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Abstract—This paper studies the carrier-to-interference ratio

(9) and carrier-to-interference-plus-noise ratio HLN perfor-

I
mance at the mobile station (MS) within a multi-tier network
composed ofM tiers of wireless networks, with each tier modeled
as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun
cellular system, where the base station (BS) distributions given
by the homogeneous Poisson point process in n-D. The and
% at the MS in a single tier network are thoroughly analyzed
to simplify the analysis of the multi-tier network. For the multi-
tier network with given system parameters, the following ae the
main results of this paper: (1) semi-analytical expressios for the
tail probabilities of < and HLN; (2) a closed form expression for
the tail probability of % in the range [100); (3) a closed form
expression for the tail probability of an approximation to % in
the entire range [00); (4) a lookup table based approach for
obtaining the tail probability of HLN and (5) the study of the
effect of shadow fading and BSs with ideal sectorized anteras
on the ¢ and . Based on these results, it is shown that, in
a practical cellular system, the installation of additiond wireless
networks (microcells, picocells and femtocells) with low pwer
BSs over the already existing macrocell network will always
improve the = performance at the MS.

Index Terms—Multi-tier networks, Cellular Radio, Co-channel
Interference, Fading channels, Poisson point process.

I. INTRODUCTION

The modern cellular communication network is a com

plex overlay of heterogeneous networks such as macroc
microcells, picocells, femtocells, etc. The base statiBB)(
distribution appears increasingly irregular as the dgmdiBSs

grows over time while bounded by cell site limitation. Due t
computational constraints, system designers cannot ghely

overall network at once, and have to resort to simulations
specific portions of the network. As it is hard to obtain irntig

and general conclusions from such studies, it is desirable ¢,

abstract and simplify the model. At one end of the abstracti

We have explored the SCS in detail In [1]-[3]. The utility of
the SCS model in the study of the cognitive radio networks
can be found in[[4].

In this paper, we study the practical cellular system by
viewing the macrocells, microcells, picocells and femtisce
as the different tiers of a multi-tier network. We focus on
the % and the carrier-to-interference-plus-noise r tipf—N
at the mobile station (MS) in a multi-tier network with
M tiers of heterogeneous networks (hence called\&stier
network). The BS distribution of the practical cellular &
follows regular topologies (e.g. to match the customer itigns
patterns along highways, between suburbs and city centers
and within large multi-storey buildings). Each tier of thé-
tier network is modeled as thieomogeneous /- dimensional
(I-D,1=1,2, and 3) SCS, where the BS distribution is
according to the homogeneous Poisson point proce& in
1 =1,2,3. Inthehomogeneousi-D SCS,/=1 is a model for the
highway scenariol=2 models the planar deployment of BSs
in suburbs, and=3 models the BS deployments within large
multi-storey buildings and wireless LANs (WLAN) in muti-
storey residential areas. A Poisson point proces®inhas
been a popular model adopted in the literature for the lonati
of nodes in the study of ad hoc and other uncoordinated
networks ( [5]-[7] are a few selected references). It has
Fﬁ|80 been used in studying two-tier networks composed of
Stacrocells and femtocelld [8]L1[9]. Here, we characterize
the cellular performance in a multi-tier network with BS
distributions according to the Poisson point procesRinR>?
AndR3. In [10Q], the authors study the multi-tier network with
the BS distribution in the various tiers according to thesBon
BOint process ifR?, and derive a closed form expression for
the tail probability of% in the rangd1, co) for the special case

f

0of Rayleigh fading. In this paper, we characterize %dn the
enti(e rangd0, co) and for any general fading distribution.

the BSs are assumed to be at the centers of regular hexagona

cells. At the other end, the BS deployments are modeledContributions of the paper: Firstly, we emphasize that the
according to a Poisson point process.[Ih [1], the author makstudy of the cellular performance of the multi-tier netwask
a connection between the ideal hexagonal cellular systeightly coupled with a similar study on a single tier network

and the cellular system with the BS placement accord

iltence, we indulge in thoroughly understanding the single ti

to a homogeneous Poisson point process on a plane (tmeiwork and its properties. Sections L1V ahd V deal with
dimensions, 2-D), called the shotgun cellular system (SES)the single tier network. In Sectidn VI, based on the theory

is shown that the carrier-to-interference raﬁ@,), of the SCS

developed in the previous sections, we completely chaiaete

lower bounds that of the ideal hexagonal cellular system atite signal quality at the MS in &/-tier network measured in
moreover, they converge in the strong shadow fading regimerms of the carrier-to-interference ratﬁ@) and the carrier-
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to-interference-plus-noise rati HLN) In particular, for the BS is referred to as the “serving BS”, and all the other BSs
multi-tier network, we derive (1) semi-analytical expiiess are collectively called the “interfering BSs”. Consequgrthe

for the tail probabilities of% and HLN; (2) a closed form signal quality at the MS is defined as the ratio of the received

expression for the tail probability of in the range(l,00); Power from the serving B&denoted byC’ or Fs) to the sum

(3) a closed form expression for the tail probability of a®f the total interference power (denoted by or P, sum
approximation to% in the entire range [B¢); (4) a lookup Of the powers from the interfering BSs) and the noise power
table based approach for obtaining the tail probability dfV), and is called the carrier-to-interference-plus-noigera
7<%, and (5) the effect of shadow fading and BSs with - ). In an “interference limited system?, > N and the
ideal sectorized antennas on t@e and HLN Finally, it is signal quality is referred to as the carrier-to-interfex@matio
shown that the installation of additional wireless netvmrk(%). Thus, for a single tier network, th% and £ are

T+N
(microcells, picocells and femtocells) with low power BS®0

the already existing macrocell network will always improve € (1) ~ Ks¥sRg* ¢ o KsVsRg®
the HLN performance at the MS. I X KWR = I+N YSX KVR ©+ N(’l)
Il. SYSTEM MODEL where subscript $” denotes the serving BS and subscript

[ LI H H P _ e
This section describes the various elements used to model indexes the interfering BSsKs = {Ki},Z, are the

the wireless network, namely, the BS layout, the radio enJfansmission powers that_ca_n be qual a constant (_)r.mde-
ronment, and the performance metrics of interest. pendent and identically distributed (i.i.d.) random vhbés;

BS Layout: We define the SCS arftbmogeneous I-D SCS Rs and {Ri};?l are rgndom variables that come from the
(I=1,2,3) and describe the model for the single tier and mulfi'-nderlylng Poisson point process that governs the BS place-
tier networks ment; ¥g and {¥;}2°, are i.i.d. random variables. Hencg,

o ' . and % are random variables, and can be characterized by a
Definition 1. The Shotgun Cellular System (SCS) is @ model probability density function (p.d.f.), c.d.f. or the taitgbabil-
for_the cgllular system in which the BSs are placed in 2 giVey The tail probability OfH—LN is given byP H—LN > b)),
l-d_|men5|onal planlel(: L .2’ and. 3) acco_rdmg to a P0|§son and is the probability that a MS in the SCS has a signal quality
point process orR’. The intensity function of the Poisson

. . ) o of at leastn, n > 0. In the following section, we characterize
point process is called the BS density function in the Cantefe tail probability of theS at the MS in a single tier network.
of the SCS. (Seé€ [3] for more details.) I

Definition 2. In the homogeneous I-D SCS (I € {1,2,3}),

the BSs are placed according to a homogeneous Poisson point
process orR! with a BS density),, such that the probability —Here, the transmission power and the antenna gains of all the
that there exists a BS in a small regih C R! is \o|#|, BSs in the SCS are assumed to be constaxt, K). Also,
where |H| <« 1 is the length, area or volume of the regiorihe shadow fading factors are assumed to be unity. Hence,
H for I = 1,2,and 3, respectively; and the events in nonfrom the expression fof’ in (), the BS closest to the MS

% CHARACTERIZATION FOR A SINGLE TIER NETWORK

overlapping regions are independent of each other. is the serving BS and the expression ﬁ?)ris
Radio Environment: The signal from the BS undergoes C KR;*
path-loss and shadow fading; and is also affected by back- 7" W, (2)
=2 4

ground noise. The signal power at a distadtérom the BS

is given byP = KW R~¢ whereK captures the transmissionwhere R, < R, < Rs--- are the distances between the

power and the antenna gain of the BBis the random shadow BSs and the MS, arranged in a non-decreasing order. Further,

fading factor, and? ¢ represents the inverse power law pathrecall that the BS layout in the single tier network is as ia th

loss withe as the path-loss exponent, aitlas the distance homogeneous/-D SCS(I = 1, 2, 3) with BS density\q. Thus,

from the BS. The noise power in the systemhs the p.d.f. of Ry is given by fr, (r1) = Aobyri le= 1,
Single tier network: In this paper, the single-tier networkWhere ;> 0andb, — 2,27 4r for | = 1,2.3, re-

refers to the macrocell network and the BS layout is accqrdi@pectively and the conditional p.d.f. of th&" closest BS

to the homogeneous I-D SCS,l = 1,2, 3. " ) th .
o ) 1 . conditioned on théi—1)*" closest BS, iz, r. i|ric1) =
Multi-tier (M-tier) network: The M -tier network is assumed Aobl(7‘;7¢;‘fil)) Iripi (rifriz)
to be composed of\/ independentiomogeneous [-D SCSs )\Oblrﬁfle—ilz T > Tl

with BS density {\;},, for each tier. For the)M-tier .
network, K and the cumulative density function (c.d.f.) OfTheorem 1. In a homogeneousD SCS with a constant BS

U are different for each tier. density Ao, if the path-loss exponent satisfies> I,

Performance Metric: In this paper, we are concerned with (a) the characteristic function d?; conditioned onR; is
the signal quality at a MS within the wireless network. The P (w]r1)
MS is assumed to be located at the origirRdf [ = 1,2,3 in PrlRs ! ; )
which the multi-tier network is defined. The MS receives sig- = exp (Aoblrl (1 _— (_i; 1— f; MK))) (3
nals from all the BSs, and chooses to communicate with the BS ! €
that corresponds to the strongest received signal powés. Th

-1 _ Xobyrh




- . 1 Comparison of SCS
(b) the characteristic function df$') " is given by omparEon o oes
No. of iterations = 100000
w T T T 0 ? I era ITonS T T T T
(I)(Q)—l (w) = ER1 (I)PI\R1 P_ Rl
T 'S i ]
— 1 (4) homogeneous 1-D SCS (A in number of BSs/unit length)

1R (=51 L)
whereEg, is the expectation w.r.2,, and, F; (-;-;-) is called 08f |

the confluent hypergeometric function of the first kind . | homogeneous 2-D SCS (A in number of BSsfunit area)

Proof: See [[3, Corollary 2]. m é 0.6f )
The significance of Theorel 1 is in the following remarks g
Remark 1. The tail probability of¢ may be directly obtained - 04l 1

from the characteristic function and is given by | homogeneous 3-D SCS (A in number of BSsfunit volume)

(51 |

00 1—exp(—i w
fw:—oo Q(%)71 (w) < ]’L)tf) . )) (2i_7r’ T] > 0(5) | | | | | | | | |
5 10 15 20 25 30 35 40 45 50
1, n=0. BS density (A)
Proof: See [2, Eq. (9)]. ]

Remark 2. The characteristic function of th@%)_l does not Figure 1. - Invariance off of the homogeneous I-D SCS w.rt. BS density
depend oy, and hence the talil probability éf ata MS in (A). The 5 tail probability is independent of (proved in Remark]2), and the

homogeneous 1-D SCS has a better tail probability than théhomogeneous
the homogeneous [-D SCS does not depend on. 2D and 3-D SCS (proved in Rer??m 3).

Remark 3. The characteristic function ¢f%) ! for ahomoge-

neous 2-D and 3-D SCS is the same as that dfomogeneous ) )

1-D SCsS with path-loss exponents and £, respectively. The cons_tam?C% can be thalned by usingd) and (_eval-

Hence, the correspondirg performances are identical. uating the integral in(@) with » = 1. Note that$ is a
Remark 2 proves why the curves corresponding tohitie Non-negative random variable with a support[@foc), and

mogeneous 1-D, 2-D and 3-D SCSs in Fiff] 1 are straight linessurprisingly, its tail probability has such a simple forngagen

Remark{B helps build an intuition of why tHemogeneous by (@) in the region[1, co). Next, we define the so-callefew

1-D SCS has a higher tail probability gf thanhomogeneous  BS approximation and derive closed form expressions for the

2-D and 3-D SCSs; Fidi] 1 now corresponds to comparing tkail probability of & at MS in ahomogeneous I-D SCS for

tail probabilities of< in a homogeneous 1-D SCS with path- both the regions0, 1) and |1, o0).

loss exponents, 3, and 5, respectively. As the path-losspefinition 3. The few BS approximation corresponds to mod-

exponent decreases, the BSs farther away from the MS h@ygg the total interference power at the MS in the SCS as the
a greater contribution to the total interference power & tym of the contributions from the strongest few interfering

MS, and this leads to a pooréF at the MS and a smaller tail gsg ang an ensemble average of the contributions of the rest
probability (computed by evaluating the integral @)). An ¢ the interfering BSs.

important consequence of Remaltk 3 is as follows.

Recall from @) that P; = > ., KR; °, where{R;}.;°,
C C L corresponds to the descending order of their contribution t
P T > Pl<s—=>1 xXn e
_1
= Kegn=s, ¥zl el (0) k, where E'[-] is the expectation operator and refers to the
Proof: In [1], we have shown that by £. Next, we studys for the homogeneous i-D SCSs.

Corollary 1. For a homc_>geneod_sD SCS'_Z,: L, % 3 where is the set of distances of BSs arranged in the ascending
the path-loss exponent is the tail probability of7 is order of their separation from the MS. The arrangement also
(6) Pr. In the few BS approximationpP; is approximated by
Pr(k) =S8 KR *+E[Y2, .1 KR | Ry], for some
whereK: is a constant parametrized By ensemble average of the contributions of BSs beyBpdThe
% at the MS obtained by the few BS approximation is denoted
C C _z . .
P{y5>n = P({=>1¢)xn"%, (8 Lemma 1. For the homogeneousi-D SCS, with BS density Ao
1 1
and ¢ > [, for k=1,2,3,

wheren > 1, ande > 2, for a homogeneous 2-D SCS. From

- i - = KR, ©
Remarl{8,[8) holds for allhomogeneous 1-D SCS with path > Z KR=|R,| = Mobi KRy, . ©)
loss exponeng and therefore, for atlhomogeneous 3-D SCSs e v e—1
with path-loss exponeri. Hence, () hold true, and(7) is i
Proof: See [3, Corollary 4]. ]

obtained by noting that the characteristic function(é‘f)f1 .

is a function of¢ and soP ({< > 1}) is a constant. Next, the tail probability off = n’kﬁ is derived.
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Theorem 2. In the homogeneousD SCS with BS density ® r;ir, (w|71), and the characteristic function (<f1+N)
. e C C W
Ao and path-loss exponeat(s > 1), the tail probability of- g q)( c ) 1 (w) = Eg, [exp( p—SN) X ®p,|R, (p—s )]

is TN L
o where® p, |z, (w|r1) is given by (3).
P ({1—2 > 77}) (10) Proof: The expressions for® p g, (w|r1) and
. ®, - -1 (w) follow directly from the definition of charac-
n=Cs, n>1 TN ; ,
= { (1 () i , (11) teristic function, whereV is a constant. u
L=+ =Ds (), n<1 Further the tall probability OH_N is obtained by substi-
tutlng with in (§). Next, an interesting property of the
= g _ l —_ e = £ = I+N
whereu (1) = (5 1) (’7 1) Ot Cj(O,oo), D () I+N at the MS in thehomogeneous I-D SCS is presented.
G(u(n), ), andG (a,b) = [* ——ve" gy,
T (e(5-) ) E Corollary 3. If the :<5 at the MS in the homogeneou

Proof: See [3, Theorem 2]. - SC_:S is specified by\g, ¢, K, N). where )\ is the BS dertsn_y,
. o B c ; 1. ¢ is the path-loss exponeniy is the constant transmission
Notice thatP ({ > n}) = ({ }) or 7 power of each BS, andV is the constant noise power, then,
Fig. [@ shows the companson of the tail probabllltles %f C

(computed using the characteristic function (cg) ) and T+ N
IC for the homogeneous 2-D SCS with path-loss exponent 4.

Notice that the gap between the two tail probability curvaghere N/ — N/()\l K) and “=.,” means that the c.d.f's
is negligible in the regiom € [0, 1], and further, both the zre same.

curves are straight lines parallel to each other in the regio

n € [1,00), when the tail probability is plotted against

both in the logarithmic scale. This shows th%t is a good
approximation for— and can be characterized in closed for

C
st

— , (12)
(Mo,e,K,N) I'+N

(1,6,1,N")

Proof: See [[3, Corollary 9]. [ ]
So, it is sufficient to analyze thBomogeneous /-D with
0 = K = 1 and maintain a table for the tail probability
of I+N for different values ofN’ ande. We can find the
at the MS for ahomogeneous [-D SCS with any given
H I\./ é+N IN A”SINhGLE TIER NETWORK ¢ all B I)J\roj\,[a K, N) by just reading out the tail probability oj—
ere, as in SectiolLlll, the transmission powers of a rresponding te and N’ obtained using Corollat&]Sfrom the

are constant and shadow fading factors are equal to unity. Yggkup table. The lookup table is resented fenoaogeneous
first obtain the tail probability oS~ using the characteristic 2-D SCS in .Fig[B as a plot &P - 1}) againstN’
B I+N

Y
function of (I+N) derived in the following corollary. for different values ofe. Further, in thehomogeneous /-D

; . , .
Corollary 2. In a homogeneousD SCS with BS density\g ggg'da&\o Increases, éhe r;msg IOOI\IIérN 30f thz gq;tr:vaztentt
and path-loss exponent(c > [), the characteristic function of ecreases according fo Loroflafy o, anctin the fimit as

c
the sum of the total interference pow@?;) and noise power

Ao — oo, N approaches zero and hengéx RS €, where
(N) conditioned onR; is ® p,; n|g, (w|71) = exp (iwN) x RS corresponds to convergence in distribution. Thus, in an



“interference limited system” (larg#y), the signal quality is Theorem 4. Consider a multi-tier network consisting af

measured in terms 0%1 Next, we study the effect of shadowindependent homogeneolt® SCS with BS densit){)\i}?il ,

fading on the% and ”LN at the MS in a single tier network. such that all the BSs i tier have a constant transmission
powerk;, then, this multi-tier network is equivalent to a single

V. SHADOW FADING tier network (homogeneousD SCS) with

; N
Theoren(B analytically shows that the effect of the intro- (&) BS density\o =3-;", Ai, and, _ B
duction of shadow fading to the SCS is completely captured(b) the transmission power of eachABS' is an i.i.d. random
in the BS density of thévomogeneous {-D SCS. variable K = ; with a probabilityp; = 5=, i =1,2,--- , M.

Theorem 3. When shadow fading in the form of i.i.d non-  Proof: Theoreni# (a) follows directly from the Superpo-

negative random factor¥;}, is introduced to the homoge-smon theorem of Poisson processlin][11, Page 16], and holds

neousl-D SCS with BS density, for the% andH—LN analy- frue even as\/ — oo. Next, consider a regiof{ C R', and

sis, the resulting system is equivalent to another homagene'etPi (H) denotes the probability of finding one BS belonging
.th . . .
I-D SCS with BS density\ E {\I/L} as long a®: [\Ijl} < oo, lothei™ tier conditioned on the event that there exists one BS

in 4. Then,P; (H) = gA= < [T, . P({N; =0}),

= P{No=1})

Proof: The expression fof and 1 in (@) and @) where {N;};”, is the set of random variables denoting the
may be written asg’ = B and-C. — 1= number of BSs in# for the homogeneous [-D SCS with

] fl T By “:]\_1’ LRl RSHNT g density{)\i}ﬁo (Mo is defined in Theoreni]4(a)), re-
where Ry = RsWg® and Rey1 = RpW, °, k=1,2,3---.  spectively. Note thatV; ~ Poisson () |H|), where |#] is
Now, the expression fof is similar to the no shadow fadingthe length, area or volume of for I = 1,2, and 3,
case in(2), with the i's replacing thef’s. Using the Marking  respectively. FurtherP (#) = 4 is independent off and
theorem of Poisson process in [11, Page 98]= R¥~= henceP ({ K = #;|1 BS inH}) = & m
0

follows the homogeneous Poisson procesR'iwith intensity  The following remarks result due to Theoré 4.

1
AoE {‘Ir} For a complete proof, segl[3, Theorem 4]. W pamark 5. The equivalenhomogeneous i-D SCS in Theorem
Further, the% and% at the MS in thehomogeneousI-D [, with BS density)\, and i.i.d. random transmission powers
SCS with shadow fading is the same as that in the equivaleai further be reduced to th®mogeneous I-D SCS with BS
homogeneous [-D SCS where there is no shadow fading. Th@ensity MNE Ké} W Zif\flpmié and unity transmission
following remark illustrates the consequence of the theor BSs. B

on the € and -C— at the MS €owers at al
T T+N . Proof: (Outline) In (Ik) and (Ib), ¥s and {¥;}.;°, are

Remark 4. In the homogeneous I-D SCS with BS densitho,  equa to unity; K5 and {K;}°, are iid. discrete random
(2) shadow fading has no effect on theat the MS, and, variables with the probability mass function (p.m.f.) &f
(b) the effect of shadow fg\dmg is completely captured iprpeqremH (b)). Now, follow the same steps in the proof
the noise power term of the ;. of Theoren{B with? = RK~* to obtain the result. n

CProof: Firgtly, using Theorerl3, it is sufficient to analyzeqmark 6. For the multi-tier network, TheoreM 1 and Remark
the 7 and y7y for the homogeneous I-D SCS with BS mogether give the tail probability of, and Remarkl2 shows
density \oE [\Ifﬂ . Then, Remarkl4(a) follows from Remarkihat the & is independent of the\,, {p;},, and {x;} .

2. Finally, since the;<; in this case has the same c.d.fFurther, Corollary 1L gives the closed form expression fer th
as the equivalerinomgenegus [-D SCS in CorollaryB with tail probability of% in [1, 00), and Theorernl2 gives the closed
N = NEK-! ()\oE {\Iji}) 7 . Remark&i(b) is proved. m form expression for% under few BS approximation. .
Since thehomogeneous [-D SCS (homogeneous Poisson
Example 1. Consider ahomogeneous 2-D SCS with an point process inR’) has the maximum entropy for a given
average BS density,, where each BS is affected by an i.i.dnean number of points in any subsetRff RemarK® shows
log-normal shadow fading factor with a mean 0 and standafght even the most arbitrary placement of BS&Rindoes not
deviationo. Using Theorenii3, the equivalehbmogeneous  degrade th€' performance, and hence any intelligent strategy
2-D SCS has a BS densityy = \gexp (QEL;) Note that in BS placement in any of the tiers of the multi-tier network

X > Ao, V o, ¢ and from Remarkl4, the introduction ofwill only improve the &.
shadow fading improves the< performance at the MS Remark 7. The +< of the multi-tier network has the same

T+N ) ;
measured in terms of the tail probability &. c.d.f. as that of the equivalertomogeneous I-D SCS in
. 1 T .
tier network based on the analysis for the single tier netwoprobability of ”LN can be computed using Corolldty 2 and
modelled as thdnomogeneous /-D SCS. @) (by replacing% with HLN),
Note that$ and =5 studied in this section, for a multi-
VI. MULTI-TIER NETWORKS(M-TIER NETWORKS) tier network with M/ = 2 corresponds to a 2-tier network with

All the BSs of theit! tier of a M-tier network are assumedmacrocell network and femtocell network with all femtocell
to have constant transmission pom@ti}?il. Firstly, theM- BSs operating in the open access mode. Further, an important
tier network is reduced to an equivalent single tier networkconsequence of Remark 7 is as follows.



Corollary 4. Inclusion of additional tiers of wireless networksghe equivalent homogeneousD SCS will have BSs with
with low transmission power BSs over an existing wirelegsansmission powers which are i.i.d. random variables and
network will only improve the— performance of the overall have a probability mass function (p.m.fI:({K = G;}) =
network. Further as the BS denS|ty of the additional tler%— i=1,2,---,N, and P({K = 0}) = 1 — S &b

i=1 27
increases—<_ performance keeps improving, and approaches . .
T+ P P P 9, PP Further, theT and ”LN of this multi-tier network can be

the % performance as the BS density approaches infinity. computed using Remafk 6 and Remafk 7. Finally, Corollary
Proof: The existing wireless network is a single tiedl and Remark]8 also hold true for this multi-tier network.

network with BS density)\; with a constant transmission

power x; at all the BSs. Hence, thec— has the c.d.f. as

the equivalent homogeneoutsD SCS in Corollary[B with In this paper, we study thé and <5 C at the MS within a
N'"=N; = NX\ . Now, let M — 1 additional wireless multi-tier network, where each tier is modeled as tioenoge-
networks be mstalled on top of this single tier networl,qeous I-D SCS (I =1,2, and 3). Most studies of wireless
to form an M-tier network, with BS densities{\;};"," networks model the network as the homogeneous Poisson
and constant transmission DOWG{F&}iZQ- From RemarK17, point process irR%. Here, we study the wireless network with
this M-tier network has the same c.d.f. as the equivaletife BS distribution according the homogeneous Poissort poin
homogeneous-D SCS in CorollarylB withN’ = N, = process inR' andRR? as well, and highlight their significance
M\, N Y . in practical scenarios.
Ny (1 + iz 3\_1 ' (:_1) ) < M. Thus, the M-tier 'IF')he 7 and IfN in a single tier network are thoroughly
network has a smaller noise power, which leads to an improvadalyzed. Usmg these results, we completely charactérize
1+N performance of the overall network compared to th§ and the;= at the MS within a multi-tier {-tier) network.
existing wireless network (c.f. Fig. 3). Further, @sl}iﬂ This paper brmgs together and refines a set of results on
increases,NQ decreases, and converges to zero as at lehsmogeneous [-D SCS to demonstrate how the SCS model
one of {\; } —, approachesc. Then, the Fi¥ converges, in (developed in[[1]+[B]) can easily handle the case of misti-t
distribution, to the$ of a single tier network (Sectidn]il)m networks. The main takeaway from this paper is due to Corol-
In a practical cellular system, the macrocell BSs have larg@gy[d: in a practical cellular system, installation of aétshal
transmission powers in order to provide cellular coverag#ireless networks (microcells, picocells and femtoceNgh
and the microcell, picocell and femtocell BSs have rel#givelow power BSs over the already existing macrocell network
smaller transmission powers. In this case, Corollary 4iappl Will always improve the signal qualrty at the MS, measured
hence the installation of these networks with low powdp terms of the tail probability of-<5.
BSs will not harm the existing cellular performance and any
intelligent strategy will only improve it.

Remark 8. When i.i.d. shadow fading factors¥;} indepen- [1] T. X. Brown, “Ce”aljilar pgéforn;dance bqungs via S_hotguﬂltderl syg-
: tems,” IEEE Journal on Selected Areas in Communications, vol. 18,

dent of the BS placemecnt_random process are mtr_ooiuced no. 11, pp. 2443-2455, Nov 2000

to the multi-tier network,7 is the same as in a multi-tier 2] p. Madhusudhanan, J. G. Restrepo, Y. E. Liu, and T. X. Brd€arrier

network without shadow fading anﬁf_]\/ has the same c.d.f. to interference ratio analysis for the shotgun cellulartesys’ in IEEE

as that of the equivalerttomogeneous I-D SCS in Corollary S?Kmﬁﬁvgﬁer\/\%%? Communications Symposium, Honolulu, HI,
with N/ =

N (/\OE [Ké] « B {\pﬁD " as long as [3] P. Madhusudhanan, J. G. Restrepo, Y. Liu, T. X. Brown, KndBaker,
’ “Generalized carrier to interference ratio analysis fershotgun cellular

system in multiple dimensionsCoRR, vol. abs/1002.3943, 2010.
[4] ——, “Modeling of interference from cooperative coguéi radios for

. CONCLUSIONS

REFERENCES

E [\IJL} < oo, whereE [] is the expectation operator.

Proof: (Outline) The multi-tier network is equivalent to
a single tier network with BS density, (Theorem[#(a)).
Next, in (Tk) and (), Ks and {K;}.-, are ii.d. discrete
random variables with the p.m.f. o (Theorem[# (b));

low power primary users,” iIHEEE Globecom 2010 Wireless Commu-
nications Symposium, 2010, pp. 1-6.

5] S. Weber, X. Yang, J. G. Andrews, and G. de Veciana, “Timgasion

capacity of wireless ad hoc networks with outage conssAinEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4091-4102,

December 2005.

Vs and {\Ijl}izl are iid. random factors with the p.d.f. [6] M. Zorzi and S. Pupolin, “Outage probability in multipkecess packet

of ‘IJ Now, follow lthe same steps in the proof of The_orem radio networks in the presence of fading/EEE Transactions on
with R = RK~=¥~=, and reduce the equivalent single Vehicular Technology, vol. 43, no. 3, pp. 604-610, Aug 1994.
tier network to another single tier network with BS densityl”] H: Takagi and L. Kleinrock, “Optimal transmission rawsgfer randomly

. . ) o distributed packet radio terminals|EEE Transactions on Communica-

ME LK E |¥= |, unity transmission powers at all BSs and  tions, vol. 32, no. 3, pp. 246-257, Mar 1984.
; ; ] ] V. Chandrasekhar and J. Andrews, “Uplink capacity angrierence
no shadow fading. Finally, use Remdrk 6 and Renidrk 7 t@ avoidance for two-tier femtocell networks/EEE Transactions on
complete the proof. u Wireless Communications, vol. 8, no. 7, pp. 3498 —3509, July 2009.

. . 9] P. Xia, V. Chandrasekhar, and J. Andrews, “CDMA uplinkpaaity in
Corollary 5. (ldeal sectorized antennas) If each BS in thé both open and closed access two-tier femtocell networks(liOBE-

i'™ tier of the M-tier network has BSs with ideal sectorized  COM Workshops (GC Wkshps), 2010 IEEE, 2010, pp. 648 —652.
antennas with an antenna gai#;, and beam-widttg;, such [0 H. dS. D*I"”O”' ka K. %a”t"lF-k?]acce”'v and J. G-”Alndregs"‘)de“”g

. A and analysis of k-tier downlink heterogeneous cellulawoets,” CoRR,
that the BSs antenna faces the MS with probabHQ@ty,

: ' - vol. abs/1103.2177, 2011.
in which case the transmission power i§; = G; x X;, [11] J. F. C. Kingman,Poisson Processes (Oxford Studies in Probability).
<) for eachi = 1,2,---, M,

where X; ~ Bernoulli (29_ Oxford University Press, USA, January 1993.



	I Introduction
	II System Model
	III CI characterization for a single tier network
	IV CI+N in a single tier network
	V Shadow fading
	VI Multi-tier networks (M-tier networks)
	VII Conclusions
	References

