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Abstract—The ZigBee specification builds upon IEEE 802.15.4 

low-rate wireless personal area standards by adding security and 

mesh networking functionality.  ZigBee networks may be secured 

through 128-bit encryption keys and by MAC address access 

control lists, yet these credentials are vulnerable to interception 

and spoofing via free software tools available over the Internet.  

This work proposes a multi-factor PHY-MAC-NWK security 

framework for ZigBee that augments bit-level security using 

radio frequency (RF) PHY features. These features, or RF 

fingerprints, can be used to differentiate between dissimilar or 

like-model wireless devices.  Previous PHY-based works on mesh 

network device differentiation predominantly exploited the signal 

turn-on region, measured in nanoseconds. For an arbitrary 

benchmark of 90% or better classification accuracy, this work 

shows that reliable PHY-based ZigBee device discrimination can 

be achieved at SNR ≥ 8 dB.  This is done using the entire 

transmission preamble, which is less technically challenging to 

detect and is over 1000 times longer than the signal turn-on 

region.  This work also introduces a statistical, pre-classification 

feature ranking technique for identifying relevant features that 

dramatically reduces the number of RF fingerprint features 

without sacrificing classification performance. 

I. INTRODUCTION  

Wireless Personal Area Networks (WPANs) are undergoing 
rapid deployment in distributed sensing and control 
applications where extended node battery life and low data rate 
are key design features. The IEEE 802.15.4 media access 
control (MAC) and physical-layer (PHY) standards provide a 
low-data-rate WPAN foundation on which network (NWK) 
and application (APL) layers are built, such as the ZigBee 
specification [1].  Backed by an alliance of over 250 compan-
ies, ZigBee technology emphasizes low-complexity and low 
implementation cost.  The entire ZigBee protocol stack requires 
only 120 KB of nonvolatile memory.  The radio transceiver and 
microprocessor are often combined on a single integrated 
circuit in ZigBee devices.  Millions of utility meters utilize bi-
directional ZigBee communication in Advanced Metering 
Infrastructures (AMI) [2].  AMI solutions often include Home 
Area Network components as well [3].  ZigBee solutions are 
available for such varied applications as patient vital sign 
monitoring [4], security systems [5], and industrial control [6].  

The Python-based killerbee tool set [7], released in January 
2010, is the first of a growing number of tools that expose 
ZigBee and other IEEE 802.15.4-based WPANs to attack 
methods originally developed against IEEE 802.11 Wi-Fi and 

IEEE 802.15.1 Bluetooth.  Recent work [8]-[11] demonstrates 
that tight resource constraints on ZigBee nodes make them 
particularly vulnerable to attack.  Replayed ZigBee packets 
could open doors, turn valves, shut off fans, etc., depending on 
WPAN implementation.  ZigBee allows for plain-text network 
key distribution in “standard security mode” and plain-text 
master and link key distribution under “high security mode.”  
Other ZigBee concerns include access control list 
vulnerabilities to MAC address spoofing, denial of service 
through associate request flooding, malicious network 
impersonation (PAN ID),   and a new class of packet-in-packet 
injection attacks first demonstrated in [12].  PHY layer security 
using radio frequency (RF) fingerprints is a viable alternative 
for verifying MAC and NWK credentials, since RF signal 
characteristics are substantially more difficult to mimic. 

  Previous work on RF fingerprinting for wireless sensor 
networks has exploited features within the signal turn-on 
transient region (~125 ns) [13]-[15], with 70% classification 
accuracy using five relative amplitude features from ten 433 
MHz CC1000 radios [12].  Work in [14] provides improved 
accuracy of 97% using ten different CC1000 radios at distances 
of 15 cm [14].  The use of three transient features is promising 
for classifying 2.4 GHz ZigBee node radios at distances of 40 
meters [14].  RF fingerprinting based on differences in 
Automatic Gain Control circuitry have been less successful; 
limited feature differences are observed between six ZigBee 
devices at distances of 10 cm [15]. 

The IEEE 802.15.4 specification [16] mandates use of a 
preamble based on 30 to 40 bits, depending on frequency band 
and modulation scheme.  The 32-bit preamble for 2.4 GHz 
ZigBee nodes is 128 µs long; or 1024 times longer than 
previously exploited signal transient responses [13]-[15].  
Preamble RF features have been effectively used in related 
work to reliably differentiate IEEE 802.11a radios [17]-[18].  
The work here demonstrates reliable differentiation between 
ZigBee transceivers of the same model (CC2420) at varying 
signal-to-noise ratios (SNRs) using preamble RF fingerprints.  
The RF fingerprint techniques used incorporate summary 
statistics of multiple instantaneous transmission waveform 
measurements that are resilient against intentional spoofing.  
Results presented herein are foundational to development of an 
envisioned PHY-MAC-NWK framework aimed at augmenting 
current ZigBee security mechanisms with RF fingerprint 
authentication while achieving backward compatibility with 
current battery-powered ZigBee end devices. 
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II. ENVISIONED MULTI-FACTOR FRAMEWORK FOR ZIGBEE  

The concept of an “air monitor” that observes wireless 
network transmission characteristics to augment bit-layer 
security mechanisms is not new [20]-[21].  However, many of 
the challenges associated with practical network integration 
have not been adequately addressed.  The work here builds 
upon the air monitor concept and describes the envisioned 
integration into ZigBee WPANs to improve security. 

A. ZigBee Nodes and Topologies 

IEEE 802.15.4 specifies two node classes, including: Full 
Function Devices (FFDs) and Reduced Function Devices 
(RFDs).  FFDs are always actively listening on the network 
and are typically powered by a constant external power 
supply.  RFDs are battery-powered and primarily operate in 
sleep mode, waking only to check for pending messages or 
periodic updates.    

Building upon this foundation, ZigBee defines three node 
classes: ZigBee Coordinator (ZC), ZigBee Router (ZR) and 
ZigBee End Device (ZED).  The ZC and ZRs must be FFDs, 
while ZEDs can be either FFDs or RFDs.  There can only be 
one ZC per WPAN and it is responsible for establishing the 
network, allocating NWK addresses, and routing traffic.  The 
WPAN fails without its ZC.  ZRs extend the WPAN physical 
range by routing messages between their child RFD ZEDs 
using multi-hop topologies, such as the Cluster Tree and Mesh 
topologies illustrated in Fig. 1.  The Star Topology is shown for 
completeness and does not support multi-hop communication.  
In a cluster tree topology, ZEDs have no children and can only 
communicate with the ZC and other ZEDs through their parent 

ZR.  ZigBee Stack Profile 0x01 limits the number of children 
for each ZR to Nc = 20, 6 of which can be ZRs.  The ZigBee 

PRO specification (Stack Profile 0x02) increases this limit to 
Nc = 254 children per ZR.  Mesh topologies are only allowed 
using ZigBee PRO, and permit FFD ZEDs to communicate 
directly with one another. 

B. Air Monitor Placement  

The envisioned air monitors would be electronic devices, 

separate from, but connected to FFD ZigBee hardware by a 

short cable for sharing fingerprint assessment feedback.  A 

single air monitor co-located with the ZC would be sufficient 

to observe all traffic within the Star WPAN topology.  On 

cluster tree WPANs, communication with each ZED is 

concentrated through its parent ZR.  Therefore, an air monitor 

co-located with every ZR would be the maximum number 

required to observe all traffic on the WPAN.  Mesh topologies 

pose significantly greater challenges to security.  For example, 

memory overhead required for link key storage 

(confidentiality for every hop) can grow exponentially larger 

than for cluster tree topologies.  Air monitoring of large mesh 

topologies will be challenging for similar reasons.  Nodes are 

largely stationary  in  ZigBee  profiles  such as  Smart  Energy, 

Building Automation, and Home Automation, simplifying air 

monitor coverage.  Profiles that feature mobile ZEDs, such as 

Health Care, pose significant challenges to air monitor 

coverage.   Mobile ZEDs are  also  inherently  more vulnerable  

 

Figure 1.  ZigBee WPAN Topologies. 

to physical attacks such as key extraction, theft, and 

tampering. 

C. Air Monitor and Trust Center Integration 

ZigBee WPANs under either security mode (standard or 
high) must appoint an FFD (usually the ZC) to serve as the 
Trust Center, recognized and trusted by all nodes on the 
WPAN.  The Trust Center is responsible for security and key 
management.  A new node n*

 
can only join the WPAN if it 

receives permission from the Trust Center.  Permission to join 
can be restricted by an access control list of valid MAC 
addresses.  If n* presents a valid MAC address but does not 
know the network key, the Trust Center can transmit the key in 
plain text.  ZigBee advocates assume that this window of 
vulnerability is “quite small and acceptable” [22], but tools 
such as zbdsniff can endlessly sniff a WPAN until such keys 
are intercepted [7].  An air monitor framework for ZigBee 
WPANs would defend against active attacks such as fuzzing, 
associate request flooding, and packet injection by establishing 
three-factor authentication:  

1. “Something you know” (NWK – encryption keys) 
2. “Something you have”  (MAC – MAC address) 
3. “Something you are”     (PHY – RF fingerprint) 

While keys and MAC addresses are vulnerable to current 
attacks, RF fingerprints from physical radio emissions are 
unique and technically infeasible to mimic.   

In the star topology in Fig. 1, the combined ZC/Trust 
Center receives feedback from its air monitor as to how well 
the current RF fingerprint from every incoming transmission 
matches the stored fingerprint profile established for the 
claimed sender.  Thresholds for packet rejection must be 
tailored based on operational conditions to prevent undue 
denial of service.  In cluster tree topologies, the routers only 
forward transmissions “cleared” as sufficiently well-matched 
by their respective air monitors.  Air monitors maintain an 
evolving RF fingerprint profile of the devices assigned to its 
ZR to account for variations in environment and device 
operating characteristics.  Sufficiently complex mesh networks 
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require larger and more flexible RF fingerprint databases and 
air monitor placement. 

An air monitor framework would be most valuable if every 
transmission is validated by the current RF fingerprint.  This is 
because many exploits, such as replay attacks and packet 
injection, may be effective if a single malicious transmission is 
accepted as valid by the WPAN.  However, even fractional air 
monitor protection may mitigate active denial of service 
attacks such as associate request flooding.  

Despite the challenges that must still be addressed before 
the envisioned air monitor framework is successfully 
implemented, the relatively infrequent transmission rate of 
ZigBee WPANs, short transmission range, and limitation of  
Nc = 254 child devices per ZR makes them an ideal early 
candidate for upcoming air monitor experimental research. 

III. BACKGROUND 

A. Signal Collection Methodology 

An Agilent E3238S-based system [23] serves as the RF 
Signal Intercept Collection System (RFSICS). All Signal 
collections are down converted to near-baseband, digitized 
using 12-bit analog-to-digital conversion and stored as 
complex in-phase and quadrature (I-Q) components for sub-
sequent post-collection processing.  Collection parameters 
include sample frequency fs = 11.875 Msps and baseband filter 
bandwidth WBB = 1 MHz using a 4th-order Butterworth filter.  
Signal collections included a total of NP = 1000 transmission 
preambles from ND = 7 CC2420 2.4 GHz IEEE 802.15.4 
devices.  Transceiver positioning is consistent between 
collections in a Ramsey STE3000 RF test enclosure with RF 
absorbent foam lining, 20 cm from a dipole antenna connected 
to the RFSICS input by a shielded cable. 

Amplitude-based threshold detection with a leading edge 
value of TD = -6.0 dB is used to identify and extract individual 
burst transmissions from the multi-second RF collections.  The 
approximate duration of experimentally collected preamble 
responses is 1536 samples (129 µs), which closely matches the 
128 µs specification [16].  The collection SNR for all bursts 
was SNRC > 50 dB. 

B. Statistical Fingerprint Generation 

The statistical fingerprint (F) for a signal derives from its 
instantaneous amplitude (a), phase (ϕ) and/or frequency (f) 
characteristics.  More specifically, the sequences {a[n]}, 
{ϕ[n]}, and/or {f[n]} are generated from complex samples of 
the signal region of interest, centered (mean removal) and then 
normalized (division by maximum value) [17]-[18].  Statistical 
fingerprint features are generated as variance (σ

2
), skewness 

(γ), and/or kurtosis (k) within specific signal regions.  The 
regional fingerprint markers are generated by: 1) dividing 
each characteristic sequence into NR contiguous, equal length 
sub-sequences,  2)  calculating NS  statistical  metrics  for  each 
sub-sequence, plus the entire fingerprinted region as a whole 
(NR + 1 total  regions), and 3) arranging the metrics in a vector 
of the form:                       

 

 

Figure 2.  Provision of Collected Burst Preamble into NR = 32 Sub-regions. 

 

FRi = [σ
2
Ri γRi  kRi]1 × 3 ,                                           (1) 

where i = 1, 2, …, NR + 1.  The marker vectors from (1) are 
concatenated to form the composite characteristic vector for 
each characteristic and are given by 

             F
C
 = [FR1 ⁞ FR2 ⁞ FR3 … FR (NR+1)]1 × NS (NR+1) .               (2) 

     If only one signal characteristic (a, ϕ, or f), is used the 
expression in (2) represents the final fingerprint used for 
classification.  When all NC = 3 signal characteristics are used, 
the final RF fingerprint is generated by concatenating vectors 
from (2) according to 

     F = [F
a
 ⁞ F

ϕ
 ⁞ F

f]1 × NS(NR +1) × NC.                       (3) 

     Exploratory data analysis revealed that NR = 32 preamble 
sub-regions, or four regions per each of the eight repeated 
symbols comprising the preamble (Fig. 2), serves as a 
successful baseline for this proof-of-concept demonstration.     

C. MDA/ML Device Classification Methodology 

Statistical RF fingerprints are generated using (3) for 
collected preamble transmissions from ND = 7 IEEE 802.15.4 
radios.  The resultant RF fingerprints are input into a Multiple 
Discriminant Analysis/Maximum Likelihood (MDA/ML) 
process for device classification.  MDA is an extension to 
Fisher’s Linear Discriminant when more than two classes 
(devices) are considered.  MDA reduces the higher-
dimensional input feature space with the goal of maximizing 
inter-class separation while reducing intra-class spread [24].  
For the NC = 3 class problems considered here, MDA projects 
the multidimensional RF fingerprints into a 2-dimentional 
space.  RF fingerprints are classified as being affiliated with 
one of NC = 3 possible classes based on Bayesian decision   
criteria   using  prior  known probabilities, probability densities, 
and relevant costs associated with making a decision [25].  For 
all results presented herein the associate costs are assumed 
equal for all classes. 
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The MDA/ML process implementation uses K-fold cross-
validation with K = 5 to improve classification reliability.  The 
best-performing model generated from examining a training set 
of preamble features from each device is then used to classify a 
second collection previously unseen preamble features using its 
MDA/ML algorithm.  Only classification accuracies resulting 
from this “day-after” testing are reported in Section IV.   

D. Pre-Classification Feature Dimentionality Reduction 

In the aggregate, assembled RF fingerprints are effective 
for inter-device classification; however, individual RF 
fingerprint components do not generally contribute uniformly 
to classification performance.  The MDA/ML classification 
process inherently provides no insight into feature relevance. 
Intuitively, however, RF fingerprint components that exhibit 
maximal inter-device dissimilarity and minimal intra-device 
dissimilarity are generally advantageous for MDA/ML 
classification.   It may be beneficial to statistically examine RF 
fingerprints prior to MDA/ML classification to identify 
features (RF fingerprint components) that exhibit statistical 
properties that may be most advantageous for classification; the 
process for identifying and removing less relevant features is 
called Dimensional Reduction Analysis (DRA).  The goal of 
DRA is to reduce RF fingerprint size (minimize NF) while 
having minimal or tolerable impact on classification accuracy.  
Given the RF fingerprints assembled from collected preambles 
are non-normally distributed, nonparametric statistical analysis 
is appropriate.  The Kolmogorov-Smirnov goodness-of-fit test 
(KS-test) is a suitable option that quantifies differences in 
cumulative distribution functions (CDF) between two datasets, 
with lower p-values indicating greater CDF differences. 

For the ND = 7 device case considered here, there were 
Np = 21 unique pairwise devices comparisons made.  Fig. 3 
presents summed p-values for the corresponding Np = 21 KS-
tests (α = 0.1) conducted at SNR = 8 dB using full dimensional 
fingerprints, i.e., NF = (NR + 1 = 33) x (NS = 3) x (NC = 3) = 297 
features. The robustness of phase features has been previously 
noted [19] and is evident here in Fig. 3.  The mean p-values 
and qualitative visual analysis of Fig. 3 further suggests that 
frequency-based features are less relevant than phase-based 
features and amplitude-based features are   least   relevant.  
Classification results presented in Section IV are consistent 
with this assessment and validate the KS-test approach as a 
viable means for discovering the relative relevance of 
instantaneous amplitude (a), phase (ϕ) and frequency (f) 
features prior to MDA/ML classification. 

IV. DEVICE CLASSIFICATION RESULTS 

The IEEE 802.15.4 specification mandates the use of a 
synchronization header (SHR) containing a Preamble and Start-
of-Frame Delimiter (SFD) sequence for all transmission bursts.  
Although the entire SHR can be used for generating RF 
fingerprints, exploratory data analysis revealed that inclusion of 
the SFD response did not significantly improve MDA/ML 
classification accuracy.  Additional analysis revealed that 
features based on power-spectral-density underperformed 
relative to features based on the instantaneous a, ϕ, and f time-
domain responses considered herein. 

 

Figure 3.  Sum of Np = 21 Pairwise KS-test P-values for Each Fingerprint 

Feature Using a Full Dimensional (NF = 297) Feature Set at SNR = 8dB. 

MDA/ML inter-device classification results were generated 
for all NPrm = 35 possible permutations of 3-class problems 
using ND = 7 ZigBee devices.  Classification experiments used 
NP = 1000 independent preamble responses (500 each for 
training and classification) and NN = 5 Monte Carlo noise 
realizations per preamble response at each SNR; a total of 
NTst = (500 Preambles) x (NN = 5) = 2500 independent classifi-
cation decisions per device in each 3-device trial.  This large 
number of trials reduced the mean error bars to within the 
vertical extent of the plotted markers.  Therefore, trial mean 
error bars are not presented in plots to enhance visual clarity.    

A. Full Dimensional RF Fingerprinting Accuracy 

Full dimensional RF fingerprints include features based on 
NC = 3 signal characteristics (a, ϕ, and f), Ns = 3 statistical 
fingerprint features (σ

2
,
 
γ, and k), and NR + 1 = 33 regions, for a 

total fingerprint F comprised of NF = 297 RF features as given 
by (3).  Fig. 4 presents the aggregate full dimensional 
classification accuracies for NPrm = 35 device permutations at 
SNR ∈  [0 20] dB. The cross-perm average is shown as filled 
circle markers.  As indicated, the mean classification accuracy 
exceeds an arbitrary benchmark of 90% for SNR ≥ 8 dB. 

B. Reduced Dimensional RF Fingerprinting Accuracy 

While full dimensional RF fingerprinting is effective, the 
DRA process in Section III.D revealed significant differences 
(range of p-values) among RF fingerprint components derived 
from the instantaneous {a[n]}, {ϕ[n]}, and {f[n]} sequences.  
Classification results are presented here for RF fingerprinting 
with a 66.7% reduced feature set (NF = 99 of 297 retained).  
This is done by evaluating classification performance using 
only amplitude (Amp-Only), phase (Phz-Only) and frequency 
(Frq-Only) feature subsets of the full dimensional feature set. 

Fig. 5 presents the aggregate Amp-Only classification 
accuracies for all NPrm = 35 permutations, with the cross-perm 
average shown with filled circle markers.  The resulting decline 
in classification performance is readily apparent by visual 
comparison  with full  dimensional RF  fingerprint  performance 

Amplitude (a)            Phase (ϕ)            Frequency (f) 

            = 9                       = 1.49                     = 4.9 
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Figure 4.  Full Dimensional (NF = 297) Classification Accuracy for NPrm = 35 

Permutations.  Perm Average Shown as Filled Circle Markers. 

in Fig. 4.  Relative to the arbitrary benchmark of 90%, Amp-
Only RF fingerprinting requires SNR > 18 dB. 

Fig. 6 presents the aggregate classification accuracies for all 
NPrm = 35 permutations for Phz-Only RF fingerprinting, with 
the cross-perm average shown with filled circle markers.  
These results mirror those of full dimensional fingerprinting in 
Fig.. 5, with average Phz-Only fingerprinting 1) exceeding the 
arbitrary benchmark of 90% for SNR ≥ 8 dB, 2) matching full 
dimensional performance for SNR ≥ 16 dB, and 3) achieving 
approximately 2% better performance than full dimensional for 
SNR < 16 dB.  This represents a successful demonstration of 
the potential for pre-classification dimensionality reduction 
using the KS-test p-value analysis described in Sect. III.D. 

Fig. 7 presents the aggregate classification accuracies for all 
NPrm = 35 permutations for Frq-Only RF fingerprinting, with 
the cross-perm average shown with filled circle markers.  As 
predicted by KS-test p-value results in Fig. 3, the average perm 
classification accuracy in Fig. 7 falls between that of Amp-Only 
and Phz-Only RF fingerprinting, with the arbitrary benchmark 
of 90% achieved for SNR ≥ 14 dB. 

Conclusions relative to results in Fig. 4 through Fig. 7 are 
best drawn using the overlay plot presented in Fig. 8 which 
shows full dimensional and reduced dimensional MDA/ML 
classification performance for SNR ∈ [0 20] dB.  Considering 
an arbitrary classification accuracy of 90% as a reasonable 
benchmark for assessing the potential contribution of RF PHY 
features to an overall multi-factor authentication solution, both 
the full dimensional (NF = 297) and Phz-Only (NF = 99) 
feature sets would perform reliably for SNR ≥ 8 dB.  However, 
the reduced dimensional Phz-Only feature set has the added 
advantage of only requiring calculation and processing of one-
third the number of features.  The methodology and 
classification accuracies presented herein are promising and 
demonstrate the technical feasibility for reliably differentiating 
between IEEE 802.15.4 transceivers using RF fingerprints 
extracted from preamble transmissions–a solid foundation for 
continued development of the envisioned multi-factor PHY-
MAC-NWK authentication framework. 

 

Figure 5.  Reduced Dimensional (NF = 99) Classification for NPrm = 35 
Permutations Using the Amp-Only Subset of the Full Dimensional Feature Set. 

 

 

Figure 6.  Reduced Dimensional (NF = 99) Classification for NPrm = 35 
Permutations Using the Phz-Only Subset of the Full Dimensional Feature Set. 

 

 

Figure 7.  Reduced Dimensional (NF = 99) Classification for NPrm = 35 
Permutations Using the Frq-Only Subset of the Full Dimensional Feature Set. 
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Figure 8.  Overlay of Previous Perm Averages for Full Dimensional and 

Reduced Dimensional MDA/ML Classification. 

V. CONCLUSION 

The low-cost, low complexity, and low power consumption 
benefits of ZigBee WPANs make them competitive solutions 
in many wireless sensor and control applications.  As with all 
wireless networks, a defense-in-depth approach to mitigating 
security vulnerabilities is paramount.  Results here demon-
strate that ZigBee devices can be accurately and reliably 
identified solely by using time-domain RF statistical features 
extracted from their transmission preambles; an arbitrary 
benchmark of 90% classification accuracy is demonstrated for 
SNR ≥ 8 dB using like-model ZigBee devices.  This PHY 
“something you are” addition to current ZigBee two-factor 
authentication (MAC address + NWK encryption keys) is 
analogous to the addition of human biometrics where computer 
network security is critical.  The work here is foundational to 
future work aimed at achieving additional RF fingerprint 
dimensionality reduction and maturing the proposed cross-
layer PHY-MAC-NWK multi-factor authentication framework.  
As consumers become increasingly reliant on ZigBee, they 
must be confident and trust that the operational integrity of 
their appliances, home infrastructure, personal medical data, 
etc., can be maintained–multi-factor authentication can mitigate 
ZigBee WPAN security vulnerability and bolster this trust. 
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