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Abstract—This paper studies the carrier-to-interference ratio
(

C

I

)

and carrier-to-interference-plus-noise ratio
(

C

I+N

)

perfor-
mance at the mobile station (MS) within a multi-tier network
composed ofM tiers of wireless networks, with each tier modeled
as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun
cellular system, where the base station (BS) distribution is given
by the homogeneous Poisson point process in n-D. TheC

I
and

C

I+N
at the MS in a single tier network are thoroughly analyzed

to simplify the analysis of the multi-tier network. For the multi-
tier network with given system parameters, the following are the
main results of this paper: (1) semi-analytical expressions for the
tail probabilities of C

I
and C

I+N
; (2) a closed form expression for

the tail probability of C

I
in the range [1,∞); (3) a closed form

expression for the tail probability of an approximation to C

I
in

the entire range [0,∞); (4) a lookup table based approach for
obtaining the tail probability of C

I+N
, and (5) the study of the

effect of shadow fading and BSs with ideal sectorized antennas
on the C

I
and C

I+N
. Based on these results, it is shown that, in

a practical cellular system, the installation of additional wireless
networks (microcells, picocells and femtocells) with low power
BSs over the already existing macrocell network will always
improve the C

I+N
performance at the MS.

Index Terms—Multi-tier networks, Cellular Radio, Co-channel
Interference, Fading channels, Poisson point process.

I. I NTRODUCTION

The modern cellular communication network is a com-
plex overlay of heterogeneous networks such as macrocells,
microcells, picocells, femtocells, etc. The base station (BS)
distribution appears increasingly irregular as the density of BSs
grows over time while bounded by cell site limitation. Due to
computational constraints, system designers cannot studythe
overall network at once, and have to resort to simulations for
specific portions of the network. As it is hard to obtain insight
and general conclusions from such studies, it is desirable to
abstract and simplify the model. At one end of the abstraction,
the BSs are assumed to be at the centers of regular hexagonal
cells. At the other end, the BS deployments are modeled
according to a Poisson point process. In [1], the author makes
a connection between the ideal hexagonal cellular system
and the cellular system with the BS placement according
to a homogeneous Poisson point process on a plane (two
dimensions, 2-D), called the shotgun cellular system (SCS). It
is shown that the carrier-to-interference ratio,

(

C
I

)

, of the SCS
lower bounds that of the ideal hexagonal cellular system and
moreover, they converge in the strong shadow fading regime.

We have explored the SCS in detail in [1]–[3]. The utility of
the SCS model in the study of the cognitive radio networks
can be found in [4].

In this paper, we study the practical cellular system by
viewing the macrocells, microcells, picocells and femtocells
as the different tiers of a multi-tier network. We focus on
the C

I
and the carrier-to-interference-plus-noise ratio

(

C
I+N

)

at the mobile station (MS) in a multi-tier network with
M tiers of heterogeneous networks (hence called anM -tier
network). The BS distribution of the practical cellular system
follows regular topologies (e.g. to match the customer density
patterns along highways, between suburbs and city centers
and within large multi-storey buildings). Each tier of theM -
tier network is modeled as thehomogeneous l- dimensional
(l −D, l = 1, 2, and 3) SCS, where the BS distribution is
according to the homogeneous Poisson point process inR

l,

l = 1, 2, 3. In thehomogeneous l-D SCS,l=1 is a model for the
highway scenario,l=2 models the planar deployment of BSs
in suburbs, andl=3 models the BS deployments within large
multi-storey buildings and wireless LANs (WLAN) in muti-
storey residential areas. A Poisson point process inR

2 has
been a popular model adopted in the literature for the locations
of nodes in the study of ad hoc and other uncoordinated
networks ( [5]–[7] are a few selected references). It has
also been used in studying two-tier networks composed of
macrocells and femtocells [8], [9]. Here, we characterize
the cellular performance in a multi-tier network with BS
distributions according to the Poisson point process inR

1, R2

andR3. In [10], the authors study the multi-tier network with
the BS distribution in the various tiers according to the Poisson
point process inR2, and derive a closed form expression for
the tail probability ofC

I
in the range[1,∞) for the special case

of Rayleigh fading. In this paper, we characterize theC
I

in the
entire range[0,∞) and for any general fading distribution.

Contributions of the paper: Firstly, we emphasize that the
study of the cellular performance of the multi-tier networkis
tightly coupled with a similar study on a single tier network.
Hence, we indulge in thoroughly understanding the single tier
network and its properties. Sections III, IV and V deal with
the single tier network. In Section VI, based on the theory
developed in the previous sections, we completely characterize
the signal quality at the MS in aM -tier network measured in
terms of the carrier-to-interference ratio

(

C
I

)

and the carrier-
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to-interference-plus-noise ratio
(

C
I+N

)

. In particular, for the
multi-tier network, we derive (1) semi-analytical expressions
for the tail probabilities ofC

I
and C

I+N
; (2) a closed form

expression for the tail probability ofC
I

in the range[1,∞);
(3) a closed form expression for the tail probability of an
approximation toC

I
in the entire range [0,∞); (4) a lookup

table based approach for obtaining the tail probability of
C

I+N
, and (5) the effect of shadow fading and BSs with

ideal sectorized antennas on theC
I

and C
I+N

. Finally, it is
shown that the installation of additional wireless networks
(microcells, picocells and femtocells) with low power BSs over
the already existing macrocell network will always improve
the C

I+N
performance at the MS.

II. SYSTEM MODEL

This section describes the various elements used to model
the wireless network, namely, the BS layout, the radio envi-
ronment, and the performance metrics of interest.

BS Layout: We define the SCS andhomogeneous l-D SCS
(l=1,2,3) and describe the model for the single tier and multi-
tier networks.

Definition 1. The Shotgun Cellular System (SCS) is a model
for the cellular system in which the BSs are placed in a given
l-dimensional plane (l = 1, 2, and 3) according to a Poisson
point process onRl. The intensity function of the Poisson
point process is called the BS density function in the context
of the SCS. (See [3] for more details.)

Definition 2. In the homogeneous l-D SCS (l ∈ {1, 2, 3}),
the BSs are placed according to a homogeneous Poisson point
process onRl with a BS densityλ0, such that the probability
that there exists a BS in a small regionH ⊆ R

l is λ0 |H| ,
where |H| ≪ 1 is the length, area or volume of the region
H for l = 1, 2, and 3, respectively; and the events in non-
overlapping regions are independent of each other.

Radio Environment: The signal from the BS undergoes
path-loss and shadow fading; and is also affected by back-
ground noise. The signal power at a distanceR from the BS
is given byP = KΨR−ε, whereK captures the transmission
power and the antenna gain of the BS,Ψ is the random shadow
fading factor, andR−ε represents the inverse power law path-
loss with ε as the path-loss exponent, andR as the distance
from the BS. The noise power in the system isN .

Single tier network: In this paper, the single-tier network
refers to the macrocell network and the BS layout is according
to thehomogeneous l-D SCS,l = 1, 2, 3.

Multi-tier (M-tier) network: TheM -tier network is assumed
to be composed ofM independenthomogeneous l-D SCSs
with BS density {λi}

M
i=1 , for each tier. For theM -tier

network, K and the cumulative density function (c.d.f.) of
Ψ are different for each tier.

Performance Metric: In this paper, we are concerned with
the signal quality at a MS within the wireless network. The
MS is assumed to be located at the origin ofR

l, l = 1, 2, 3 in
which the multi-tier network is defined. The MS receives sig-
nals from all the BSs, and chooses to communicate with the BS
that corresponds to the strongest received signal power. This

BS is referred to as the “serving BS”, and all the other BSs
are collectively called the “interfering BSs”. Consequently, the
signal quality at the MS is defined as the ratio of the received
power from the serving BS(denoted byC or PS) to the sum
of the total interference power (denoted byI or PI , sum
of the powers from the interfering BSs) and the noise power
(N), and is called the carrier-to-interference-plus-noise ratio
(

C
I+N

)

. In an “interference limited system”,I ≫ N and the
signal quality is referred to as the carrier-to-interference ratio
(

C
I

)

. Thus, for a single tier network, theC
I

and C
I+N

are

C

I

(a)
=

KSΨSR
−ε
S

∑∞
i=1 KiΨiR

−ε
i

,
C

I +N

(b)
=

KSΨSR
−ε
S

∑∞
i=1 KiΨiR

−ε
i +N

,

(1)
where subscript “S” denotes the serving BS and subscript
“ i” indexes the interfering BSs;KS = {Ki}

∞
i=1 are the

transmission powers that can be equal a constant or inde-
pendent and identically distributed (i.i.d.) random variables;
RS and {Ri}

∞
i=1 are random variables that come from the

underlying Poisson point process that governs the BS place-
ment;ΨS and {Ψi}

∞
i=1 are i.i.d. random variables. Hence,C

I

and C
I+N

are random variables, and can be characterized by a
probability density function (p.d.f.), c.d.f. or the tail probabil-
ity. The tail probability of C

I+N
is given byP

({

C
I+N

> η
})

,
and is the probability that a MS in the SCS has a signal quality
of at leastη, η ≥ 0. In the following section, we characterize
the tail probability of theC

I
at the MS in a single tier network.

III. C
I

CHARACTERIZATION FOR A SINGLE TIER NETWORK

Here, the transmission power and the antenna gains of all the
BSs in the SCS are assumed to be constant(say, K). Also,
the shadow fading factors are assumed to be unity. Hence,
from the expression forC

I
in (1a), the BS closest to the MS

is the serving BS and the expression forC
I

is

C

I
=

KR−ε
1

∑∞
i=2 KR−ε

i

, (2)

where R1 ≤ R2 ≤ R3 · · · are the distances between the
BSs and the MS, arranged in a non-decreasing order. Further,
recall that the BS layout in the single tier network is as in the
homogeneous l-D SCS(l = 1, 2, 3) with BS densityλ0. Thus,

the p.d.f. ofR1 is given by fR1 (r1) = λ0blr
l−1
1 e−

λ0blr
l
1

l ,

where r1 ≥ 0 and bl = 2, 2π, 4π for l = 1, 2, 3, re-
spectively, and the conditional p.d.f. of theith closest BS
conditioned on the(i−1)th closest BS, isfRi|Ri−1

(ri|ri−1) =

λ0blr
l−1
i e−

λ0bl(rli−rli−1)
l , ri ≥ ri−1.

Theorem 1. In a homogeneousl-D SCS with a constant BS
densityλ0, if the path-loss exponent satisfiesε > l,

(a) the characteristic function ofPI conditioned onR1 is

ΦPI |R1
(ω|r1)

= exp

(

λ0blr
l
1

l

(

1−1 F1

(

−
l

ε
; 1−

l

ε
;
iωK

rε1

)))

,(3)
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(b) the characteristic function of
(

C
I

)−1
is given by

Φ(C
I )

−1 (ω) = ER1

[

ΦPI |R1

(

ω

PS

∣

∣

∣

∣

R1

)]

=
1

1F1

(

− l
ε
; 1− l

ε
; iω

) , (4)

whereER1 is the expectation w.r.t.R1, and1F1 (·; ·; ·) is called
the confluent hypergeometric function of the first kind .

Proof: See [3, Corollary 2].
The significance of Theorem 1 is in the following remarks.

Remark 1. The tail probability ofC
I

may be directly obtained
from the characteristic function and is given by

P

({

C

I
> η

})

=







´∞

ω=−∞ Φ(C
I )

−1 (ω)

(

1−exp(− iω
η )

iω

)

dω
2π , η > 0

1, η = 0.
(5)

Proof: See [2, Eq. (9)].

Remark 2. The characteristic function of the
(

C
I

)−1
does not

depend onλ0, and hence the tail probability ofC
I

at a MS in
the homogeneous l-D SCS does not depend onλ0.

Remark 3. The characteristic function of
(

C
I

)−1
for ahomoge-

neous 2-D and 3-D SCS is the same as that of ahomogeneous
1-D SCS with path-loss exponentsε2 and ε

3 , respectively.
Hence, the correspondingC

I
performances are identical.

Remark 2 proves why the curves corresponding to theho-
mogeneous 1-D, 2-D and 3-D SCSs in Fig. 1 are straight lines.
Remark 3 helps build an intuition of why thehomogeneous
1-D SCS has a higher tail probability ofC

I
thanhomogeneous

2-D and 3-D SCSs; Fig. 1 now corresponds to comparing the
tail probabilities ofC

I
in a homogeneous 1-D SCS with path-

loss exponentsε, ε
2 , and ε

3 , respectively. As the path-loss
exponent decreases, the BSs farther away from the MS have
a greater contribution to the total interference power at the
MS, and this leads to a poorerC

I
at the MS and a smaller tail

probability (computed by evaluating the integral in(5)). An
important consequence of Remark 3 is as follows.

Corollary 1. For a homogeneousl-D SCS,l = 1, 2, 3, where
the path-loss exponent isε, the tail probability ofC

I
is

P

({

C

I
> η

})

= P

({

C

I
> 1

})

× η−
l
ε (6)

= K ε
l
η−

l
ε , ∀ η ≥ 1, ε > l, (7)

whereK ε
l

is a constant parametrized byε
l
.

Proof: In [1], we have shown that

P

({

C

I
> η

})

= P

({

C

I
> 1

})

× η−
2
ε , (8)

whereη ≥ 1, andε > 2, for a homogeneous 2-D SCS. From
Remark 3,(8) holds for allhomogeneous 1-D SCS with path-
loss exponentε2 and therefore, for allhomogeneous 3-D SCSs
with path-loss exponent3ε2 . Hence,(6) hold true, and(7) is

obtained by noting that the characteristic function of
(

C
I

)−1

is a function of ε
l

and soP
({

C
I
> 1

})

is a constant.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

BS density (λ)

P
ro

b(
C

/I>
1)

Comparison of SCSs
ε=4

No. of iterations = 100000

homogeneous 1−D SCS (λ in number of BSs/unit length)

homogeneous 2−D SCS (λ in number of BSs/unit area)

homogeneous 3−D SCS (λ in number of BSs/unit volume)

Figure 1. Invariance ofC
I

of the homogeneous l-D SCS w.r.t. BS density
(λ). The C

I
tail probability is independent ofλ (proved in Remark 2), and the

homogeneous 1-D SCS has a betterC
I

tail probability than thehomogeneous
2-D and 3-D SCS (proved in Remark 3).

The constantK ε
l

can be obtained by using(4) and eval-
uating the integral in(5) with η = 1. Note that C

I
is a

non-negative random variable with a support of[0,∞), and
surprisingly, its tail probability has such a simple form asgiven
by (7) in the region[1,∞). Next, we define the so-calledfew
BS approximation and derive closed form expressions for the
tail probability of C

I
at MS in a homogeneous l-D SCS for

both the regions[0, 1) and [1,∞).

Definition 3. The few BS approximation corresponds to mod-
eling the total interference power at the MS in the SCS as the
sum of the contributions from the strongest few interfering
BSs and an ensemble average of the contributions of the rest
of the interfering BSs.

Recall from (2) that PI =
∑∞

i=2 KR−ε
i , where{Ri}

∞
i=1

is the set of distances of BSs arranged in the ascending
order of their separation from the MS. The arrangement also
corresponds to the descending order of their contribution to
PI . In the few BS approximation,PI is approximated by
P̃I (k) =

∑k
i=2 KR−ε

i + E
[
∑∞

i=k+1 KR−ε
i

∣

∣Rk

]

, for some
k, whereE [·] is the expectation operator and refers to the
ensemble average of the contributions of BSs beyondRk. The
C
I

at the MS obtained by the few BS approximation is denoted
by C

Ik
. Next, we studyC

Ik
for the homogeneous l-D SCSs.

Lemma 1. For the homogeneous l-D SCS, with BS density λ0

and ε > l, for k=1,2,3,

E

[

∞
∑

i=k+1

KR−ε
i

∣

∣

∣

∣

∣

Rk

]

=
λ0blKRl−ε

k

ε− l
. (9)

Proof: See [3, Corollary 4].
Next, the tail probability ofC

I2
= C

Ik

∣

∣

∣

k=2
is derived.
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Figure 2. Homogeneous 2-D SCS: ComparingC
I

and C

I2
, ε = 4

Theorem 2. In the homogeneousl-D SCS with BS density
λ0 and path-loss exponentε (ε > l), the tail probability ofC

I2
is

P

({

C

I2
> η

})

(10)

=

{

η−
l
εC ε

l
, η ≥ 1

1− (1+u(η))

eu(η) + η−
l
εD ε

l
(η) , η < 1

, (11)

whereu (η) =
(

ε
l
− 1

)

(

1
η
− 1

)

, C ε
l
= G(0,∞), D ε

l
(η) =

G(u(η),∞), andG (a, b) =
´ b

v=a
ve−v

(

1+v( ε
l
−1)

−1
) l

ε

dv.

Proof: See [3, Theorem 2].

Notice thatP
({

C
I
> η

})

=
K ε

l

C ε
l

P

({

C
I2

> η
})

for η ≥ 1.

Fig. 2 shows the comparison of the tail probabilities ofC
I

(computed using the characteristic function of
(

C
I

)−1
) and

C
I2

for the homogeneous 2-D SCS with path-loss exponent 4.
Notice that the gap between the two tail probability curves
is negligible in the regionη ∈ [0, 1], and further, both the
curves are straight lines parallel to each other in the region
η ∈ [1,∞), when the tail probability is plotted againstη,
both in the logarithmic scale. This shows thatC

I2
is a good

approximation forC
I

and can be characterized in closed form.

IV. C
I+N

IN A SINGLE TIER NETWORK

Here, as in Section III, the transmission powers of all BSs
are constant and shadow fading factors are equal to unity. We
first obtain the tail probability of C

I+N
using the characteristic

function of
(

C
I+N

)−1

derived in the following corollary.

Corollary 2. In a homogeneousl-D SCS with BS densityλ0

and path-loss exponentε (ε > l), the characteristic function of
the sum of the total interference power(PI) and noise power
(N) conditioned onR1 is ΦPI+N |R1

(ω| r1) = exp (iωN)×
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P
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b(
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N
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1|
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ε=4.5
ε=5

ε=3

ε=2.5
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Figure 3. P

({

C

I+N
> 1

})

vs Normalized noise power
(

Nλ
−

ε
l

0
K−1

)

for l = 2

ΦPI |R1
(ω| r1), and the characteristic function of

(

C
I+N

)−1

is Φ( C
I+N )

−1 (ω) = ER1

[

exp
(

i ω
PS

N
)

× ΦPI |R1

(

ω
PS

∣

∣

∣
R1

)]

,

whereΦPI |R1
(ω| r1) is given by(3).

Proof: The expressions forΦPI+N |R1
(ω| r1) and

Φ( C
I+N )

−1 (ω) follow directly from the definition of charac-

teristic function, whereN is a constant.
Further, the tail probability of C

I+N
is obtained by substi-

tuting C
I

with C
I+N

in (5). Next, an interesting property of the
C

I+N
at the MS in thehomogeneous l-D SCS is presented.

Corollary 3. If the C
I+N

at the MS in the homogeneousl-D
SCS is specified by(λ0, ε,K,N) whereλ0 is the BS density,
ε is the path-loss exponent,K is the constant transmission
power of each BS, andN is the constant noise power, then,

C

I +N

∣

∣

∣

∣

(λ0,ε,K,N)

=st
C

I +N

∣

∣

∣

∣

(1,ε,1,N ′)

, (12)

whereN ′ = N
/(

λ
ε
l

0 K
)

and “=st” means that the c.d.f’s
are same.

Proof: See [3, Corollary 9].
So, it is sufficient to analyze thehomogeneous l-D with

λ0 = K = 1 and maintain a table for the tail probability
of C

I+N
for different values ofN ′ and ε. We can find the

C
I+N

at the MS for ahomogeneous l-D SCS with any given
(λ0, ε,K,N) by just reading out the tail probability ofC

I+N

corresponding toε andN ′ obtained using Corollary 3 from the
lookup table. The lookup table is presented for ahomogeneous
2-D SCS in Fig. 3 as a plot ofP

({

C
I+N

> 1
})

againstN ′

for different values ofε. Further, in thehomogeneous l-D
SCS, asλ0 increases, the noise powerN ′ of the equivalent
SCS decreases according to Corollary 3, and in the limit as
λ0 → ∞, N ′ approaches zero and henceC

I+N

D
→ C

I
, where

D
→ corresponds to convergence in distribution. Thus, in an
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“interference limited system” (largeλ0), the signal quality is
measured in terms ofC

I
. Next, we study the effect of shadow

fading on theC
I

and C
I+N

at the MS in a single tier network.

V. SHADOW FADING

Theorem 3 analytically shows that the effect of the intro-
duction of shadow fading to the SCS is completely captured
in the BS density of thehomogeneous l-D SCS.

Theorem 3. When shadow fading in the form of i.i.d non-
negative random factors,{Ψi}, is introduced to the homoge-
neousl-D SCS with BS densityλ0, for the C

I
and C

I+N
analy-

sis, the resulting system is equivalent to another homogeneous
l-D SCS with BS densityλ0E

[

Ψ
l
ε

]

, as long asE
[

Ψ
l
ε

]

< ∞.

Proof: The expression forC
I

and C
I+N

in (1a) and (1b)

may be written asC
I
=

R̄
−ε
1

∑

∞

k=2 R̄
−ε
k

and C
I+N

=
R̄

−ε
1

∑

∞

k=2 R̄
−ε
k

+N
,

whereR̄1 = RSΨ
− 1

ε

S and R̄k+1 ≡ RkΨ
− 1

ε

k , k = 1, 2, 3 · · · .
Now, the expression forC

I
is similar to the no shadow fading

case in(2), with theR̄’s replacing theR’s. Using the Marking
theorem of Poisson process in [11, Page 55],R̄ = RΨ− 1

ε

follows the homogeneous Poisson process inR
l with intensity

λ0E
[

Ψ
l
ε

]

. For a complete proof, see [3, Theorem 4].

Further, theC
I

and C
I+N

at the MS in thehomogeneous l-D
SCS with shadow fading is the same as that in the equivalent
homogeneous l-D SCS where there is no shadow fading. The
following remark illustrates the consequence of the theorem
on the C

I
and C

I+N
at the MS.

Remark 4. In the homogeneous l-D SCS with BS densityλ0,
(a) shadow fading has no effect on theC

I
at the MS, and,

(b) the effect of shadow fading is completely captured in
the noise power term of theC

I+N
.

Proof: Firstly, using Theorem 3, it is sufficient to analyze
the C

I
and C

I+N
for the homogeneous l-D SCS with BS

densityλ0E
[

Ψ
l
ε

]

. Then, Remark 4(a) follows from Remark

2. Finally, since the C
I+N

in this case has the same c.d.f.
as the equivalenthomogeneous l-D SCS in Corollary 3 with

N ′ = NK−1
(

λ0E
[

Ψ
l
ε

])− ε
l

, Remark 4(b) is proved.

Example 1. Consider ahomogeneous 2-D SCS with an
average BS densityλ0, where each BS is affected by an i.i.d
log-normal shadow fading factor with a mean 0 and standard
deviationσ. Using Theorem 3, the equivalenthomogeneous
2-D SCS has a BS densitȳλ0 = λ0 exp

(

2σ2

ε2

)

. Note that

λ̄0 ≥ λ0, ∀ σ, ε, and from Remark 4, the introduction of
shadow fading improves theC

I+N
performance at the MS

measured in terms of the tail probability ofC
I

.

Next, we study theC
I

and the C
I+N

at the MS in a multi-
tier network based on the analysis for the single tier network
modelled as thehomogeneous l-D SCS.

VI. M ULTI -TIER NETWORKS(M-TIER NETWORKS)

All the BSs of theith tier of aM -tier network are assumed
to have constant transmission power,{κi}

M
i=1. Firstly, theM -

tier network is reduced to an equivalent single tier network.

Theorem 4. Consider a multi-tier network consisting ofM
independent homogeneousl-D SCS with BS density{λi}

M

i=1 ,

such that all the BSs inith tier have a constant transmission
powerκi, then, this multi-tier network is equivalent to a single
tier network (homogeneousl-D SCS) with

(a) BS densityλ0 =
∑N

i=1 λi, and,
(b) the transmission power of each BS is an i.i.d. random

variableK = κi with a probabilitypi = λi

λ0
, i = 1, 2, · · · ,M .

Proof: Theorem 4 (a) follows directly from the Superpo-
sition theorem of Poisson process in [11, Page 16], and holds
true even asM → ∞. Next, consider a regionH ⊆ R

l, and
let Pi (H) denotes the probability of finding one BS belonging
to theith tier conditioned on the event that there exists one BS
in H. Then,Pi (H) = P({Ni=1})

P({N0=1}) ×
∏M

j=1, j 6=i P ({Nj = 0}) ,

where {Ni}
M

i=0 is the set of random variables denoting the
number of BSs inH for the homogeneous l-D SCS with
BS density {λi}

M
i=0 (λ0 is defined in Theorem 4(a)), re-

spectively. Note thatNi ∼ Poisson (λi |H|), where |H| is
the length, area or volume ofH for l = 1, 2, and 3,
respectively. Further,P (H) = λi

λ0
is independent ofH and

hence,P ({K = κi| 1 BS inH}) = λi

λ0
.

The following remarks result due to Theorem 4.

Remark 5. The equivalenthomogeneous l-D SCS in Theorem
4, with BS densityλ0 and i.i.d. random transmission powers
can further be reduced to thehomogeneous l-D SCS with BS

densityλ0E
[

K
l
ε

]

= λ0

∑M

i=1 piκ
l
ε

i and unity transmission
powers at all BSs.

Proof: (Outline) In (1a) and (1b), ΨS and {Ψi}
∞
i=1 are

equal to unity;KS and {Ki}
∞
i=1 are i.i.d. discrete random

variables with the probability mass function (p.m.f.) ofK
(Theorem 4 (b)). Now, follow the same steps in the proof
of Theorem 3 withR̄ = RK− 1

ε to obtain the result.

Remark 6. For the multi-tier network, Theorem 1 and Remark
1 together give the tail probability ofC

I
, and Remark 2 shows

that the C
I

is independent of theλ0, {pi}
M

i=1, and {κi}
M

i=1.
Further, Corollary 1 gives the closed form expression for the
tail probability of C

I
in [1,∞), and Theorem 2 gives the closed

form expression forC
I

under few BS approximation.

Since thehomogeneous l-D SCS (homogeneous Poisson
point process inRl) has the maximum entropy for a given
mean number of points in any subset ofR

l, Remark 6 shows
that even the most arbitrary placement of BSs inR

l does not
degrade theC

I
performance, and hence any intelligent strategy

in BS placement in any of the tiers of the multi-tier network
will only improve the C

I
.

Remark 7. The C
I+N

of the multi-tier network has the same
c.d.f. as that of the equivalenthomogeneous l-D SCS in

Corollary 3 withN ′ = N
(

λ0E
[

K
l
ε

])− ε
l

. Further, the tail

probability of C
I+N

can be computed using Corollary 2 and
(5) (by replacingC

I
with C

I+N
).

Note that C
I

and C
I+N

studied in this section, for a multi-
tier network withM = 2 corresponds to a 2-tier network with
macrocell network and femtocell network with all femtocell
BSs operating in the open access mode. Further, an important
consequence of Remark 7 is as follows.
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Corollary 4. Inclusion of additional tiers of wireless networks
with low transmission power BSs over an existing wireless
network will only improve the C

I+N
performance of the overall

network. Further, as the BS density of the additional tiers
increases, C

I+N
performance keeps improving, and approaches

the C
I

performance as the BS density approaches infinity.

Proof: The existing wireless network is a single tier
network with BS densityλ1 with a constant transmission
power κ1 at all the BSs. Hence, theC

I+N
has the c.d.f. as

the equivalent homogeneousl-D SCS in Corollary 3 with
N ′ = N1 = Nλ

− ε
l

1 κ−1
1 . Now, let M − 1 additional wireless

networks be installed on top of this single tier network
to form an M -tier network, with BS densities{λi}

M−1
i=2

and constant transmission powers{κi}
M

i=2. From Remark 7,
this M -tier network has the same c.d.f. as the equivalent
homogeneousl-D SCS in Corollary 3 withN ′ = N2 =

N1

(

1 +
∑M

i=2
λi

λ1
·
(

κi

κ1

)
l
ε

)− ε
l

≤ N1. Thus, the M -tier

network has a smaller noise power, which leads to an improved
C

I+N
performance of the overall network compared to the

existing wireless network (c.f. Fig. 3). Further, as{λi}
M

i=2

increases,N2 decreases, and converges to zero as at least
one of {λi}

M

i=2 approaches∞. Then, the C
I+N

converges, in
distribution, to theC

I
of a single tier network (Section III).

In a practical cellular system, the macrocell BSs have large
transmission powers in order to provide cellular coverage,
and the microcell, picocell and femtocell BSs have relatively
smaller transmission powers. In this case, Corollary 4 applies;
hence the installation of these networks with low power
BSs will not harm the existing cellular performance and any
intelligent strategy will only improve it.

Remark 8. When i.i.d. shadow fading factors{Ψi} indepen-
dent of the BS placement random process are introduced
to the multi-tier network,C

I
is the same as in a multi-tier

network without shadow fading andC
I+N

has the same c.d.f.
as that of the equivalenthomogeneous l-D SCS in Corollary

3 with N ′ = N
(

λ0E
[

K
l
ε

]

× E
[

Ψ
l
ε

])− ε
l

, as long as

E
[

Ψ
l
ε

]

< ∞, whereE [·] is the expectation operator.

Proof: (Outline) The multi-tier network is equivalent to
a single tier network with BS densityλ0 (Theorem 4(a)).
Next, in (1a) and (1b), KS and {Ki}

∞
i=1 are i.i.d. discrete

random variables with the p.m.f. ofK (Theorem 4 (b));
ΨS and {Ψi}

∞
i=1 are i.i.d. random factors with the p.d.f.

of Ψ. Now, follow the same steps in the proof of Theorem
3 with R̄ = RK− 1

εΨ− 1
ε , and reduce the equivalent single

tier network to another single tier network with BS density
λ0E

[

K
l
ε

]

E
[

Ψ
l
ε

]

, unity transmission powers at all BSs and
no shadow fading. Finally, use Remark 6 and Remark 7 to
complete the proof.

Corollary 5. (Ideal sectorized antennas) If each BS in the
ith tier of theM -tier network has BSs with ideal sectorized
antennas with an antenna gain,Gi, and beam-widthθi, such
that the BSs antenna faces the MS with probabilityθi2π ,
in which case the transmission power isKi = Gi × Xi,
where Xi ∼ Bernoulli

(

θi
2π

)

for each i = 1, 2, · · · ,M ,

the equivalent homogeneousl-D SCS will have BSs with
transmission powers which are i.i.d. random variables and
have a probability mass function (p.m.f.):P ({K = Gi}) =
piθi
2π , i = 1, 2, · · · , N, and P ({K = 0}) = 1−

∑M

i=1
piθi
2π .

Further, theC
I

and C
I+N

of this multi-tier network can be
computed using Remark 6 and Remark 7. Finally, Corollary
4 and Remark 8 also hold true for this multi-tier network.

VII. C ONCLUSIONS

In this paper, we study theC
I

and C
I+N

at the MS within a
multi-tier network, where each tier is modeled as thehomoge-
neous l-D SCS (l = 1, 2, and 3). Most studies of wireless
networks model the network as the homogeneous Poisson
point process inR2. Here, we study the wireless network with
the BS distribution according the homogeneous Poisson point
process inR1 andR3 as well, and highlight their significance
in practical scenarios.

The C
I

and C
I+N

in a single tier network are thoroughly
analyzed. Using these results, we completely characterizethe
C
I

and the C
I+N

at the MS within a multi-tier (M -tier) network.
This paper brings together and refines a set of results on
homogeneous l-D SCS to demonstrate how the SCS model
(developed in [1]–[3]) can easily handle the case of multi-tier
networks. The main takeaway from this paper is due to Corol-
lary 4: in a practical cellular system, installation of additional
wireless networks (microcells, picocells and femtocells)with
low power BSs over the already existing macrocell network
will always improve the signal quality at the MS, measured
in terms of the tail probability of C

I+N
.
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