
Privacy- and Integrity-Preserving Range Query in Wireless Sensor Networks

Yao-Tung Tsou†∗, Chun-Shien Lu† and Sy-Yen Kuo∗
†Institute of Information Science, Academia Sinica, Taipei 115, Taiwan

∗Department of Electrical Eng., National Taiwan University, Taipei 106, Taiwan

Abstract—A large-scale wireless sensor network constructed
in terms of two-tiered architecture, where cloud nodes take
charge of storing sensed data and processing queries with
respect to the sensing nodes and querists, incurs security
breach. This is because the importance of cloud nodes makes
them attractive to adversaries and raises concerns about data
privacy and query result correctness. To address these prob-
lems, we propose an efficient approach, namely EQ (efficient
query), which mainly prevents adversaries from gaining the
information processed by or stored in cloud nodes, and detects
the compromised cloud nodes when they misbehave. EQ can not
only achieve the goals of data privacy and integrity preserving
but also ensure the secure range query without incurring
false positive. For data privacy preserving, EQ presents an
order encryption mechanism by adopting stream cipher to
encrypt/decrypt all sensed data such that a cloud node can
only process issued queries over stored data in the encryption
domain. For data integrity/completeness, we manipulate a
data structure of XOR linked list (X2L), which allows a
querist to verify the integrity of retrieved data via the so-
called verification information, i.e., neighborhood difference in
a storage-efficient manner. We demonstrate the feasibility and
efficiency of EQ via experiments conducted on TelosB prototype
sensor platform running TinyOS 1.1.15 and comparisons with
state-of-the-arts.

Keywords-Encryption; Integrity; Privacy; Query; Sensor net-
work; Security.

I. INTRODUCTION

A. Background and Related Work

Cloud based online storage service is more and more
popular not only in traditional networks but also in wireless
sensor networks. Because cloud storage would involve stor-
ing data on multiple cloud nodes (CNs) (e.g., cloud servers
or devices with abundant storage), data privacy and integrity
preserving become important issues and thereby how to deal
with compromised CNs is a major concern in this paper.

Recently, there are some researches [1] [2] [3] [4] [9]
that have been proposed to prevent the adversaries from
obtaining information stored or processed in CNs. In other
words, each CN is necessary to process the data sensed by
sensing nodes (SNs) and the queries issued from querists
(QTs) in the encryption domain. However, some drawbacks
still exist in these state-of-the-arts. While data privacy and
query result integrity of the range query in [1] [2] [3]
can be preserved exquisitely, owing to the use of bucket
partitioning proposed by [8], their query result completeness
is achieved in different manners. Unfortunately, they share

some common weaknesses: (1) The bucketing scheme used
in their approaches may cause false positive. More precisely,
querists would receive some useless data values. (2) If
a CN is compromised, it may leak some information to
adversaries such as bucket tags. It allows adversaries to
obtain a reasonable estimation on how many data values fall
into a range or the sensed data of SNs and the queries of
QTs. (3) Power and space consumption grows exponentially
with the data size.

In [4], SafeQ-Basic and its optimized version, SafeQ-
Bloom, are proposed. Because SafeQ-Basic applies prefix
membership verification which needs to produce many hash
values by using MD5 or SHA-1, it would cause large com-
munication, computation, and storage overheads. Although
SafeQ-Bloom employs Bloom filter to represent hash values
in order to reduce communication and storage overheads, it
leads to more computational overhead.

To address the above problems, Jiajun et al. [9] have pro-
posed a secure, efficient, and flexible range query scheme,
namely SEF. They employ the Order-Preserving Symmetric
Encryption (OPSE), which is a deterministic encryption
scheme whose encryption function preserves the numerical
order of the plaintexts [10], to preserve data privacy. For
preserving authenticity and integrity of query results, an
Authenticity & Integrity tree (AI tree) inspired by Merkle
hash tree (MHT) is constructed. The construction of AI
trees, however, will lead to extra computational overhead,
in particular when the number of operations of hashing
increases. Moreover, since sensed data that are stored in
NAND flash memory need to be read on a pagewise basis,
it must cost extra loading for reading the redundant data
values. Additionally, they also need to reserve some pages
for storing digests, so the utilization of storage is not
efficient.

B. Overview and Contributions of This Paper

In this paper, we propose an efficient range query (EQ)
scheme in WSNs with privacy and integrity preserved. EQ
presents an order encryption mechanism (OEM), which
possesses the characteristic of bucket scheme, to provide
data privacy. The OEM technique allows a CN to retrieve
the desired data according to the stored data and queries
in the encryption domain. In order to verify the query
result integrity/completeness, EQ applies the data structure
X2L, which simply processes the operation of Exclusive-

Globecom 2012 - Ad Hoc and Sensor Networking Symposium

346

OR (XOR), to construct neighborhood differences for query
result verification of a querist. The comparisons among some
well-known methods and our proposed method are shown
in Table. I. We find that EQ is more efficient than the prior
works in many aspects such as communication overhead,
computation overhead, and storage overhead, while achiev-
ing privacy preserving, integrity verification, and accurate
query result (QR) that are comparable with [1] [2] [3] [4]
[9]. The main contributions of this paper include:

• We provide a novel mechanism for secure data storage
and query processing in the encryption domain.

• We present an efficient data structure to guarantee the
integrity/completeness of query results.

• We introduce a concept of cloud storage in two-tiered
network architecture and our approach can be easily in-
tegrated into current mobility control protocols without
raising much additional overhead.

• In comparison with the existing schemes, our approach
performs better in requiring less power and storage.

Figure 1. Wireless sensor network with two-tiered architecture.

II. SYSTEM AND ATTACK MODELS

A. System Model

As shown in Fig. 1, our system consists of three kinds
of nodes: querist (QT), cloud node (CN) and sensing node
(SN), which are set up in the user level, cloud level and
sensing level, respectively. The network is partitioned into
physical cells, according to the geographic location, wherein
each SN belongs to one cell, and each cell contains a CN
which is in charge of other SNs in the cell. Depending on
concrete applications, cells may overlap such that a SN in the
overlapping region is affiliated with more than one CN. In
the user level, a querist/user can use a sensor (e.g., TelosB) or
mobile device (e.g., smart phone) to start up a range query
via the wireless demand link to get the desired data. The
cloud level can be viewed as a large-scale cloud data center.
Each CN in the cloud level collects the data sensed from
the SNs in the ground. However, in order to achieve the

goal of privacy-preserving, CNs are only able to manipulate
encrypted sensed data. Moreover, SNs are limited in storage,
energy, and computation; they are responsible for sensing
data such as temperature, humidity, the number of ground
shaking, the volume of a specific time interval, etc.

In our system, we formulate the query demand as:
query = (Si, t, [min,Max]), where Si denotes a SN’s ID
from which the data retrieval is desired, t represents the time
interval in which the data are monitored, and the query range
is denoted by the [min,Max].

B. Attack Model

Many attacks, including passive eavesdropping, bogus-
message injection, replay, and jamming attacks, may be
launched by an adversary. However, we do not focus on
these attacks because they can be efficiently defensed in [5]
[6] [7]. In this paper, we aim at the security issues on the
problem of compromised CNs. We assume that the adversary
can arbitrarily compromise CNs. Once compromising a CN,
the stored sensed data may be exposed to the adversary.
The adversary is also able to instruct the compromised
CN to return bogus or incomplete result in response to
range queries issued from the QT. On the other hand, if
a SN is compromised by an adversary, it may leak the
sensed data to the adversary and/or be controlled by the
adversary to launch attacks. Although the amount of sensed
data stored in a SN is limited, the security breach problem
still threaten to WSNs. We already addressed this problem
in [7]. Here, we are interested in the security breach issue,
wherein compromising CNs brings more damages to WSNs
than compromising SNs.

III. THE PROPOSED SCHEME

We propose an order encryption mechanism (OEM) that
is simple and provably secure to allow efficient query of
encrypted data. Let {di}mi=1 denote the plaintexts sensed by
a SN and let their corresponding ciphertexts be Encki(di)’s,
Enc(.) denotes a symmetric encryption function. OEM
supports the property of decomposing operation as:

EncK(d1|d2|...|dm)

= Enck1(d1)|Enck2(d2)|...|Enckm(dm), (1)

where “|” represents a concatenation operation.
OEM consists of two phases: order mapping and data

encryption. In the order mapping phase, all m data values
(plaintexts) with each of n bits are mapped to a region
selected from an interval [lb, ub]. The length of the interval is
chosen by the network owner to be proportional to the range
of sensed data. Then, the network owner partitions the inter-
val for enquiry to γ (γ > 0) equivalent and consecutive non-
overlapping regions with order preserved, i.e., the regions
[lb, xb] and [yb, ub] satisfy xb < yb and xb − lb = ub − yb.
Each region rρ is associated with a sequence number ρ and
a key {kρ, 1 ≤ ρ ≤ γ}, and K is composed of {kρ}γρ=1. In

347

Table I
COMPARISONS OF OUR METHOD WITH STATE-OF-THE-ART (N : NUMBER OF NODES; m: NUMBER OF SENSED DATA)

Security Accurate Detection Communication Computation Storage
QR Probability Overhead Overhead Overhead

Encoding approach Reasonable No always ≈ 1 O(N) O(1) Exponential
(bucket scheme) [1] estimation
Spatial Crosscheck Reasonable No vary significantly O(N2) O(1) Exponential

(bucket scheme) [2] [3] estimation
Temporal Crosscheck Reasonable No vary significantly O(N1.5) O(1) Exponential
(bucket scheme) [2] [3] estimation

Hybrid Crosscheck Reasonable No always ≈ 1 O(N2) O(1) Exponential
(bucket scheme) [2] [3] estimation

SafeQ Hard Yes always ≈ 1 O(N) O(m2) Exponential
[4] estimation (HMAC operations and/or Bloom filter generation)

SEF Hard Yes always ≈ 1 O(N) O(m logm) Linear
[9] estimation (hashing operations and AI tree generation)
EQ Hard Yes always ≈ 1 O(N) O(m) Linear

(our method) estimation

particular, the key kρ is a parameter decided by the network
owner in the initialization phase and used for generating a
keystream. The key kρ also works like an index so that a
CN can search data values in response to the queries of
QTs. Recall that the traditional bucket scheme will expose
the indices to CNs, but the indices are concealed from CNs
in OEM. More precisely, CNs cannot conjecture what are the
stored data from interpreting the indices. In the encryption
phase shown in Fig. 2, it consists of a finite state machine,
which is initialized with a n-bit initialization value (IV). In
order to generate the keystream with the size as same as
the plaintext, an IV and kρ are used as the parameters of
block cipher encryption. In particular, for the same plaintext
that needs to produce different ciphertexts, a non-repeating
counter is used as an IV, which is involved as an input in
the encryption operation. Therefore, the semantic security
can be satisfied. Each data value {di, 1 ≤ i ≤ m} is first
XORed with a keystream, which is a pseudorandom binary
sequence. Subsequently, the resulting bits are then randomly
permuted to obtain the encrypted data value (Ekρ(di)). For
the decryption process, it just works inversely with respect
to the encryption process.

In the following, we describe the behaviors of SN, CN,
and QT in detail. Without loss of generality, we focus on
one cluster consisting of N SNs denoted as {SNi}Ni=1, and a
CN. The OEM function is setup for the QT and {SNi}Ni=1

at system initialization. We use the notation EncK(D) to
denote the encryption of plaintexts D = {di}mi=1, where the
OEM function is Enc(·) and K = {kρ}γρ=1.

Sensing Node Behavior. To prevent a CN from knowing
the actual sensed data, the SN applies OEM to encrypt
sensed data for confidentiality. To perform OEM, we map
each n-bit data value {di, 1 ≤ i ≤ m} sensed by a SN
to a respective region. Each region will be assigned a key
{kρ, 1 ≤ ρ ≤ γ} selected from K and kρ is then used to
generate a n-bit keystream to encrypt the data fallen into
that region. For example, if the interval [1,10] is partitioned
into 5 equivalent and consecutive non-overlapping regions,
then the key set {kρ}5ρ=1 generated by the key generator

Figure 2. Encryption of sensed data.

consists of 5 keys, k1, k2, k3, k4, and k5. Consider the
sensed data set D = {di}5i=1 = {4, 1, 7, 8, 9} collected
by a SN1 with ID 1 in time slot t = 2, we illustrate the
behavior of the sensing node on the left-hand side of Fig.
3(b). The SN directly maps the sensed data set D to the
ordered intervals (step 1) and encrypts them using the stream
cipher proposed in Fig. 2 (step 3). As for the integrity of
query result, we apply a data structure X2L to preserve and
verify the integrity of a query result (step 3). Each data value
{di, 1 ≤ i ≤ m} will be concatenated with its neighborhood
difference (di−1⊕di+1) [13], expressed as (di|di−1⊕di+1).
In other words, di|di−1 ⊕ di+1 instead of single di will be
encrypted for confidentiality. Note that both d0 and dm+1 are
dummy in that the neighborhood difference for d1 and dm,
respectively, can be built. In addition, in order to prevent
a CN from responding empty or false query results when

348

Figure 3. System model for data retrieval in the encrypted domain: (a) A processes for constructing a BM and (b) a flow for data retrieval.

actually there are data values that correspond to the query
of QT, we construct a Bit-Map (BM) table for QT to check
query result incompleteness (step 2). Actually, the BM table
will be transferred to be a number that acts like a global
hash of the locations of sensed data values. For example,
in Fig. 3(a), we define the data coordinate as (rρ, l), which
represents that a data value is fallen into the l-th location of
the region rρ. Thus, this coordinate in the BM table will be
denoted by 1. Following the above rule, the five data values
in step Fig. 3(a) will be recorded in the Bit-Map table, and
the binary information (1001101010)2 of Bit-Map table will
be transferred to a decimal digit (618)10, which is defined
to be a BM here. Finally, the SN1 encapsulates its ID 1,
time slot 2, encrypted data values, and a BM into a packet
expressed as:

〈1, 2, EK((1|0⊕ 4)|(4|1⊕ 7)|(7|4⊕ 8)|(8|7⊕ 9)|(9|8⊕ 0)|618)〉,
(2)

and sends the packet to its closest CN (step 4). Note that for
the encrypted data value in a packet (Eq. (2)), it is composed
of m ciphertexts via concatenation, each of which has n
bits. More specifically, the plaintext mentioned here is, in
fact, composed of a sensed plaintext and its corresponding
neighborhood difference.

Cloud Node Behavior. After receiving a packet from a
SN, the CN will extract each data item, which is composed
of a n-bit data value (say, di) and its neighborhood difference
(say, di−1 ⊕ di+1), by decomposing the ciphertext in the
packet via Eq. (1). Since each data item (say, di|di−1⊕di+1)
has 2n bits, it is easy for the CN to retrieve each data item
by slicing the ciphertext every 2n bits, where the first n-bit
is the data value (di) and the last n-bit is the neighborhood
difference (di−1 ⊕ di+1). Here, the data value in each data
item is denoted as Ekρ(di) (1 ≤ i ≤ m, 1 ≤ ρ ≤ γ). When
the QT wants to query the CN for the data, for example, in

the range [3, 7] sensed by a SNi with ID i = 1 in time slot
t = 2, it builds the query packet < 1, 2, EK(3|4|5|6|7) >
and sends the query to the CN. Upon receiving the query
packet, the CN searches for the requested data stored in
its database in the encryption domain. Specifically, the
encrypted data stored in the CN’s database intersected to
the query range is the QR for the QT, such as Ek2(4) and
Ek4(7), as showed in CN of Fig. 3(b). More specifically,
all the retrieved data associated with their neighborhood
differences are packaged together in a packet as the QR,
wherein each entry is denoted as (di|di−1 ⊕ di+1). On the
other hand, if no matched data can be found, the CN needs
to send an encrypted BM (e.g., {EK(618)} in Fig. 3(b)) as
QR for the sake of checking whether the CN cheats the QT
by sending a fake QR. Finally, the CN responds the QR to
the QT.

It should be noted that in [4], their neighborhood chaining
technique only concatenates a data value with its left neigh-
bor. However, our strategy directly concatenates a data value
with its neighborhood difference (left neighbor XOR right
neighbor) such that the neighborhood difference can verify
the left and right neighbors of a data value simultaneously.
Moreover, our method does not need to append verification
object [4] to query results for integrity detection; thus, extra
communication overhead can be saved. On the contrary, our
method only needs to send a BM once no data are match
during the data retrieval process conducted in a CN.

Querist Behavior. After a QT receives the QR obtained
via Eq. (1), there are four cases that the QT has to consider
for integrity detection. Let the region size used in order
mapping of OEM be τ . Let the set of actual query results

349

be {(d�|d�−1 ⊕ d�+1)k
� d�

τ
�
, (d�+1|d� ⊕ d�+2)k

� d�+1
τ

�
, ...,

(d�|d�−1 ⊕ d�+1)k
� d�

τ
�
}, where d� < d�+1 < · · · < d�.

For any encrypted item (dj |dj−1 ⊕ dj+1)k
� dj

τ
�
, its can be

decrypted to attain (dj |dj−1 ⊕ dj+1) using the key k� dj
τ �.

The rules of integrity detection for (decrypted) query data
are described as follows.

• If there exists � < j < � but (dj−1|dj ⊕ dj−2) /∈ QR,
then the QT can know the missing dj−1 by exam-
ining from the available items (dj |dj−1 ⊕ dj+1) and
(dj+1|dj ⊕dj+2) to attain dj−1 = dj−1⊕dj+1⊕dj+1,
where the neighborhood difference dj−1⊕ dj+1 comes
from (dj |dj−1 ⊕ dj+1)k

� dj
τ

�
and the plaintext dj+1

comes from (dj+1|dj ⊕ dj+2)k
� dj+1

τ
�
.

• If (d�|d�−1 ⊕ d�+1) /∈ QR, then the QT can detect the
missing d� by calculating d� = d� ⊕ d�+2 ⊕ d�+2 from
the items (d�+1|d� ⊕ d�+2) and (d�+2|d�+1 ⊕ d�+3).

• If (d�|d�−1⊕d�+1) /∈ QR, then the QT can detect the
missing d� by calculating d� = d�−2⊕d�⊕d�−2 from
the items (d�−1|d�−2 ⊕ d�) and (d�−2|d�−3 ⊕ d�−1).

• If QR only contains a BM, then the QT has to recover
the BM table (like the one in Fig. 3(a)) from decrypting
the received encrypted BM to further verify whether
there does not exist the data values corresponding to
the query of QT.

IV. SYSTEM ANALYSIS

We assume that the adversary can arbitrarily compromise
CNs. Once compromising a CN, the data stored in it may
be exposed to the adversary. The adversary is also able to
instruct the compromised CN to return bogus or incomplete
results in response to the range queries issued from the
QT. In order to conceal from adversaries the actual data
values collected by SNs and the actual queries issued by
the querist/base station, we provide OEM for preserving
privacy. In addition, to verify the return bogus or incomplete
results, we apply the data structure of X2L. We have privacy
analysis, integrity analysis, and communication overhead as
follows.

(1) Privacy Analysis: We begin with a review of the
concept of negligible function. It is used in security analy-
sis to characterize the probability that a computationally-
bounded adversary successfully breaks a computationally
secure encryption scheme [11] [12] [14]. A function f(·) is
negligible if for every polynomial p(·), there exists an ℵ such
that for all integers n > ℵ, f(n) < 1/p(n). According to
modern cryptography [12], events that occur with negligible
probability are unlikely to occur and they can be ignored for
all practical purposes. In security analysis, the parameter n
typically determines the length of the secret key and the
security of the encryption scheme. While increasing the
parameter n, the probability that an adversary successfully
breaks the encryption scheme decays fast. Specifically, if

the parameter n is reasonably large, n ≥ 128 bits, it is com-
putationally difficult for an adversary to infer sensed data
content by breaking the cryptographic ciphers in practice.

A proof of our scheme that satisfies the property of
negligible function is as follows.

Proof. We show that for any positive polynomial p f(n) <
1/p(n) holds for sufficiently large n. Let d be the degree
of p and assume that an adversary succeeds in violating a
security condition with f(n):=(12)

n. We have:

lim
n→∞

f(n)

1/p(n)
= lim

n→∞
p(n)

2n
� lim

n→∞
∂dp(n)

∂d2n
= 0.

Here � is a d-fold application of L’Hôpital’s rule. Since
f(n)

1/p(n) converges to 0 and p is positive, for sufficiently large
n (n ≥ 128) [12] [14], we have f(n) < 1/p(n). Therefore,
f is a negligible function.

(2) Integrity Analysis: The goal of integrity verification
here is to detect any missing data, so a fragile structure like
X2L satisfy our purpose. The integrity of QR can be verified
firmly, as described in the Querist Behavior of Sec. III,
because the structure of X2L is extremely fragile in that any
missing data can destroy it. Moreover, since X2L uses XOR
operation to calculate each data value, its computational
complexity is O(m).

(3) Communication Overhead: For fair comparison, as
in prior works [2], [3], we do not count the number of
bits in representing data (like packet header information,
bucket tags, etc) since the delivery of the representing data
is necessary in any data collection scheme. Each SN in
EQ is required to send packets to its closest CN. As a
consequence, each SN actually has only one-hop broadcast
containing encrypted data items once at each epoch. Since
the communication overhead of the EQ will be dominated
by the average hop distance between a CN and each SN, and
the transmission of packets, the communication cost can be
calculated as H̄(N − 1) = O(N), where H̄ denotes the
average hop distance, and N − 1 denotes the number of
packets in a cluster.

V. PERFORMANCE EVALUATION

In this section, the performance of our method is eval-
uated and compared with the schemes of S&L [1], SafeQ-
Basic/SafeQ-Bloom [4], and SEF [9]. The performance com-
parison is analyzed in four aspects: (1) energy consumption
of processing sensed data in a SN; (2) energy consumption
of transmitting encrypted sensed data from a SN to a CN;
(3) storage overhead in a CN; and (4) energy consumption of
a CN in sending query result and verification information1

to a QT. In our experiments, we do not compare with the
schemes in [2] [3] because they may incur a serious security
problem in that a compromised SN can easily send false bit
maps to breach the integrity verification of the network. In

1Here, verification information mean the least significant bit of neigh-
borhood difference and the Bit-Map associated with each plaintext.

350

Table II
CODE SIZE OF EQ

ROM RAM)
SN 15.4(KB) 2.8(KB)
CN 11.4(KB) 0.4(KB)
QT 19.4(KB) 2.2(KB)

section V-A, we present a publicly available implementation
of EQ for the TelosB platform and describe performance
comparisons in section V-B.

A. Hardware Module and Experimental Setup

TelosB is composed of an MSP430 micro controller, an
802.15.4 TI wireless transceiver, 10 KB RAM, 48 KB
ROM, and 1024 KB flash memory. The platform fully
supports TinyOS1.X/2.X and implements a network stack.
To implement security functionalities of the state-of-the-
arts, we employed SHA-1 as a hash function in SafeQ-
Basic/SafeQ-Bloom and SEF, and applied the DES encryp-
tion algorithm in S&L and SafeQ-Basic/SafeQ-Bloom. The
OPSE function proposed in [10] was used as the underlying
OPSE function in SEF. For our method, we adopted stream
cipher and 128-bit keystream to encrypt sensed data values.
As for network setting, the network consists of 12 TelosB
motes as SNs and three TelosB motes as CNs. Each cell
is composed of four SNs and one CN. Note that each cell
works independently, thus, we mainly focus on one cell in
the following discussions. We implemented our method in
nesC code, the programming language used for TinyOS. The
code size of EQ is shown in Table II.

B. Experimental Results

As part of the measurement process, we used Agilent
34411A power meter to measure the average current (under
the assumption that the voltage supply is constant) drawn by
the evaluation nodes (i.e., SNs or CNs). Subsequently, the
measures were displayed and recorded on a PC using the
NI LabVIEW SignalExpress graphic user interface (GUI)
software to communicate with the power meter.

1) Energy consumption of processing sensed data: As the
results shown in Fig. 4, we have the following observations:
(1) Our method EQ only consumes 15% more energy
than S&L since EQ has to perform X2L and generate a
BM for incomplete verification. (2) Compared with EQ,
SEF-basic/SEF-opt consumes about 2.5 times more energy,
SafeQ-Basic consumes 4 times more energy, and SafeQ-
Bloom consumes 10.8 times more energy. This is because
SEF-Basic/SEF-Opt has to construct the AI tree that needs
to perform many hash operations and SafeQ-Basic/SafeQ-
Bloom adopts the prefix membership verification strategy,
which still requires a large number of hash operations. Note
also that, because SafeQ-Bloom has to perform a lot of
additional hash operations to obtain the Bloom filter, it
consumes more energies than SafeQ-Basic.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Time (min)

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

S&L
SafeQ−Basic
SafeQ−Bloom
SEF−Basic/SEF−Opt
EQ (our method)

Figure 4. Average energy consumption of processing sensed data for a
SN.

2) Energy consumption of transmitting encrypted data:
Fig. 5 shows the energy consumption of transmitting en-
crypted data from a SN to a CN. We assumed that there
were 10 data values sensed by a SN. As shown in Fig. 5, the
energy consumption of EQ approximated to S&L and SEF,
while there are 10 128-bit encrypted sensed data. However,
since SafeQ needs to perform many operations of hashing
and appends this hash value to the transmitted packet, it may
cause more energy consumption when transmitting packet
from a SN to a CN. Fig. 5 demonstrates that when compared
with EQ, SafeQ-Basic consumes about 12 times more energy
and SafeQ-Bloom consumes about 3 times more energy.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

Time (min)

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

S&L
SafeQ−Basic
SafeQ−Bloom
SEF−Basic/SEF−Opt
EQ (our method)

Figure 5. Average energy consumption of transmitting encrypted data
from a SN to a CN.

3) Storage overhead in a CN: The results regarding
storage overhead, including encrypted data values and veri-
fication information, in a CN are shown in Fig. 6. Although
our method EQ is approximate to S&L and SEF-Basic/SEF-
Opt, it is much better than SafeQ-Basic/SafeQ-Bloom. More
specifically, the encoding numbers and buckets used in S&L
require slight more storage consumption than EQ; SEF-
Basic/SEF-Opt uses HMAC of AI tree to provide verification
information and slightly consumes more storage than EQ;
and SafeQ-Basic consumes about 12.6 times more storage
overhead and Safe-bloom still consumes 2.1 times more
storage than EQ.

351

0 20 40 60 80
0

100

200

300

400

500

Time (min)

S
to

ra
ge

 o
ve

rh
ea

d
(b

yt
e)

 (k
)

S&L
SafeQ−Basic
SafeQ−Bloom
SEF−Basic
SEF−Opt
EQ (our method)

Figure 6. Average storage overhead in a CN.

4) Energy consumption of a CN: Fig. 7 depicts the
energy consumption of a CN in returning query result and
verification information to QT. We can observe that EQ
consumes less energy than other methods. Specifically, SEF-
Basic/SEF-Opt consumes about 1.7 times more energy and
Safe-Basic/SafeQ-Bloom consumes about 3.4 times more
energy than our method. Moreover, the false positive in-
curred by the bucking technique causes S&L to consume
1.8 times more energy than EQ.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

Time (min)

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

S&L
SafeQ−Basic/SafeQ−Bloom
SEF−Basic/SEF−Opt
EQ (our method)

Figure 7. Average energy consumption for a CN in sending query result
and verification information to a QT.

VI. CONCLUSION

We propose an efficient range query scheme for two-
tiered sensor networks in a privacy and integrity preserving
fashion. In addition to security and privacy analysis, and
communication cost analysis, we demonstrate via system
implementation on TelosB prototype sensor platform that our
method, when compared to the state-of-the art, consistently
(1) consumes less energy consumption of processing sensed
data in a SN; (2) consumes less energy consumption of
transmitting encrypted sensed data from a SN to a CN; (3)
requires less storage overhead in a CN; and (4) consumes
less energy consumption of a CN in transmitting query result
and verification information to a QT.

ACKNOWLEDGMENT

C.-S. Lu was supported by National Science Council,
Taiwan, under Grant NSC 98-2221-E-001-004-MY3. S-Y.
Kuo is also with School of Electronic and Information
Engineering, Beijing Jiaotong University. He was supported
by National Science Council, Taiwan, under Grant NSC 99-
2221-E-002-106-MY3, National Natural Science Foundation
of China (NSFC) under Grant 60833002, and “111” Project
under Grant B08002.

REFERENCES

[1] B. Sheng and Q. Li,“Verifiable privacy-preserving range query
in two-tiered sensor networks,” IEEE INFOCOM, pp. 457-465,
2008.

[2] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries in tiered
sensor networks,” IEEE INFOCOM, pp. 945-953, 2009.

[3] R. Zhang, J. Shi, and Y. Zhang, “Secure multidimensional
range queries in sensor networks,” Proc. 10th ACM MobiHoc,
pp. 197-206, 2009.

[4] F. Chen and A. X. Liu, “SafeQ: secure and efficient query
processing in sensor networks,” IEEE INFOCOM, pp. 1-9,
2010.

[5] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and
secure sensor data storage with dynamic integrity assurance,”
IEEE INFOCOM, pp. 954-962, 2009.

[6] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a
secure sensor network communication architecture,” 6th ACM
IPSN, pp. 479-488, 2007.

[7] C.-M. Yu, Y.-T. Tsou, C.-S. Lu, and S.-Y. Kuo, “Practical and
secure multidimensional queries in tiered sensor networks,”
IEEE Trans. on Information Forensics and Security, vol. 6,
no. 2, pp. 241-255, June 2011.

[8] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving
index for range queries,” Proc. VLDB, pp. 720-731, 2004.

[9] B. Jiajun, Y. Mingjian, H. Daojing, X. Feng, and C. Chun,
“SEF: A secure, efficient, and flexible range query scheme in
two-tiered sensor networks,” Int. Journal of Distributed Sensor
Networks, Article ID 126407, 12 pages, 2011.

[10] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
preserving symmetric encryption,” Advances in Cryptology
EUROCRYPT, vol. 5479, pp. 224-241, 2009.

[11] W. Lu, A. Varna, and M. Wu, “Security analysis for privacy
preserving search of multimedia,” IEEE ICIP, pp. 2093-2096,
2010.

[12] J. Katz and Y. Lindell, “Introduction to modern cryptography:
pprinciples and protocols,” Chapman & Hall/CRC, 2007.

[13] P. Sinha, “A memory-efficient doubly linked list,” Linux
Journal, vol. 2005, issue 129, January 2005.

[14] T. Chen, L. Ge, X. Wang, and J. Cai, “TinyStream: A
lightweight and novel stream cipher scheme for wireless sensor
networks,” Proc. Int. Conf. on Computational Intelligence and
Security, 2010.

352

