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Abstract—The network infrastructure plays an important role
for datacenter applications. Therefore, datacenter network archi-
tectures are designed with three main goals: bandwidth, latency
and reliability. This work focuses on the last goal and provides
a comparative analysis of the topologies of prevalent datacenter
architectures. Those architectures use a network based only on
switches or a hybrid scheme of servers and switches to perform
packet forwarding. We analyze failures of the main networking
elements (link, server, and switch) to evaluate the tradeoffs of the
different datacenter topologies. Considering only the network
topology, our analysis provides a baseline study to the choice
or design of a datacenter network with regard to reliability.
Our results show that, as the number of failures increases,
the considered hybrid topologies can substantially increase the
path length, whereas servers on the switch-only topology tend to
disconnect more quickly from the main network.

I. INTRODUCTION

Currently, the time needed to complete an Internet trans-
action is becoming a competitive factor among companies
offering online services, such as web search, home banking,
and shopping. The typical solution to reduce the response time
of these services is distributed processing (e.g., MapReduce).
This strategy is more efficient if more servers in the datacenter
execute the parts of a single task. As a consequence, the
number of servers in datacenters is growing steadily fast.
Google, for instance, has a computing infrastructure of almost
1 million servers spread in datacenters around the world [1].

Distributed processing incurs in communication between
servers, which adds latency to the completion of a distributed
task. Moreover, high communication between servers cause
high link utilization, which may lead to buffer congestion in
switches, adding to latency. As data transfer is a potential
slowdown for datacenter operations, distributed programming
models use locality properties to choose the most appropriate
server to store data. Ideally, one would plan for limiting data
transfers to servers in a single rack. However, choosing the
best server to store a specific piece of data is a difficult
task, especially if we consider the ever increasing number
of servers in datacenter networks. Thus, significant effort has
been devoted to the development of new datacenter architec-
tures which improve networking performance, while keeping
the economical aspect in mind. One of the earliest datacenter
architecture is Fat-Tree [2], which focuses on the utilization
of off-the-shelf switches to avoid high costs. BCube [3] and
DCell [4] are examples of architectures that use a combina-
tion of servers and switches to perform packet forwarding.
The server-based forwarding allows those architectures to
use switches with lower port density than Fat-Tree. Each

architecture uses specific topologies and routing protocols.
For datacenters, networking performance is a function of

three main metrics: bandwidth, latency, and reliability. Despite
the high available bandwidth achieved by these architectures,
datacenters are composed of tens of thousands of servers,
which are prone to failures as well as the networking ele-
ments [5]. On the other hand, the datacenter must remain
operational and present minimal impact to the user experience.
To date, few studies compare existent architectures consider-
ing failures on each one of the main networking elements,
namely, servers, switches, and physical links. Popa et al. [6]
compare the different architectures in terms of cost and en-
ergy consumption, considering similar configurations to yield
compatible performance. By analyzing the network capacity
and maximum latency, they conclude that hybrid topologies
(e.g. BCube) are cheaper than switch-only topologies (e.g.
Fat-Tree). However, they foresee that switch-only topologies
will become more cost-effective with the appearance of very
low-cost switches in a near future. Guo et al. [3] address the
reliability of the different topologies for specific traffic patterns
and protocols, concluding that BCube is the most reliable.

In this work, we analyze the network topologies of three of
the main existent datacenter architectures (Fat-Tree, BCube,
and DCell) in terms of reliability, adding to the cost and
bandwidth comparisons found in the literature. The present
reliability analysis does not depend on applications, routing
algorithms, or traffic engineering strategies used by each archi-
tecture. Instead, it provides a baseline study by using metrics
to quantify the reliability of the datacenter network. These
metrics can be combined with cost and available bandwidth
metrics to help the datacenter designer. For example, the
framework proposed by Curtis et. al. [7] proposes a datacen-
ter topology optimizing metrics as available bandwidth and
latency. However, it can be improved by using our definition
of reliability evaluated in this work. In our analysis, we model
the datacenter topology as a graph with servers and switches as
nodes with network links connecting them. Using this model,
we evaluate the impact of each networking component (server,
switch and link) failure to the entire network.

The results of our analysis show that the network degrades
with the removal of connected components with a relatively
small number of servers as the number of failures increases, for
all considered topologies. We also show that hybrid topologies
as BCube and DCell can substantially increase the average
path length as the failures increase, whereas in Fat-Tree servers
tend to disconnect more quickly.

This paper is organized as follows. Section II details the



Fig. 1. Fat-Tree topology.

topology used in each architecture. Section III describes the
methodology and the metrics used. Section IV shows the
obtained results and Section V concludes this work.

II. DATACENTER NETWORK TOPOLOGIES

In this work, we consider three representative datacenter
topologies found on the current literature, Fat-Tree, BCube,
and DCell. Their main characteristics are explained below.

A. Fat-Tree

We refer to Fat-Tree as the topology proposed by Al-Fares
et al. in [2]. The authors use the concept of fat-tree, which is a
special case of a Clos network, to define a datacenter topology
organized as a k-ary tree. VL2 [8] also uses a Clos network
and is not considered in our analysis due to its similarity to
Fat-Tree. As shown in Figure 1 the topology has two sets of
elements, the core and the pods. The first set is composed
of switches that interconnect the pods. Each port of each
switch in the core is connected to a different pod. A pod is
composed of aggregation and edge switches, and datacenter
servers. Aggregation switches connect the pod to the core by
linking edge and core switches. Finally, each edge switch is
connected to a different set of servers.

All switches are identical and have k ports. Consequently,
the network has k pods, and each pod has k

2
aggregation

switches and k
2

edge switches. In a single pod, each aggre-
gation switch is connected to all edge switches, which are
individually connected to k

2
different servers. Thus, the Fat-

Tree topology can have k
2
∗ k

2
∗k = k3

4
servers. Figure 1 shows

a Fat-Tree for k = 4. Note, as an example, that the server with
index 0 in Pod 0 (S0.0) communicates with Server 1 (S1.0) in
the same pod and both of them are connected through the
same edge switch. On the other hand, Server 3 from Pod 0
(S3.0) communicates with a server in a different pod, S3.1,
requiring the use of core switches. Fat-Tree allows all servers
to communicate at the same time using the total capacity
of their network interfaces. In this topology, all networking
elements are identical, avoiding expensive switches with high
port density in higher topology levels.

B. BCube

BCube [3] topology was proposed to be used in a Mod-
ular Data Center (MDC), which is a datacenter built inside
shipping containers to permit simpler installation and physical
migration procedures as compared with regular datacenters.
Datacenter migration is useful for energy saving, because it
becomes easier to move the datacenter to regions with lower

Fig. 2. BCube topology.

energy costs, and for strategic positioning, allowing the place-
ment close to regions with high service demands. As MDCs
are built in sealed containers with a high equipment density,
they need to be highly reliable. Furthermore, the performance
of these networks has to slowly degrade as equipment failures
occur. Also, as in the case of Fat-Tree, the network have a high
transmission rate capacity and low cost. To this end, the BCube
topology has layers of COTS (commodity off-the-shelf) mini-
switches and servers, which participate in packet forwarding.
These servers thus have several network interfaces, usually no
more than five [3]. The main module of a BCube topology
is BCube0, which consists of a single switch with n ports
connected to n servers. A BCube1, on the other hand, is
constructed using n BCube0 networks and n switches. Each
switch is connected to all BCube0 networks through its
connection with one server of each BCube0. Figure 2 shows a
BCube1 network. More generally, a BCubek (k ≥ 1) network
consists of n BCubek−1s and nk switches of n ports. To
build a BCubek, the n Bcubek−1s are numbered from 0 to
n − 1 and the servers of each one from 0 to nk − 1. Next,
the level k port of the i-th server (i ∈ [0, nk − 1]) of the j-th
BCubek (j ∈ [0, n−1]) is connected to the j-th port of the i-
th level k switch. A BCubek network can have nk+1 servers.
Figure 2 shows that, in BCube00, Server 0 communicates
through a switch to Server 1. On the other hand, Server 1
from BCube01 uses its local switch to forward its packets
to Server 2, which can forward the packet to the destination,
in this case the Server 2 in BCube02 network. However, the
communication between different BCubes in the same level
may occur by only using a higher level switch, as in the case
of Server 3 of BCube02 with Server 3 in BCube03. In a
nutshell, BCube servers can participate in packet forwarding
depending on the communicating pair.

C. DCell

Similarly to BCube, DCell is defined recursively and uses
servers and mini-switches for packet forwarding. The main
module of this topology is DCell0 which, as BCube0, is
composed of a switch connected to n servers. A DCell1 is
built by connecting n+ 1 DCell0 networks and a DCell0 is
connected to all other DCell0 cells by one link from one of
its servers to a server in another DCell0. A DCell1 network
is illustrated in Figure 3. Note that communication inside a
cell is performed locally using a switch, as shown in the
communication between Server 2 and Server 3 from DCell00.
The communication between servers from different cells is
performed directly, as the one between Server 1 in DCell02



Fig. 3. DCell topology.

and Server 2 in DCell03, or using a combination of servers
and switches. This last is shown in the communication between
Server 1 from DCell01 and Server 1 from DCell04.

Note that in a DCell, differently from BCube, the switches
are connected only to servers in its same DCell and the
connection between different DCell networks is always done
using servers. To build a DCellk, n+ 1 DCellk−1 networks
are needed. Each server in a DCellk has k+1 links. On each
server the first link (level 0 link) is connected to the switch
of its DCell0 and the second link connects the server to a
node on its DCell1, but in another DCell0. Generically, the
level i link of a server connects it to a different DCelli−1

in the same DCelli. The procedure to construct a DCell is
more complex than that of a BCube, and is executed by an
algorithm proposed by Guo et al. [4].

The DCell capacity in number of servers can be evaluated
recursively, using the following equations: gk = tk−1 +1 and
tk = gk×tk−1, where gk is the number of DCellk−1 networks
in a DCellk and tk is the number of servers in a DCellk. A
DCell0 network is a special case in which g0 = 1 e t0 = n.

III. RELIABILITY ANALYSIS

Our analysis considers failures in switches, servers, and
links in a datacenter. To this end, a topology is modeled as an
undirected graph G = (V,E), where V is the set of vertices,
modeling the nodes, and E is the set of edges, modeling the
links. The set V is given by V = S∪C, where S is the server
set and C the switch set. Every edge weight in G is unitary
because all topologies use only a single type of physical link.
To analyze the reliability of graph G of each topology, we
remove either S�, C �, or E� from G, where S� ⊂ S, C � ⊂ C

and E� ⊂ E, generating the subgraph G�. The removal of
different elements from the network allows to analyze the
influence of each failure type. The vertices or edges removed
from G are randomly chosen from only one of the given sets
(switches, servers, or links), generating the subgraph G�. The
graphs were generated and analyzed using NetworkX [9].

The main goal of our work is to quantify how performance
degrades when a fraction of malfunctioned network devices
are not repaired. Also, as we consider only the topology, our
analysis represent the network behavior on a steady-state, i.e.,
when the routing protocol has finished to compute all routes

after a failure event. We evaluate the reliability in terms of
the network size and the variation of path length when the
datacenter network is subject to failures. The first one identifies
the number of servers interconnected, whereas the second one
is related to the number of hops between the network servers.

A. Metrics Related to Network Size

The metrics related to network size are the maximum
and average relative sizes of the connected components after
failures in network devices, using metrics similar to those
used by Albert and Barabási [10], that provides a study about
reliability in complex networks. The relative size of the largest
connected component in relation to the number of existent
servers, called RSmax, is given by Equation 1:

RSmax =
max1≤i≤n |si|�n

i=1
|si|

, (1)

where |si| is the number of servers in each connected com-
ponent i, and n is the total number of connected components
in the resulting graph G�. The second metric is the average
size of isolated connected components of G�, given by Savg

in Equation 2. In this work we define as isolated components
all of the network partitions, except the largest component.

Savg =
1

n− 1
(

n�

i=1

|si| − max
1≤i≤n

|si|). (2)

B. Metrics Related to Path Length

The first metric used for path length analysis takes into
account the relationship between the diameter of the largest
connected component of G�, given by D�

max, and the diameter
of the original graph G, given by Dmax. This metric is defined
as the diameter stretch, given by DS below:

DS =
D�

max

Dmax

. (3)

We also evaluate the path stretch. This metric quantifies the
increase on the average path lenght between all server pairs
in G�, given by L�

avg , in relation to this average path length
on G, given by Lavg . Thus, this metric is defined as:

PS =
L�
avg

Lavg

. (4)

The stretch metrics consider only distances between servers,
by analyzing the shortest path between each pair. The shortest
paths is a good base measure to evaluate the behavior of
path quality on the network, since it is used by most routing
mechanisms that can be used in a data center, such as TRILL,
IEEE 802.1aq and SPAIN [11]. Note that these mechanisms
can also use multipath routing, which is generally based on
the shortest paths. In this way, our future work includes the
reliability analysis considering path diversity, which impacts
the multipath routing schemes.



TABLE I
PROPERTIES OF THE ANALYZED TOPOLOGIES.

Name
Switch Server

Servers Switches Diameter
Avg.

ports ports length
Fat-Tree 24 1 3456 720 6 5.9
BCube2 58 2 3364 116 4 3.9
BCube3 15 3 3375 670 6 5.6
BCube5 5 5 3125 3125 10 8.0
DCell2 58 2 3422 59 5 4.9
DCell3 7 3 3192 456 11 8.2

IV. RESULTS

Our results are obtained using the topologies detailed in
Section II, with some parameter variations to achieve a number
of servers close to 3,400 for all topologies for fair comparison.
On the other hand, we observed that this number is sufficiently
large to disclose the differences between the topologies. As
these topologies have a regular structure, our results can
be extended to a higher number of servers. Table I shows
the name associated to each considered topology and their
respective parameters: the number of switch ports and server
ports. Table I also gives the following properties of each
topology: the number of servers, the number of switches, the
network diameter, and the average path length between all
pairs of servers. Using each topology of Table I, we average
the outcomes when repeating the methodology of Section III
several times, using a confidence level of 95%.

It is worth mentioning that although some of these topolo-
gies can be incrementally deployed, we only consider complete
topologies where all network interfaces of servers and switches
are used. Furthermore, the number of switch ports was not
limited to the number of ports often seen in commercially
available equipment, to provide similar number of servers for
all topologies. As one of the key goals of the network topology
of a datacenter is to provide processing capacity or storage
redundancy, which increases with a higher number of servers,
balancing the number of server per topology is an attempt to
provide an analysis as fair as possible.

A. Link failures

Figure 4 shows the RSmax and Savg metrics according to
the link failure ratio in G. As given by RSmax, the network
size of hybrid topologies has a smoother decay than that of
Fat-Tree. Nevertheless, after a certain failure ratio on, all of
the hybrid topologies present a point of inflexion, starting
to reduce more sharply. Hence, for higher failure ratios the
Fat-tree topology becomes more reliable. Nonetheless, a high
failure ratio is hopefully not a realistic scenario.

Comparing topologies of the same type but with different
parameters, such as DCell2 and DCell3, we observe that the
ones with higher number of ports per server have a smoother
degradation. Also, Fat-Tree, which only uses one-port servers,
presents the worst performance. In an hybrid topology, when
a link directly attached to a server breaks, the server can use
the extra ports to connect to the other nodes. As a server uses
more ports, the probability of this server being disconnected
from the main component is smaller. The tradeoff, however,
is a high path stretch, as we show later in this section. In
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Fig. 4. Metrics related to network size considering link failures.
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Fig. 5. Metrics related to path length considering link failures.

Fat-Tree, the failure on a link directly connected to a server
always disconnects this node from the network.

Moreover, RSmax shows that, for the same number of ports
per server, BCube outperforms DCell. Savg shows that failures
in DCell tend to disconnect a larger number of servers than
in BCube with the same configuration of ports per server. We
also observe that Savg is low for all topologies. This result
indicates that the largest connected component degrades due
to the removal of connected components with a small number



of servers. Also, Savg increases to a maximum then steadily
decreases. These results also occur for exponential networks
in the aforementioned work of Albert and Barabási [10]. The
decreasing in Savg occurs because as the number of connected
components increases, the size of the largest component is
reduced, increasing the removal probability of edges in the
isolated components. Therefore, the peak value matches the
inflection point of RSmax because in this point the size of the
largest component decreases faster.

Figure 5 shows the impact of link failures on the network
path length. DS and PS presents the same behavior differing
only in their absolute values. Results show that all curves
have a peak stretch value, from which we can conclude that
link failures remove shortest paths until a point where the
paths are shortened due to the decreasing network size. Also,
path length increases fast, becoming as high as four times the
original average length. The best performance in this analysis
is achieved by Fat-Tree, despite the worst performance consid-
ering the RSmax. However, the number of servers in the main
component of Fat-Tree is smaller than on the other topologies
for a given failure ratio. Consequently, it is important to
evaluate the reliability considering more than one metric.

B. Switch Failures

Figure 6 plots the behavior of network size considering
switch failures. The curves of RSmax have a behavior similar
to the case of link failures. However, the region after the
inflection point is negligible. Although the curves of Savg have
no relevant peaks, the Savg of DCell3 increases approximately
20 times after the elimination of most of its switches. Ignoring
this behavior, as it represents an unreal failure ratio, we ob-
serve that switch failures produce small isolated components.

It is interesting to note the reliability of DCell3 with respect
to the network size. The RSmax of DCell3 decreases only for
a failure ratio greater than 60%. Comparing to Fat-Tree and
BCube3 topologies, which have a close number of switches
in relation to the number of servers (Table I), DCell3 has a
better performance. Also, Figure 6(b) shows that DCell3 has
no points for small failure ratios due to the lack of isolated
components. This superior performance of DCell3 is related to
its high dependence on servers, which is analyzed in the next
section. As in our previous results, Figure 6 shows that the
number of ports used by servers increases the reliability for
a same topology type. This is because, as shown in Table I,
topologies with higher number of ports per server have a lower
switch port density, being less dependent on switches. Finally,
DCell2 has the same performance of Bcube2.

The results of path length in Figure 7 show that switch
failures generally double the diameter size, having peaks only
on values close to 90% of failure ratio for most of the
topologies. Moreover, the path stretch changes slightly up to
failure ratios of 90%. This indicates that switch failures have a
lower impact on path stretch comparing to other failure types.

C. Server Failures

Figure 8 shows the results for server failures. It is important
to note that, in our previous results, the term
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Fig. 6. Metrics related to network size considering switch failures.
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Fig. 7. Metrics related to path length considering switch failures.

Equations 1 and 2 is constant and represents the total number
of servers, because there is no removal of this type of element.
In this analysis, however,

�n

i=1
|si| reduces of a unit for

each server removal. Thus, as shown in Figure 8(a), Fat-
Tree presents the maximum reliability (RSmax = 1). This
happens because a server removal in this topology does not
induce disconnected components since a Fat-Tree does not
depend on servers to forward packets. The results also show
that the other networks, except DCell3, are more reliable
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Fig. 8. Metrics related to network size considering server failures.

to server failures than to switch and link failures. In the
case of DCell3, we show in Section IV-B its high reliability
considering switch failures, because a significant part of this
network remains connected through its servers. Figure 8(a)
confirms that conclusion because DCell3 shows the earliest
RSmax decrease when the server failure ratio increases. The
results of Savg show that the isolated components are also
small comparing to the total number of servers, which is
approximately 3,400. The absence of points in Figure 8(b) for
failures up to a certain value, specific for each topology, shows
that the topologies maintain one connected component for a
long range of failures, except for DCell3 which has the worst
performance. Figure 9 shows that DS and PS have the same
behavior of those in Section IV-A, showing the significant
impact that server failure produces on hybrid topologies.

V. CONCLUSIONS AND FUTURE WORK

In this work we have evaluated the reliability of datacenter
topologies proposed in the literature when subject to different
element failures, revealing the tradeoffs of each topology
design. We have observed that network degradation starts with
the removal of connected components with a relatively small
number of servers. Our results also have revealed that hybrid
topologies degrades smoother than Fat-Tree with respect to the
network size, in the case of link and switch failures. However,
the reliability of BCube and DCell with respect to the network
size is maintained at the cost of substantially increased path
length. With these results we can also conclude that the
network size or path stretch isolated does not provide an
efficient way to evaluate the topology performance, and should
probably be combined. Also, these metrics can be combined
with other metrics like network cost and network capacity in a
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Fig. 9. Metrics related to path length considering server failures.

future work. Another future direction is to consider multipath
routing, by analyzing path diversity.
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