15]. 

However, we still have to check if the final solution satisfies 
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Figure 3: Cost function 
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Figure 4: Angle between spaces spanned by interfering signals, at each Rx 
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Figure 5: Ergodic Sum-Rate (SR) capacity of a 3-user 2x2 MIMO IC with d = 1 

 

the IA conditions. Since we have two interfering signals at 

each receiver, we are able to plot the angle between the spaces 

spanned by each interfering signal, at each receiver. Evidently, 

a perfect IA solution is characterized by a zero angle at each 

receiver. Referring to Fig. 4, the algorithm decreases the 

subspace between the two interfering signals at each receiver 

to zero (asymptotically). We also compare the performance of 

this algorithm to the Distributed IA algorithm in [2]. In Fig.5, 

the dashed line is the theoretical sum-rate capacity predicted 

by IA, i.e.
 

( / 2) log(1 )SRC KM P  . As we can see, the 

curves that correspond to our algorithm and Distributed IA 

(with square and diamond shaped points, respectively) are 

almost overlapping indicating the same performance. 

Moreover, we notice that at high SNR, they follow the linear 

scaling predicted by IA, thus verifying that they indeed 

succeed in aligning the interference. 

Remark:  

To satisfy the IA conditions, each receiver must be able to 

partition its received N-dimensional signal space into two 

subspaces of equal size (i.e., d = N/2) where each user is 

able to achieve M/2 DoFs (for a total of KM/2, the SR 

capacity of the K-user MIMO IC). However, for cases where 

the alignment is not feasible, i.e. K > 3, the algorithm still 

creates an interference-free d-dimensional subspace but with 



 

d < N/2. Thus, in this suboptimal case, each user is still able 

to achieve d DoFs (where 0 < d < N/2, for a total that is 

strictly less than KM/2), implying that, although at a slower 

rate, the capacity still scales with log(1+SNR): a clear 

improvement over the interference limited case (i.e., d = 0). 

 

V. DISCUSSION 

In this section we establish equivalences between our 

approach and [2]. Interestingly, it is straightforward and 

intuitive to mathematically verify that our cost function is 

nothing but the Weighted Leakage Interference (WLI) in [2] 

(the derivation is omitted due to the lack of space). Thus, the 

following points are common grounds for comparison: 

 In terms of convergence, our algorithm aligns interference 

in a matter similar to Distributed IA, i.e. it converges to 

an IA solution when it is feasible (the fact that the cost 

function decreases with every iteration, is an inherent 

property of SD algorithms). However, as is the case in 

[2], convergence to a global optimum is not guaranteed, 

because even though our cost function might be convex 

under certain assumptions, the unitary constraints by 

themselves form a non-convex set. 

 Simulations show that there is no loss in capacity. This 

result is further backed by the fact that our approach and 

[2] are both subspace methods, i.e. they both ignore noise 

when finding the subspace with the least interference 

(optimal at high SNR only). 

However, in a realistic setting, the following are seen as clear 

benefits of our approach: 

 We removed , ...,[1] [K]U U from the minimization. Thus, 

the algorithm can run at the transmitters only, getting 

around the need to alternate between forward and reverse 

network (an inherent property of alternating minimization 

algorithms) which can induce a significant overhead in 

mobile environments. 

 The algorithm is completely transparent to the receivers, 

i.e. they are oblivious to the entire process. All they have 

to do is ―tune‖ to the subspace that has the lowest 

interference (not more than what is already available). 

The purpose of this entire approach is to ensure that this 

subspace is interference-free 

 

We note that a typical drawback of such IA techniques is the 

need for global channel knowledge at the transmitters. 

However, this assumption is not unrealistic since recent results 

such as [13] and [14] show that under certain mild 

assumptions, limited feedback can achieve the full sum-rate 

degrees-of-freedom of the K-user MIMO/SISO IC. 

 

VI. CONCLUSIONS AND FUTURE WORK 

To sum up, we derived a model to track the interference in 

the desired signal space of each receiver and used it to perform 

IA, on the transmitters’ side solely. As a proof of concept of 

the validity of our approach, we applied a simple SD 

algorithm to it, and showed that it converges to an IA solution 

(when feasible). Moreover, in contrast to other proposed 

algorithms, our approach decouples the IA problem: instead of 

both the transmitters and receivers participating, we get 

around the need to alternate between transmitters and 

receivers by shifting the computational involvement to the 

transmitters’ side, making it transparent to the receivers (an 

improvement over existing IA algorithms), without incurring 

any apparent loss in the algorithm performance. In the future, 

we will try using more advanced algorithms for faster 

convergence. Furthermore, we wish to investigate the 

possibility of finding conditions under which we ensure that 

the algorithm converges to a global optimum (by relaxing 

some constraints to ensure convexity). 
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