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Abstract—Despite intensive research in the area of network
connectivity, there is an important category of problems that
remain unsolved: how to measure the quality of connectivity
of a wireless multi-hop network which has a realistic num-
ber of nodes, not necessarily large enough to warrant the
use of asymptotic analysis, and has unreliable connections,
reflecting the inherent unreliable characteristics of wireless
communications? The quality of connectivity measures how
easily and reliably a packet sent by a node can reach
another node. It complements the use of capacity to measure
the quality of a network in saturated traffic scenarios and
provides a native measure of the quality of (end-to-end)
network connections. In this paper, we explore the use
of probabilistic connectivity matrix as a possible tool to
measure the quality of network connectivity. Some interesting
properties of the probabilistic connectivity matrix and their
connections to the quality of connectivity are demonstrated.
We argue that the largest eigenvalue of the probabilistic
connectivity matrix can serve as a good measure of the
quality of network connectivity.

Index Terms—Connectivity, network quality, probabilistic
connectivity matrix

I. INTRODUCTION

Connectivity is one of the most fundamental properties
of wireless multi-hop networks [1], [2], [3], and is a
prerequisite for providing many network functions, e.g.
routing, scheduling and localization. A network is said to
be connected if and only if (iff) there is a (multi-hop) path
between any pair of nodes. Further, a network is said to
be k-connected iff there are k mutually independent paths
between any pair of nodes that do not share any node
in common except the starting and the ending nodes. k-
connectivity is often required for robust operations of the
network.
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There are two general approaches to studying the con-
nectivity problem. The first, spearheaded by the seminal
work of Penrose [3] and Gupta and Kumar [1], is based
on an asymptotic analysis of large-scale random networks,
which considers a network of n nodes that are i.i.d.
on an area with an underlying uniform distribution. A
pair of nodes are directly connected iff their Euclidean
distance is smaller than or equal to a given threshold r (n),
independent of other connections. Some interesting results
are obtained on the value of r (n) required for the above
network to be asymptotically almost surely connected as
n→∞. In [4], [5], the authors extended the above results
by Penrose and Gupta and Kumar from the unit disk model
to a random connection model, in which any pair of nodes
separated by a displacement x are directly connected with
probability g (x), independent of other connections. The
analytical techniques used in this approach have some
intrinsic connections to continuum percolation theory [6]
which is usually based on a network setting with nodes
Poissonly distributed in an infinite area and studies the
conditions required for the network to have a connected
component containing an infinite number of nodes (in
other words, the network percolates). We refer readers to
[7] for a more comprehensive review of work in the area.

The second approach is based on a deterministic setting
and studies the connectivity and other topological proper-
ties of a network using algebraic graph theory. Specifically,
consider a network with a set of n nodes. Its property
can be studied using its underlying graph G (V,E), where
V , {v1, . . . , vn} denotes the vertex set and E denotes the
edge set. The underlying graph is obtained by representing
each node in the network uniquely using a vertex and the
converse. An undirected edge exists between two vertices
iff there is a direct connection (or link) between the
associated nodes1. Define an adjacency matrix AG of the
graph G (V,E) to be a symmetric n × n matrix whose
(i, j)

th
, i 6= j entry is equal to one if there is an edge

between vi and vj and is equal to zero otherwise. Further,

1In this paper, we limit our discussions to a simple graph (network)
where there is at most one edge (link) between a pair of vertices (nodes)
and an undirected graph.
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the diagonal entries of AG are all equal to zero. The
eigenvalues of the graph G (V,E) are defined to be the
eigenvalues of AG. The network connectivity information,
e.g. connectivity and k-connectivity, is entirely contained
in its adjacency matrix. Many interesting connectivity and
topological properties of the network can be obtained by
investigating the eigenvalues of its underlying graph. For
example, let µ1 ≥ . . . ≥ µn be the eigenvalues of a graph
G. If µ1 = µ2, then G is disconnected. If µ1 = −µn and
G is not empty, then at least one connected component of
G is nonempty and bipartite [8, p. 28-6]. If the number
of distinct eigenvalues of G is r, then G has a diameter
of at most r − 1 [9]. Some researchers have also studied
the properties of the underlying graph using its Laplacian
matrix [10], where the Laplacian matrix of a graph G is
defined as LG , D − AG and D is a diagonal matrix
with degrees of vertices in G on the diagonal. Particularly,
the algebraic connectivity of a graph G is the second-
smallest eigenvalue of LG and it is greater than 0 iff G
is a connected graph. We refer readers to [9] and [11]
for a comprehensive treatment of the topic. Reference [8]
provides a concise summary of major results in the area.

The most related research to the work to be presented
in this paper is possibly the more recent work of Brooks
et al. [12]. In [12] Brooks et al. considered a proba-
bilistic version of the adjacency matrix and defined a
probabilistic adjacency matrix as a n × n square matrix
M whose (i, j)th entry mij represents the probability of
having a direct connection between distinct nodes i and
j, and mii = 0. They established that the probability
that there exists at least one walk of length z between
nodes i and j is mz

ij , where mz
ij is the (i, j)th entry of

M ⊗M ⊗ · · ·⊗M (z times). Here C , A⊗B is defined
by Cij = 1 −

∏
l 6=i,j

(1−AilBlj) where Aij , Bij and Cij

are the (i, j)th entries of the n×n square matrix A, B and
C respectively. A walk of length z between nodes i and
j is a sequence of z edges, where the first edge starts at
i, the last edge ends at j, and the starting vertex of each
intermediate edge is the ending vertex of its preceding
edge. A path of length z between nodes i and j is a walk
of length z in which the edges are distinct.

Despite intensive research in the area, there is an
important category of problems that remain unsolved: how
to measure the quality of connectivity of a wireless multi-
hop network which has a realistic number of nodes, not
necessarily large enough to warrant the use of asymptotic
analysis, and has unreliable connections, reflecting the
inherent unreliable characteristics of wireless communica-
tions? The quality of connectivity measures how easily and
reliably a packet sent by a node can reach another node.
It complements the use of capacity to measure the quality
of a network in saturated traffic scenarios and provides
a native measure of the quality of (end-to-end) network
connections. In the following paragraphs, we elaborate on

the above question using using two examples.

Example 1: Consider a network with a fixed number of
nodes with known transmission power to be deployed in a
certain environment. Assume that the wireless propagation
model in that environment is known and its characteristics
have been quantified through a priori measurements or
empirical estimation. Further, a link exists between two
nodes iff the received signal strength from one node at
the other node, whose propagation follows the wireless
propagation model, is greater than or equal to a pre-
determined threshold and the same is also true in the
opposite direction. One can then find the probability that
a link exists between two nodes at two fixed locations: It
is determined by the probability that the received signal
strength is greater than or equal to the pre-determined
threshold. Two related questions can be asked: a) If these
nodes are deployed at a set of known locations, what is
the quality of connectivity of the network, measured by the
probability that there is a path between any two nodes, as
compared to node deployment at another set of locations?
b) How to optimize the node deployment to maximize the
quality of connectivity?

Example 2: Consider a network with a fixed number of
nodes. The transmission between a pair of nodes with a
direct connection, say vi and vj , may fail with a known
probability, say aij , quantifying the inherent unreliable
characteristics of wireless communications. There are no
direct connections between some pairs of nodes because
the probability of successful transmission between them is
too low to be acceptable. How to measure the quality of
connectivity of such a network, in the sense that a packet
transmitted from one node can easily and reliably reach
another node via a multi-hop path. Will a single “good”
path between a pair of nodes be more preferable than
multiple “bad” paths? These are further illustrated using
Fig. 1 and 2.

In this paper, we explore the use of probabilistic con-
nectivity matrix, a concept to be defined later in Section II,
as a possible tool to measure the quality of network con-
nectivity. Some interesting properties of the probabilistic
connectivity matrix and their connections to the quality of
connectivity are demonstrated.

The rest of the paper is organized as follows. Section
II defines the network settings, the probabilistic connec-
tivity matrix and gives a method to compute the matrix.
Section III introduces certain inequalities associated with
the entries of the probabilistic connectivity matrix. Section
IV proves several important results about the probabilistic
connectivity matrix. These directly associate the largest
eigenvalue of the probabilistic connectivity matrix to the
quality of connectivity and expose a structure that holds
the promise of facilitating associated optimization tasks.
Section V concludes the paper and discusses future work.
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Figure 1. An illustration of networks with different quality of
connectivity. A solid line represents a direct connection between two
nodes and the number beside the line represents the corresponding
transmission successful probability. The networks shown in (a), (b), and
(c) are all connected networks but not 2-connected networks, i.e. their
connectivity cannot be differentiated using the k-connectivity concept.
However intuitively the quality of the network in (b) is better than that
of the network in (a) because of the availability of the additional high-
quality link between v2 and v4 in (b). The quality of the network in (c)
is even better because of the availability of the additional nodes and the
associated high-quality links, hence additional routes, if these additional
nodes act as relay nodes only. If these additional nodes also generate
their own traffic, it is uncertain whether the quality of the network in
(c) is better or not. Therefore it is important to develop a measure to
quantitatively compare the quality of connectivity (for the networks in
(a) and (b)) and to evaluate the benefit of additional nodes on connectivity
(for the network in (c)).
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Figure 2. The networks shown in (a) and (b) have the same topology
but different link quality. It is difficult to compare the quality of the two
networks.

II. DEFINITION AND CONSTRUCTION OF THE
PROBABILISTIC CONNECTIVITY MATRIX

In this section we define the network to be studied,
its probabilistic adjacency matrix and probabilistic con-
nectivity matrix, and gives an approach to computing the
probabilistic connectivity matrix.

Consider a network of n nodes. For some pair of
nodes, an edge (or link) may exist with a non-negligible
probability. The edges are considered to be undirected.
That is, if a node vi is connected to a node vj , then the
node vj is also connected to the node vi. Further, it is
assumed that the event that there is an edge between a
pair of nodes and the event that there is an edge between
another distinct pair of nodes are independent.

Denote the underlying graph of the above network by
G (V,E), where V = {v1, . . . , vn} is the vertex set and
E = {e1, . . . , em} is the edge set, which contains the set
of all possible edges. Here both the vertices and the edges
are indexed from 1 to n and from 1 to m respectively. For
convenience, in some parts of this paper we also use the
symbol eij to denote an edge between vertices vi and vj
when there is no confusion. We associate with each edge
ei, i ∈ {1, . . .m}, an indicator random variable Ii such
that Ii = 1 if the edge ei exists; Ii = 0 if the edge ei
does not exist. The indicator random variables Iij , i 6= j
and i, j ∈ {1, . . . n}, are defined analogously.

In the following, we give a definition of the probabilistic
adjacency matrix:

Definition 1: The probabilistic adjacency matrix of
G (V,E), denoted by AG, is a n× n matrix such that its
(i, j)th, i 6= j, entry aij , Pr (Iij = 1) and its diagonal
entries are all equal to 1.

Due to the undirected property of an edge mentioned
above, AG is a symmetric matrix, i.e. aij = aji. Note
that the diagonal entries of AG are defined to be 1, which
is different from that common in the literature. In [13]
we have discussed the implication of this definition in the
context of mobile ad-hoc networks. This treatment of the
diagonal entries can be associated with the fact that a node
in the network can keep a packet until better transmission
opportunity arises when it finds the wireless channel busy.

The probabilistic connectivity matrix is defined in the
following:

Definition 2: The probabilistic connectivity matrix of
G (V,E), denoted by QG, is a n× n matrix such that its
(i, j)th, i 6= j, entry is the probability that there exists a
path between vertices vi and vj , and its diagonal entries
are all equal to 1.

As a ready consequence of the symmetry of AG, QG

is also a symmetric matrix.
Given the probabilistic adjacency matrix AG, the prob-

abilistic connectivity matrix QG is fully determined. How-
ever the computation of QG is not trivial because for a pair
of vertices vi and vj , there may be multiple paths between
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them and some of them may share common edges, i.e.
are not independent. In the following paragraph, we give
an approach to computing the probabilistic connectivity
matrix.

Let (I1, . . . , Im) be a particular instance of the indicator
random variables associated with an instance of the ran-
dom edge set. Let QG| (I1, . . . , Im) be the connectivity
matrix of G conditioned on (I1, . . . , Im). The (i, j)

th

entry of QG| (I1, . . . , Im) is either 0, when there is no
path between vi and vj , or 1 when there exists a path
between vi and vj (see also Lemma 7 in Appendix I).
The diagonal entries of QG| (I1, . . . , Im) are always 1.
Conditioned on (I1, . . . , Im), G (V,E) is just a determin-
istic graph. Therefore the entries of QG| (I1, . . . , Im) can
be efficiently computed using a search algorithm, such as
breadth-first search. Given QG| (I1, . . . , Im), QG can be
computed using the following equation:

QG = E (QG| (I1, . . . , Im)) (1)

where the expectation is taken over all possible instances
of (I1, . . . , Im).

The approach suggested in the last paragraph is es-
sentially a brute-force approach to computing QG. We
expect that more efficient algorithms can be designed
to compute QG. However the main focus of the paper
is on exploring the properties of QG that facilitate the
connectivity analysis and an extensive discussion of the
algorithms to compute QG is beyond the scope of the
paper.

Remark 1: For simplicity, the terms used in our dis-
cussion are based on the problems in Example 1. The
discussion however can be easily adapted to the analysis
of the problems in Example 2. For example, if aij is
defined to be the probability that a transmission between
nodes vi and vj is successful, the (i, j)

th entry of the
probabilistic connectivity matrix QG computed using (1)
then gives the probability that a transmission from vi to vj
via a multi-hop path is successful under the best routing
algorithm, which can always find a shortest and error-free
path between from vi to vj if it exists, or alternatively,
the probability that a packet broadcast from vi can reach
vj where each node receiving the packet only broadcasts
the packet once. Therefore the (i, j)

th entry of QG can be
used as a quality measure of the end-to-end paths between
vi and vj , which takes into account the fact that availability
of an extra path between a pair of nodes can be exploited
to improve the probability of successful transmissions.

III. SOME KEY INEQUALITIES FOR CONNECTION
PROBABILITIES

The entries of the probabilistic connectivity matrix give
an intuitive idea about the overall quality of end-to-end
paths in a network. In this section, we provide some
important inequalities that may facilitate the analysis of

the quality of connectivity. Some of these inequalities
are exploited in the next section to establish some key
properties of the probabilistic connection matrix itself.

We first introduce some concepts and results that are
required for the further analysis of the probabilistic con-
nectivity matrix QG.

For a random graph with a given set of vertices, a
particular event is increasing if the event is preserved
when more edges are added into the graph. An event is
decreasing if its complement is increasing.

The following theorems on FKG inequality and BK
inequality respectively are used:

Theorem 1: [6, Theorem 1.4] (FKG Inequality) If
events A and B are both increasing events or decreasing
events depending on the state of finitely many edges, then

Pr (A ∩B) ≥ Pr (A) Pr (B)

Theorem 2: [14], [6, Theorem 1.5] (BK Inequality) If
events A and B are both increasing events depending on
the state of finitely many edges, then

Pr (A�B) ≤ Pr (A) Pr (B)

where for two events A and B, A�B denotes the event
that there exist two disjoint sets of edges such that the
first set of edges guarantees the occurrence of A and the
second set of edges guarantees the occurrence of B.
There is a recent extension of Theorem 2 to two arbitrary
events, i.e. events A and B in Theorem 2 do not have to
be increasing events [15].

Denote by ξij the event that there is a path between
vertices vi and vj , i 6= j. Denote by ξikj the event that
there is a path between vertices vi and vj and that path
passes through the third vertex vk, where k ∈ Γn\ {i, j}
and Γn is the set of indices of all vertices. Denote by ηij
the event that there is an edge between vertices vi and
vj . Denote by πikj the event that there is a path between
vertices vi and vk and there is a path between vertices vk
and vj , where k ∈ Γn\ {i, j}. Obviously

πikj ⇒ ξij (2)

It can also be shown from the above definitions that

ξij = ηij ∪ (∪k 6=i,jξikj) (3)

Let qij , i 6= j, be the (i, j)
th entry of QG, i.e. qij =

Pr (ξij). The following lemma can be readily obtained
from the FKG inequality and the above definitions

Lemma 1: For two distinct indices i, j ∈ Γn and ∀k ∈
Γn\ {i, j}

qij ≥ max
k∈Γn\{i,j}

qikqkj (4)

Proof: It follows readily from the above definitions
that the event ξij is an increasing event. Due to (2) and
the FKG inequality:

Pr (ξij) ≥ Pr (πikj) = Pr (ξik ∩ ξkj) ≥ Pr (ξik) Pr (ξkj)
(5)
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The conclusion follows.
Lemma 1 gives a lower bound of qij . The following lemma
gives an upper bound of qij :

Lemma 2: For two distinct indices i, j ∈ Γn and ∀k ∈
Γn\ {i, j},

qij ≤ 1− (1− aij)
∏

k∈Γn\{i,j}

(1− qikqkj) (6)

where aij = Pr (ηij).
Proof: We will first show that ξikj ⇔ ξik�ξkj .

That is, the occurrence of the event ξikj is a sufficient
and necessary condition for the occurrence of the event
ξik�ξkj .

Using the definition of ξikj , occurrence of ξikj means
that there is a path between vertices vi and vj and that path
passes through vertex vk. It follows that there exist a path
between vertex i and vertex vk and a path between vertex
vk and vertex vj and the two paths do not have edge(s)
in common. Otherwise, it will contradict the definition of
ξikj , particularly as the definition of a path requires the
edges to be distinct. Therefore ξikj ⇒ ξik�ξkj . Likewise,
ξikj ⇐ ξik�ξkj also follows directly from the definitions
of ξikj , ξik, ξkj and ξik�ξkj . Consequently

Pr (ξikj) = Pr (ξik�ξkj) ≤ Pr (ξik) Pr (ξkj) (7)

where the inequality is a direct result of the BK inequality.
With a little bit abuse of the terminology, in the fol-

lowing derivations we also use ξikj to represent the set
of edges that make the event ξikj happen, and use ηij to
denote the edge between vertices vi and vj .

Note that the set of edges ∪k∈Γn\{i,j}ξikj does not
contain ηij . Therefore using (3) and independence of edges
(used in the third step)

qij = Pr
(
ηij ∪

(
∪k∈Γn\{i,j}ξikj

))
= 1− Pr

(
ηij ∩

(
∪k∈Γn\{i,j}ξikj

))
= 1− (1− aij) Pr

(
∩k∈Γn\{i,j}ξikj

)
≤ 1− (1− aij)

∏
k∈Γn\{i,j}

Pr
(
ξikj

)
(8)

= 1− (1− aij)
∏

k∈Γn\{i,j}

(1− Pr (ξikj))

≤ 1− (1− aij)
∏

k∈Γn\{i,j}

(1− qikqkj) (9)

where in (8), FKG inequality and the obvious fact that ξikj
is a decreasing event are used and the last step results due
to (7).
When there is no edge between vertices vi and vj , which
is the generic case, the upper and lower bounds in Lemmas
1 and 2 reduce to

max
k∈Γn\{i,j}

qikqkj ≤ qij ≤ 1−
∏

k∈Γn\{i,j}

(1− qikqkj)

(10)

The above inequality sheds insight on how the quality
of paths between a pair of vertices is related to the quality
of paths between other pairs of vertices. It can be possibly
used to determine the most effective way of improving the
quality of a particular set of paths by improving the quality
of a particular (set of) edge(s), or equivalently what can be
reasonably expected from an improvement of a particular
edge on the quality of end-to-end paths.

The following lemma further shows that relation among
entries of the path matrix QG can be further used to derive
some topological information of the graph.

Lemma 3: If qij = qikqkj for three distinct vertices
vi, vj and vk, the vertex set V of the underlying graph
G (V,E) can be divided into three non-empty and non-
intersecting sub-sets V1, V2 and V3 such that vi ∈ V1,
vj ∈ V3 and V2 = {vk} and any possible path between
a vertex in V1 and a vertex in V2 must pass through vk.
Further, for any pair of vertices vl and vm, where vl ∈ V1

and vm ∈ V3, qlm = qlkqkm.
Proof: Using (5) in the second step, it follows that

qij = Pr ((ξij\πikj) ∪ πikj)
= Pr (ξij\πikj) + Pr (πikj)

≥ Pr (ξij\ξikj) + qikqkj

Therefore qij = qikqkj implies that Pr (ξij\πikj) = 0 or
equivalently ξij ⇔ πikj

Further, Pr (ξij\πikj) = 0 implies that a possible path
(i.e. a path with a non-zero probability) connecting vi and
vk and a possible path connecting vk and vj cannot have
any edge in common. Otherwise a path from vi to vj ,
bypassing vk, exists with a non-zero probability which
implies Pr (ξij\ξikj) > 0. The conclusion follows readily
that if qij = qikqkj for three distinct vertices vi, vj and vk,
the vertex set V of the underlying graph G (V,E) can be
divided into three non-empty and non-overlapping sub-sets
V1, V2 and V3 such that vi ∈ V1, vj ∈ V3 and V2 = {vk}
and a path between a vertex in V1 and a vertex in V2, if
exists, must pass through vk.

Further, for any pair of vertices vl and vm, where vl ∈
V1 and vm ∈ V3, it is easily shown that Pr (ξlm\πlkm) =
0. Due to independence of edges and further using the fact
that Pr (ξlm\πlkm) = 0, it can be shown that

Pr (ξlm) = Pr (πlkm) = Pr (ξlk ∩ ξkm)

= Pr (ξlk) Pr (ξkm) (11)

where (11) results due to the fact that under the condition
of Pr (ξlm\πlkm) = 0, a path between vertices vl and vk
and a path between vertices vk and vm cannot possibly
have any edge in common.
An implication of Lemma 3 is that for any three distinct
vertices, vi, vj and vk, if a relationship qij = qikqkj holds,
vertex vk must be a critical vertex whose removal will
render the graph disconnected.
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IV. PROPERTIES OF THE CONNECTIVITY MATRIX

Having established some inequalities obeyed by the
entries of the probabilistic connectivity matrix QG, we
now turn to establishing a measure of the quality of
network connectivity. At the core of the development in
this section is the following result.

Lemma 4: Each off-diagonal entry of the probabilistic
connectivity matrix QG is a multiaffine2 function of aij ,
i ∈ {1, . . . , n} , j > i.

Proof: Observe that aij = Pr (ηij) and the events ηij ,
i ∈ {1, . . . , n} , j > i are independent. The conclusion in
the lemma follows readily from the fact that the event
associated with each qij , i.e. there exists a path between
vertices vi and vj , is a union of intersections of these
events ηij , i ∈ {1, . . . , n} , j > i.

Not only does the multiaffine structure facilitate the
proof of the main result below, we comment later in
Remark 2, on how it is potentially useful for performing
some of the optimization tasks inherent in maximizing
connectivity.

A very desirable property of QG is established below.
Theorem 3: The probabilistic connectivity matrix QG,

defined for the vertex set V = {v1, · · · , vn}, is a pos-
itive semi-definite matrix. Further, QG is positive semi-
definite but not positive definite iff there exist distinct
i, j ∈ {1, · · · , n}, such that qij = 1.

Proof: See Appendix I.
Let λ1 ≥ . . . ≥ λn be the eigenvalues of QG. Note that

λ1 + · · ·+ λn = n. As an easy consequence of Theorem
3, n ≥ λ1 ≥ 1 and 1 ≥ λn ≥ 0. In the best case, QG

is a matrix with all entries equal to 1. Then λ1 = n and
λ2 = · · · = λn = 0. In the worst case, QG is an identity
matrix. Then λ1 = · · · = λn = 1. This suggests that
λ1, i.e. the largest eigenvalue of QG, can be used as a
measure of quality of network connectivity and a larger
λ1 indicates a better quality.

We will make this idea more concrete in the following
analysis. We start our discussion with a connected net-
work and then extend to more generic cases. We will
call a network connected if for all i, j ∈ {1, · · · , n},
qij > 0. Obviously the probabilistic connectivity matrix
of a connected network is irreducible [16, p. 374] as all
the entries of the matrix are non-zero. As a measure of the
quality of network connectivity, if the path probabilities
qij increase, the largest eigenvalue of the probabilistic
connectivity matrix should also increase. This is formally
stated in the following theorem:

Theorem 4: Let G(V,E) and G′(V,E′) be the underly-
ing graphs of two connected networks defined on the same
vertex set V but with different link probabilities. Let QG

and QG′ be the probabilistic connectivity matrices of G
and G′ respectively and let λmax (QG) and λmax (QG′)

2A multiaffine function is affine in each variable when the other
variables are fixed.

be the largest eigenvalues of QG and QG′ respectively. If
Q′G −QG is a non-zero, non-negative matrix3, then

λmax (QG) < λmax (QG′) (12)

Proof: See Appendix II
After having analyzed the situation for connected net-

works, we now move on to the discussion of disconnected
networks and show that the largest eigenvalue of the prob-
abilistic connectivity matrix of a component, a concept
defined in the next paragraph, provides a good measure
of the quality of connectivity of that component. We will
analyze two basic situations. Results for more complicated
scenarios can be readily obtained from these results and
Theorem 4, which applies to a connected network.

If the network is not connected, i.e. some entries of
its probabilistic connectivity matrix is 0, it can be easily
shown that the network can be decomposed into disjoint
components. A component is a maximal set of vertices
where the probability that there is a path between any
pair of vertices in the component is greater than zero. Two
components are said to be disjoint if the probabilities that
there is a path between any vertex in the first component
and any vertex in the second component are all zeros.

Let the total number of components in the network be k
and the number of nodes in the ith, 1 ≤ i ≤ k, component
be ni. Further, denote the vertex set of the ith component
by Vi and denote the subgraph induced on Vi by Gi.
Without loss of generality, we assume that the nodes in
the network are properly labeled such that

Vi = {v∑i−1
j=1 nj+1, · · · , v∑i−1

j=1 nj+ni
} (13)

Let QGi
be the probabilistic connectivity matrix of Gi.

It follows that the probabilistic connectivity matrix of the
network QG can be expressed in the form of QGi , 1 ≤
i ≤ k, as

QG = diag {QG1 , · · · , QGk
} (14)

and

λmax (QG) = max{λmax (QG1
) , · · · , λmax (QGk

)}
(15)

We consider two basic situations: a) there are increases
in some entries of QG from non-zero values but such
increases do not change the number of components in the
network; b) there are increases in some entries of QG

from zero to non-zero values and such increases reduce
the number of components in the network.

Under situation a), the vertex set of each component
does not change. Let QGi

be the probabilistic connectivity
matrix of a component whose path probabilities have been
increased and let QG′i

be the probabilistic connectivity
matrix of the component after the change in path proba-
bilities. Obviously QG′i

−QGi is a non-zero, non-negative

3A matrix is non-negative if all its entries are greater than or equal to
0.
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symmetric matrix. It then follows easily from Theorem
4 that λmax

(
QG′i

)
> λmax (QGi

). Depending on whether
λmax

(
QG′i

)
is greater than λmax (QG) or not however, the

largest eigenvalue of the probabilistic connectivity matrix
of the network may or may not increase.

We now move on to evaluate situation b) and consider a
simplified scenario where increases in the path probabil-
ities merge two originally disjoint components, denoted
by Gi and Gj . The more complicated scenario where
increases in the path probabilities join more than two
originally disjoint components can be obtained recursively
as an extension of the above simplified scenario. Let G′ be
the underlying graph of the network after increases in path
probabilities and let G′ij be the subgraph in G′ induced on
the vertex set Vi ∪ Vj . Obviously QG′ij

is an irreducible
matrix and the following result can be established.

Lemma 5: Under the above settings,

λmax

(
QG′ij

)
> λmax

(
diag {QGi , QGj}

)
(16)

The proof of Lemma 5 is omitted due to space limitations.
Thus indeed the largest eigenvalues of the probabilistic

connection matrices associated with disjoint components
measure the quality of the components connection.

Remark 2: The fact that the largest eigenvalue of the
probabilistic connectivity matrix measures connectivity,
suggests the following obvious optimization. Modify one
or more aij under suitable constraints to maximize the
largest eigenvalue of the probabilistic connectivity matrix.
Results in [17] and [18] suggest that the multiaffine
dependence of the qij on the aij together with the fact
that QG is positive semi-definite promise to facilitate such
optimization.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have explored the use of the probabilis-
tic connectivity matrix as a possible tool to measure the
quality of network connectivity. Some interesting prop-
erties of the probabilistic connectivity matrix and their
connections to the quality of network connectivity were
demonstrated. Particularly, the off-diagonal entries of the
probabilistic connectivity matrix provide a measure of
the quality of end-to-end connections and we have also
provided theoretical analysis supporting the use of the
largest eigenvalue of the probabilistic connectivity matrix
as a measure of the quality of overall network connectivity.
The analysis focused on the comparison of networks with
the same number of nodes. For networks with different
number of nodes, the largest eigenvalue of the probabilistic
connectivity matrix normalized by the number of nodes
may be used as the quality metric.

Inequalities between the entries of the probabilistic
connectivity matrix were established. These may provide
insights into the correlations between quality of end-to-
end connections. Further, the probabilistic connectivity

matrix was shown to be a positive semi-definite matrix
and its off-diagonal entries are multiaffine functions of
link probabilities. These two properties are expected to be
very helpful in optimization and robust network design,
e.g. determining the link whose quality improvement will
result in the maximum gain in network quality, and de-
termining quantitatively the relative criticality of a link to
either a particular end-to-end connection or to the entire
network.

The results in the paper rely on two main assumptions:
the links are symmetric and independent. We expect that
our analysis can be readily extended such that the first
assumption on symmetric links can be removed – in fact
the results in Section III do not need this assumption.
While in the asymmetric case the probabilistic connec-
tivity matrix is no longer guaranteed to be positive semi-
definite, we conjecture that the largest eigenvalue retains
its significance. Discarding the second assumption requires
more work. However, we are encouraged by the following
observation. If we introduce conditional edge probabilities
into the mix, then QG is still a multiaffine function of the
aij and the conditional probabilities. Thus we still expect
all the results in Section IV to hold, though the proof
may be non-trivial. In real applications link correlations
may arise due to both physical layer correlations and
correlations caused by traffic congestion.

Another implicit assumption in the paper is that traffic
is uniformly distributed and traffic between every source-
destination pair is equally important. If this is not the
case, a weighted version of the probabilistic connectivity
matrix can be contemplated in which the entries of the
matrix are weighted by a measure of the importance of
the associated source-destination pairs. It remains to be
investigated on whether our results can be extended to a
weighted probabilistic connectivity matrix.

APPENDIX I: PROOF OF THEOREM 3

Let a(n)
U be the vector of aij , i 6= j (remember that aij

is the probability that there is an edge between vi and vj):

a
(n)
U , [aij ]

n
i=1,j>i

Also define the set

Πn
U =

{
a

(n)
U

∣∣∣ 0 ≤ aij ≤ 1, i ∈ {1, . . . , n} , j > i
}

The corners of the above set are given by:

Πn
Uc

=
{
a

(n)
U

∣∣∣ aij ∈ {0, 1} , i ∈ {1, . . . , n} , j > i
}

These corners will play an important role in the subsequent
development.

We observe that the positive semi-definiteness of a
matrix is known to be a convex property, as defined in
[18]. That is, if A and B are positive semi-definite then
so is (1− α)A + αB, ∀α ∈ [0, 1]. In fact one can say a
bit more:
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Lemma 6: Consider n× n matrices A > 0 and B ≥ 0.
Then: (1− α)A+ αB > 0, ∀α ∈ [0, 1)

Proof: It is well known that there exists a matrix H ,
such that H

(
A+AT

)
H = I and for some diagonal Λ,

H
(
B +BT

)
H = Λ ≥ 0. Then the result follows by

noting that (1− α) I + αΛ > 0, ∀α ∈ [0, 1)
Next we provide a key result that exploits the multiaffine

dependence of QG on the aij .
Proposition 1: Suppose QG is positive semi-definite for

all a(n)
U ∈ Πn

Uc
. Then it is positive semi-definite for all

a
(n)
U ∈ Πn

U .
Proof: The combined use of Lemma 4 and Corollary

2.1 of [18] proves the result.
We must next show that QG is positive semi-definite

for all a(n)
U ∈ Πn

Uc
. The following lemma is used in the

proof of the conclusion that QG is positive semi-definite
for all a(n)

U ∈ Πn
Uc

:
Lemma 7: Suppose a(n)

U ∈ Πn
Uc

, then for all i, j, qij ∈
{0, 1}.

Proof: When a
(n)
U ∈ Πn

Uc
, either there is an edge

between vertices vi and vj surely when aij = 1; or there
is no edge between vertices vi and vj surely when aij =
0. The graph G (V,E) becomes a deterministic graph. It
follows that either there is a path between vertices vi and
vj surely or there is no path between vertices vi and vj
surely, i.e. for all i, j, qij ∈ {0, 1}.

It can be further shown that the following lemma holds:

Lemma 8: Suppose for some distinct i, j, qij = 1. Then
row i and row j of QG are identical, as are columns i and
j.

Proof: Note that QG is a symmetric matrix. Thus it
suffices to show that the row property holds. One has

qij = qji = qii = qjj = 1 (17)

Thus the ith and jth entries of the ith and jth rows are
identical. Now consider any k distinct from i and j. Using
Lemma 1 and (17):

qik ≥ qijqjk = qjk and qjk ≥ qijqik = qik

It follows that: qjk = qik.
We need one last lemma to complete the proof.
Lemma 9: Define um to be a m-vector of all ones.

Suppose a(n)
U ∈ Πn

Uc
. Then for some k, there exist positive

integers m1, · · · ,mk whose sum is n, and a permutation
matrix P , such that:

QG = P diag
{
um1u

T
m1
, . . . , umk

uTmk

}
PT (18)

Proof: We prove the lemma by induction.
As an easy consequence of Lemma 7, the result clearly

holds for n = 2 because when n = 2, QG is either equal
to an identity matrix or equal to a matrix of all ones.

Now suppose that the lemma holds for all n ≤ m. For
convenience, we use also Qn to denote QG when |V | = n.

When n = m + 1, consider Qm+1, corresponding
to any a

(n)
U ∈ Πn

Uc
. Because of Lemma 7, all entries

of Qm+1 are in {0, 1}. If qij = 0, ∀i 6= j, then the
results hold with mi = 1 and k = n. Now suppose
there exists some distinct i and j for which qij = 1.
By symmetrically permuting Qm+1, i.e. by relabeling the
nodes if necessary, one can without loss of generality
choose {i, j} = {1, 2}. Choose ml to equal the number
of ones in the first row of this possibly permuted Qm+1.
Through a further symmetric permutation/relabeling if
necessary, without loss of generality one has:

q1j = qj1 = 1, ∀j ∈ {1, . . . ,m1}

From Lemma 7:

q1j = qj1 = 0, ∀j ∈ {m1 + 1, . . . , n}

From Lemma 8, there holds:

qij =


1 ∀i, j ∈ {1, . . . ,m1}
0 ∀i ∈ {1, . . . ,m1} and j ∈ {m1 + 1, . . . , n}
0 ∀j ∈ {1, . . . ,m1} and i ∈ {m1 + 1, . . . , n}

Thus after relabeling one can express:

QG = diag
{
um1

uTm1
, Qm+1−m1

}
Further, there is no path from the vertex set {v1, . . . , vm1

}
to the vertex set {vm1

, . . . , vn} and vice versa.
Obviously the entries of Qm+1−m1 form legitimate path

probabilities with the vertex set {vm1
, . . . , vn}. Then the

inductive hypothesis proves the result.
We are now ready to prove Theorem 3.
Observe the matrix in (18) is positive semi-definite.

Thus from Lemma 9, QG is positive semi-definite for all
a

(n)
U ∈ Πn

Uc
. It then follows from Proposition 1 that QG

is positive semi-definite for all a(n)
U ∈ Πn

U . Therefore the
first part of Theorem 3 that QG is a positive semi-definite
matrix is proved.

Now we proceed to prove the second part of Theorem 3
that QG is positive semi-definite but not positive definite
iff there exist distinct i, j ∈ {1, · · · , n}, such that qij = 1.

Suppose there exists distinct i and j such that qij = 1.
Then from Lemma 8, at least two rows of QG are identical.
Thus QG is singular and cannot be positive definite.

It remains to show that if for some a
(n)
U ∈ Πn

U , all
qij 6= 1 where i 6= j, then QG is positive definite. We
prove this by induction.

The result is clearly true for n = 2. Suppose it holds
for some n = m. Consider n = m+ 1.

To establish a contradiction suppose there is a a(n)
U ∈

Πn
U for which all qij 6= 1 where i 6= j, and yet Qn is not

positive definite. This means all aij 6= 1 where i 6= j.
If for all i ∈ {1, . . . , n− 1}, ain = 0, then for

all i ∈ {1, . . . , n− 1}, qin = 0. Then vertex vn is
disconnected from the vertex set {v1, . . . , vn−1} and for
all {i, j} ⊆ {1, . . . , n− 1}, qij are valid path probabilities
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in the subgraph induced on the vertex set {v1, . . . , vn−1}.
Further Qn = diag {Qn−1, 1}. By hypothesis Qn−1 is
positive definite and thus so is Qn. Because of the resulting
contradiction with the hypothesis that Qn is not positive
definite, it follows that for at least one i ∈ {1, . . . , n− 1},
ain 6= 0.

Through relabeling, without sacrificing generality, as-
sume that ain 6= 0,∀i ∈ {1, . . . , l} and ain = 0,∀i ∈
{l + 1, . . . , n− 1}.

Define R to be the probabilistic connectivity matrix
obtained by keeping all corresponding aij the same except
aln, which is set to zero. Similarly, define S to be the
probabilistic connectivity matrix obtained by keeping all
corresponding aij the same except aln, which is set to 1.

Observe, because of Lemma 4, that Qn is a convex
combination of R and S. Further, due to the hypothesis
that Qn is not positive definite, both R and S are positive
semi-definite but neither can be positive definite. Other-
wise, using Lemma 6, Qn will be positive definite which
leads to a contradiction of the hypothesis. In particular
R is positive semi-definite, but not positive definite. Now
working with R, if l > 1, then the probabilistic connectiv-
ity matrix obtained by keeping all corresponding aij the
same except a2n, which is set to zero, is similarly positive
semi-definite, but not positive definite.

Working recursively in this fashion, the probabilistic
connectivity matrix obtained by keeping all aij the same
except ain = 0, ∀i ∈ {1, . . . , n− 1}, is positive semi-
definite, but not positive definite. Thereby a contradiction
is established with the conclusion obtained in the earlier
paragraph that for at least one i ∈ {1, . . . , n− 1}, ain 6= 0.

APPENDIX II: PROOF OF THEOREM 4

The proof of this Theorem appeals to the celebrated
Perron-Frobenius theorem whose basics we recount below
[16, p. 536].

Theorem 5: Suppose a matrix A ∈ Rn×n is non-
negative and irreducible. Then the largest eigenvalue of
A is simple, positive and has a corresponding eigenvector
all whose elements are positive. If A is reducible then the
largest eigenvector corresponding to its largest eigenvalue
can be chosen to be non-negative.

We also need the following lemma to prove Theorem
4.

Lemma 10: Suppose A = AT 6= B = BT are non-
negative, irreducible, real matrices, and B − A is a non-
zero, non-negative matrix. Then: λmax(A) < λmax(B).

Proof: Observe at least one element of B − A is
positive. From Theorem 5, x ∈ Rn, the eigenvector
corresponding to the largest eigenvalue of A can be chosen
to have all elements positive. Then the result follows from

the fact that:

λmax(A)xTx = xTAx

= xTBx− xT (B −A)x

< xTBx

≤ λmax(B)xTx

as B −A is a non-zero, non-negative matrix.
Turning to the proof of Theorem 4 we note that the

result follows directly from Lemma 10 and the fact QG′

and QG satisfy the requirements of B and A, respectively.
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