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Abstract—A transform approach to network coding was in- [9], it provides a simple and systematic manner of network
troduced by Bavirisetti et al. (arXiv:1103.3882v3 [cs.IT) as a code construction that can guarantee (under certain d¢onsljt
tool to view wireline networks with delays as k-instantaneous 5, asymptotic rate of half for every source destination pair
networks (for some large k). When the local encoding kernels . "

(LEKS) of the network are varied with every time block of length when fth_e Z€ro |n'Fe_rference con_d_lt_lons cannot _be met.
k > 1, the network is said to use block time varying LEKs. In Sufficient conditions for feasibility of PBNA in 8-S 3-D

this work, we propose a Precoding Based Network Alignment I-MUN were obtained in [8]. However, the set of conditions
(PBNA) LSIEIQGTG t?]ased on trfiﬂSfONQ athr?aCh arlltd Ib|00|§ tinge were infinite and hence, impossible to check. Moreover, the
varying s for three-source three-destination multiple unicas " . ; ;
network with delays (3-S 3-D MUN-D). In a recent work, Meng suff|C|e_nt condl_tlons were constrained by the use of pdgrcu

et al. (arXiv:1202.3405v1 [cs.IT]) reduced the infinite setof precoding matrices at the s_ol_Jrces. These mqtlvated theoﬁprk
sufficient conditions for feasibility of PBNA in a three-souce Meng et al. [11] where, a finite set of conditions are obtained
three-destination instantaneous multiple unicast netwdk as given for feasibility of PBNA in a3-S 3-D I-MUN that are both

by Das et al. (arXiv:1008.0235v1 [cs.IT]) to a finite set and necessary and sufficient. We call these finite set of conditio
also showed that the conditions are necessary. We show thatas the “reduced feasibility conditions”. The highlight bitr

the conditions of Meng et al. are also necessary and sufficien . . . . . .
conditions for feasibility of PBNA based on transform apprcach result is that PBNA with arbitrary precoding matrices is

and block time varying LEKs for 3-S 3-D MUN-D. feasible iff PBNA is feasible with the choice of precoding
matrices as in [8] (with the number of symbol extensions
l. INTRODUCTION being greater than or equal to five). The derivation of theltes

The notion of Network Coding was introduced in [1] wherénvolved taking into account graph related properties.
the capacity of wireline multicast networks is characiediz A Discrete Fourier Transform (DFT) based approach to
Scalar linear network coding was found to achieve the c@ypacacyclic networks with delays was introduced by Bavirisetti
of multicast networks [2]. In the meanwhile, it was shownl. [12] for arbitrary acyclic networks with delays. Therpary
that [3] there exist solvable non-multicast networks wheresult of the work is that acyclic networks with delays can be
scalar linear network coding is insufficient. In additioB] [ transformed intd: instantaneous networks (for some lafge
also showed that determining the existence of linear nétworhis transform approach enabled the application of PBNA in
coding solution for multiple unicast networks is NP-hard ithree-source three-destination multiple unicast netwaitk
general. In [4], it was conjectured that vector linear netwvo delays 8-S 3-D MUN-D) to achieve a throughput of half
coding suffices to solve networks with arbitrary messader every source destination pair, where the zero inteniege
demands. Subsequently, Dogherty et al. [5] disproved thenditions cannot be met. It was also shown that, unlike $
conjecture by showing that there exists networks whereovec8-D I-MUN, there exists3-S 3-D MUN-D where PBNA based
linear network coding does not achieve network capacion time-invariant local encoding kernels (LEKS) is feasibl
and that nonlinear network coding are required in generdlhe PBNA was then generalized with the use of time-varying
However, the practicality of linear network codes led thEKs and algebraic necessary and sufficient conditions for
construction of suboptimal network codes for Multiple Uast feasibility of PBNA in 3-S 3-D MUN-D were obtained.
networks based on linear programming [6]. However, these conditions are applicable to only to the case

The concept of interference alignment originally introddc of precoding over a fixed number of symbol extensions, i.e.,
in interference channels [7] was applied by Das et al. [8f,the feasibility test fails over a symbol extension of |#mg,
[9] in a three-source three-destination instantaneousiptaul it is not known if the test would fail for a symbol extension of
unicast network3-S 3-D I-MUN), where the zero interferencelength greater thah. Hence, in the absence of an elegant set of
conditions of Koetter et al. [10] cannot be met, to achieve @nditions that would help check the feasibility of PBNA in a
rate of half for each source destination pair. Since prewpdi3-S 3-D MUN-D over any number of symbol extensions (like
matrices are used at the sources for interference alignameht in [11]), we are motivated to look for an alternative PBNA
exploited for network coding i3-S 3-D I-MUN, it came to scheme foB-S 3-D MUN-D. In this work, we shall propose a
be known as Precoding Based Network Alignment (PBNARBNA scheme and show that its feasibility conditions intheri
Though PBNA is not optimal in general for3aS 3-D I-MUN  the reduced feasibility conditions of Meng et al.
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Definition 1: A 3-S 3-D MUN-D is said to use block time be written in terms of the transfer matrix froffy to 7’;, given
varying LEKs when the LEKSs are varied with every time blocky M;;(D), as [10]
of lengthk > 1 and remain constant within each time block. 3

The contributions of the paper are as follows: Y;(D) = Mi;(D)Xi(D) @

o A PBNA scheme foB-S 3-D MUN-D based on transform =
approach and block time varying LEKSs is proposed. Wwhere, M;;(D) = S 47e* MY D* where, dyq, is the differ-

« Necessary and sufficient conditions for feasibility of thence between the maximum and minimum of the path delays
proposed PBNA scheme is shown to be the same as frem S; to T;, over all (i, j), between which a path exists.
reduced feasibility conditions fa#-S 3-D I-MUN. Note that hereM;;(D) is al x 1 matrix. M;;(D) is also a

The organization of this paper is as follows. In Section [function of the LEKs and is explicitly indicated only when
we shall briefly review the system model and the transforfgauired (i.e., denoted by/; (e, D)).
approach t03-S 3-D MUN-D. The PBNA scheme foB-S When the LEKSs are varied with time, denote the set of LEKs

3-D MUN-D based on transform approach and block timgom (tti”le insta(r:t)tl tg till”ne instantttg) (t2 > t1) E’))’ glinta),
varying LEKs shall be detailed in Section Ill. The necessahf- " = {e!), gD, g2 } where,¢("") denotes

and sufficient conditions for feasibility of the proposetieme the LEKs at timet;. The output symbols of; at time instant
will be discussed in Section IV. Section V will conclude thd iS given by [12]

S

paper. . . . v;®) = Z Z Mi(]{i)(e(tfd,t))Xi(t—d). @
Notations: For a variablep which takes integer values i=1 d=0

between0 to k — 1 where k£ is a positive integer, the
notation A”) denotes matrices indexed hy The notation
diag(Ay, As,--- , A,) represents a diagonal matrix whos

When the LEKs are time invarianfy/" (c(¢~%%)) = M.

)

Jhe details of the exact dependence ]lzf[i(f)(g(t*d-rt)) on

diagonal elements ardy, Ay, -- - , A,,. g(t*f“) can be seen in [12]. We note that the output symbol
at time ¢ at any destination depends only on the LEKs
Il. BACKGROUND g(t=dmazt)

In this section, we shall review the system model 368 )
3-D MUN-D [10] and decomposition of-S 3-D MUN-D into A Review of the Transform Approach of [12]
k instantaneous networks [12]. Denote ak-length input symbol ofS; by XF, i.e, xF =
A 3-S 3-D MUN-D is a network where Source-denoted [Xw—l) Xk X“”r' Similarly denote ak-length
by S;, needs to communicate with Destinatigndenoted by
T; (i € {1,2,3}). The min-cut betweer$; andT; is assumed
to be 1. We consider &3-S 3-D MUN-D represented by a

output symbol aff; by Y;*. The set offy»-symbols generated
by the sources at any particular time instant are said to con-

: ) . stitute the same generation. Consider the transmissicmnseh
Directed Acyclic Graph (DAGY = (V, E), whereV'is the set where, givenk(>> d,....) generations of input symbols at

of nodes and¥ is the set of directed links. Arbitrary (positive)eaCh source, the last,,., generations is transmitted first

Ljntegfrddlgl?(ybor; each link 1S a;ssu(rjned. we asstume that e¥ ich is called theyclic prefiy followed by thek generations
lirected link between a palr of Nodes represents an erger-i, ¢ input symbols. In effects +d,, .. time slots at each source
link and has a capacity of o~ symbol per link-use for o ; (k+dmas)
AR are used for transmitting generations. Theny is
some positive integem > 0. . . J .
. written as(3) using (1). Then,Y;(D) can be written as (3)
The input random processés;(D) of S;, output random . . . : :
using (1). Discarding the firsi,,,, outputs atT};, (3) is re-
processes;(D) at T; and random processes. (D) trans- . . y m
. . . .~ written as (4). It is assumed thatdivides2™ — 1.
mitted on the linke are considered as a power series in a ) . . .
. oo () i Theorem 1 ( [12]): The matrix M;;, as defined in (4),
delay parameteD, i.e., X;(D) = >~/ X, D" Y;(D) = . ; O,
" v pt and Z.(D - Z(t)th Zh x® 3O can be diagonalized asM;; = FM;F where,
» and Z.(D) = e where, X", Y. ~ _ A (e1)  arp(k— -
2i=o & (D) =2 =0 i i N = diag (MY @Y b)), The elements
and Z.’ denote the input symbol of;, output symbol of D * I * - 1)
T; and the symbol transmitted on linkrespectively at time ;" (I € {0,1,---(k — 1)}) are given by M;’ =

instantt. S omes alk=1-Ddp) and the matrixF is the DFT matrix
Scalar linear network coding is assumed on 88 3-D given by '
MUN-D. The symbol transmitted on a link at time instant 1 1 1 1
. . 2 k-1
(t+1) is given bZ i 52 34 O;v(kil)
Z£t+1) = Zai,e—xl‘(t) + Z Be’,ezif) F=
i=1 e’:heade’)=tail(e)

1 okl o20=1) . =D (k=1
where,(a; e, Bere) € Fam anda; . = 0 whens; # tail(e), for

all i. The output symbol of; at time instantz + 1) is given where,a € Fam ando® = 1.

by Y = S eader 1, €i 2L Where,eo; € Fyn. The At each sourceS;, transmit X;* = FX,* instead of
scalarsa;.., 8. ande. ; are called local encoding kernelsX;*. Then, at each destinatidFy, the output symbol vector
(LEKs) denoted bye. The output random process &f can of length k& given by Yj”“ is pre-multiplied by F~! after



r 0 1 d .
SRS MY M pfmas) 0 0o .- 0 0 o ox,0D
y,(*=2) 0 MY Mffmaes=D o ppldmaez) gL 0 0 x,;(k—2)
v, @ | = 0 0 M MP e MmesmD o pp{dmas) X, ©)
yj(—l) i=1 0 0 . 0 0 ij(_)) . Mi(]qmamfz) Ali(jdmaasfl) x,; (k=1
(—dmaz) : : : : : : : : ' (k—dmaz)
¥ L o 0o .- 0 0 0o 0 0 VAR -
e MO M o afme aGme 0 0 0 0 ] xen
Y, e=2) sl o M® L gD plmesy ylmen g g g | | x,02
= : : : . . . . : : 4)
; = ; ; : : ; S ; ;
v;(© Mf}) ij;) . Mlgquam) 0 0 .. 0 0 Mff) X; @

M;;

discarding the firstl,,,, Symbols. Therefore, by applicationsymbols intok blocks. Denote the"-block of independent
of the above theorem, the effective output symbol is given bigput symbols ofS; by X!(p) (0 < p < k — 1) which
° is a column vector of lengthén + 1) for Sy, n for Sy,

vk = prly/f = p! - FNF'FXF =S M Xk (5
! J 2 FMij 2 My ® and n for S3. The symbolsX/(p) (0 < p < k — 1)

i=1 i=1

. , , (2n+1) ; (p®K) _

The 3-S 3-D MUN-D is now said have been transformed intg® Precoded ontoX; as follows. Definex;” " =
k instantaneous networks. [Xfp) X X Xfp”"k)] (0 <p<k—1). Let
IIl. PBNA USING TRANSFORMAPPROACH ANDBLOck  V;” denote the precoding matrices it (0 < p < k — 1).
TIME VARIANT LEKS The matrices, for alp, are of sizg2n+1)x(n+1), (2n+1)xn

In this section, we propose a PBNA scheme different fror‘%nd (2n +1) x n for i = 1,2, and3 respectively. Now, the

that given in [12] for3-S 3-D MUN-D. Consider the following symbols to be transmitted by;, before pre-multiplication by

i ; (p®k) _ 17(P) s
transmission where, every sourSg is required to transmit a IF sn_df a::]dm(;]n (I)f CP,t arfe g'venb:a‘g(i(t b_tVi X?t(tp)oi b
k(2n + 1)-length block of symbolgk >> d,,..) given by ; g'ef' €p eeltr_nin t(') e\t;ery (;)(t:h Odo?t' ransfmépe y
(X x@ ... x+CrHT for some positive integen > 0. 7 efore pre-multiplication by and the addition o , are

Partition the block of symbols int(n + 1) blocks, each of obtained by precoding the" block of independent symbols

s . o P
length £ symbols. For each block of symbols, we add a Xi(p). The instance op = 0 is shown in Fig. 1.

i . . . . 1
cyclic prefix of lengthd,,,.... The partitioning of input symbols After discarding the CP and pre-multiplying by~ at T;,
and addition of cyclic prefix (CP) are shown in Fig. 1.

we obtain (2n + 1)k-output symbols. These are partitioned
The LEKs of the network are varied with evefly+ ..o ) into k-blocks, each of lengtf2n + 1)-symbols. Each bIocl; is
time instants starting from the time instant= —d,q,. given by V7% — |y®) y @tk y @2k Yl.(p”"’“)}
Therefore, whers; transmits its first block of data as shown ir‘(o < p < k —1). The input-output relation is now given by
Fig. 1, the LEKs remain constant and when it starts the trans-

3
mission of the second block of data, the LEKs encountered in v *®% = N"diag (M;; (e, a?), Mij(eq, a?), ©)
the network are different. i=1
At each destinatioff;, discard the first,, .., outputs in each oy Mij(gg,aP), Mij (§<2n+1),ap)) VP X! (p).
received block of lengthk + d.q.) Symbols, starting from
time instantt = —dy.,. This is termed as discarding thelLet M7, = diag (Mij(gl,a”L I Mij(§(2n+1)70ép)).
cyclic prefix. Denote the LEKs duringP-block transmission
by g, (1 <1< (2n+1)). Now, consider the second block of IV. FEASIBILITY OF PBNA USING TRANSFORM
output symbols (i.e.f = 2) at T; after discarding the cyclic APPROACH ANDBLOCK TIME VARYING LEKS

prefix. Since the LEKs remain constant during one block of . )

transmission, from (2) and (3), we get (6) (at the top of the e assume that the min-cut betwegn-Tj is not zero for
next page). As in (4), (6) is re-written as (7). Using Theored! ¢ # j- The proof technique for feasibility of PBNA in the
1, M;;(g,) can be diagonalized tMij (c,). Similarly, theyth-  Case of _ml_n-cut betweef; — T); being zero for someé # j
block of output symbols, after discarding the cyclic preéapn Will be similar to that used for non-zero min-cut.

be written in terms of the matri’Z;; (g;) (1 <1< (2n+1)). PBNA using Transform Approach and Block Time Varying
We note that LEKSs requires that the following conditions be satisfied [8]
Mij(g;) =diag (Mij(§171)7 Mij(g, ), -, Mij(élva(kil))) ®) foro<ps<k-—1.

Spar(M%, ‘/3(;3)) C Spar(M§1V2<p))7 Spar(M§2V3(p)) - Spar(M{’2V1<p))7

Dk
Let X|("tD¥ xmk andX!* denote thgn+1)k-length,nk- SparMZ, V) ¢ SparM2, Vi)

length, andnk-length independent symbols generateddyy
So, andS3 respectively. Partition each of the independent input



1= —dmax =k = 2k+dmax

l 1% Block 2" Block (2n+1)" Block
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Fig. 1. The figure demonstrates the transmissioii2ef + 1) blocks of symbols, involving addition of CP for every block.%;. The pre-multiplication of
each block of symbols by (not explicitly shown in the figure) is done after the precadistep and before the addition of CP.

ry, @kt dmaz —1)7 M (e,) M (e,) M{Imas) (g,) 0 0 . 0 0 1
)/j(2k+dma1—2) i 0 MS_)) (g5) M;jflmazfl)(§2) M;jflmaw)(éz) 0 . 0 0
_ , (6)
: i=1 . . . T . . .
(kt+dmax) 0 1 dmaz—1 dmaz
LY - 0 0 0 I\'{'L(j)(§2) M;j ) (g2) ng )(§2) ng )(éz)-
x [x;@F=1) x,(2k=2) xR x, (k=1 . x,;(@k—dmaa)]T
ry; Gktdmaz =11 M (e,) M (e,) Mmar=D () pifmar)(g,) 0 000 0 X, (2R —1)7
}/j(2k+dmaz*2) 72\\ 0 Mi(s_)) (22) Mi(;flmaw*@ (22) Mff7naw71)(§2) A4i(]4mam)(§2) ... 0 0 0 X; (2k—2) -
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M; ;(g2)

PBNA in 3-S 3-D MUN-D is feasible iff there exists a
choice of (n + 1) x n matricesA® and B®, V"), and a
n xn matrix C®) (0 < p < k—1), all with entries fromFym,
such that [12]
defVi?  MP Tt ME ME, T ME VP AP £ 0,
de{MP, = Moy ME, T MP, VP A®) v P 2o,
de{M?, ' ME, ME, T ME, VP B®) P 20,
vy ac = vPB.

RankMP, VP ME V)] = RankV(?) MP, ~ MPy VIP)] = 2n + 1
(10)
Rank M2, VP M, v P)) = RankMP, ~* ME, VP vP)) = 2n 1
Rank M2, VP MP v )| = RankMP, ~* M2V vP)) = 2n 41
We first note that recovering/(0), for all i, represents
the feasibility problem of PBNA in the instantaneous vemsio
of the original 3-S 3-D MUN-D. Suppose that we cannot
recover X/(0), for all . But, if we can recovetX/(p), for

all ;é)(o a;nd f(or :;III i, (vve )can still achieve throughputs
n+1)(k—1 n(k—1 n(k—1
of “2 TR+ @R _(anrnE OF S1 =T, Sz = Ty and  ywhere, y® = gz, 'z, M2, ME M2, MP,. The above

53 — T3 respectively. This means that asand k become cqnditions are obtained from the network alignment conditi
arbitrarily large, a throughput close t§ can be achieved j, (10). For0 < p < k — 1, define

for every source-destination pair. However, in this sectie
show that if X/(0), for some: = 4;, cannot be recovered n(p) =
then, X/ (p) is not recoverable for any. Conversely, we also

Mz (g, aP)M32 (g, oP) M3 (g, o)
Ms31(e, aP) Mas(e, aP) Mia(e, o)’
M1 (g, aP)Mis(g, oP) _ Maa(g,aP) Mz (g, aP)

show that if X/(0), for all ¢, can be recovered thel(p) is  bi(p) = Mt (=, o) Mas (e, aP) ba2(p) = Mra(e, oF) Mas (2, aP)
recoverable for alp and;. Mss(: ap)Mm(: aP) B B
Definition 2: PBNA in 3-S 3-D MUN-D using Transform  b3(p) = MlS(;’ a,,)MSQ(: ar)’

Approach and Block Time Varying LEKSs is said to be feasible
if X/(p) can be recovered froﬁfi(”@k) for all i, for all p £ 0, As in [11], we shall consider the two casesigf)) not being
and for everyn > 1. a constant and a constant, separately.

Henceforth, PBNA in3-S 3-D MUN-D using Transform  Case 1:(0) is a not a constant. The choice of pre-coding
Approach and Block Time Varying LEKs shall be simplymatrices are similar to that in [8] [11].

referred to as PBNA in3-S 3-D MUN-D_. _We now_head Vl(m — W vPw U@y U@ W, (11)
towards proving that the reduced feasibility conditions of 2 n—1
v = [R(P)W rROy@w r@y® -y R®) y(P) W],

Meng et al. for feasibility of PBNA in3-S 3-D I-MUN are

2 n
also necessary and sufficient for PBNAJRS 3-D MUN-D. V3" = [SPu®w s®u® w SPyE W],



where,R = M, M%, ", S = MP,ME, ™' (0<p<k—1),and Now, consider the following two cases separately.} every

W=1[11--- 1% (all ones vector of siz€2n + 1) x 1). monomial term on the L.H.S cancels with one monomial term
Lemma 1:PBNA in 3-S 3-D MUN-D is feasible iff, for on the R.H.S{(b) Some monomial term on the L.H.S cancels
1 <p<k-1and for alls, with the sum of one monomial term froswm,; and another
bi(p) ¢ SP) = { f(n(p) ’f( L o(@) € Fam [2], F()g(z) £0, monomial term fromSwumes.
(a) Every monomial term on the L.H.S cancels with
QCd(f( ) g( )) =1, deg(f) <n, deg(g) <n—1}. a monomial term either fromSum; or Sumy. Sup-
for anyn > 1. pose thatG(Pu)G(ng)G(sz)a”(dPu+dP23+dP32) cancels

Proof: Proof for sufficiency, with the choice of precodingwith h2 G(Pm)G(P%)G(Pm)ap(dP12+dP23+dP31). Clearly,
matrices as given in (11), is similar as that for instantaiseothe LEKs occurring inG(Py1)G(P23)G(Ps2) has to be the
network ( = 0) as in [13]. Proof for necessity, taking intosame as that irG(P;2)G(P3)G(Ps1). Therefore, it means
account other possible choices of precoding matriceshgatis that every edge covered by the path tupglg , Ps3, Ps2)

(10), is the same as that fpr= 0 case as in [11]. B are also covered by edges in the path tu@Rs, Pss, Ps1)

The following theorem of Meng et al. gives the reduceihcluding multiplicities. Hencedp,, + dp,, + dp,, = dp,, +
feasibility conditions for3-S 3-D I-MUN. dpys +dpy, - So,Z—f = 1. By Menger’s theorem, there exists at

Theorem 2 ( [11] (Reduced Feasibility Conditions)): least one non-zero monomial termS$mms. A monomial term
X/(0) can be recovered froﬁg(0®k), for all 4, iff in Sums has to cancel with a monomial term in L.H.S or with
bi(0) ¢ S© = {1777(0)777(0) 41 n(0) } (12 @ monomial term inSum, or with a difference between two

n(0) +1 monomial terms, one each from L.H.S aSdm,. The last

The following th h tha S iff b;(0 pqssibility_is similar to the one treated_in cage. If a mono-
S(0) e following theorem shows that(p) ¢ f 6:(0) ¢ mial term inSum, cancels with a term in L.H.Sthe% =1.

h2 1 1 H 1
Theorem 3:When 5(0) is not a constantX’(p) can be But, 72 is alsol. This contradicts the hypothesis thatp) ¢

recovered fror‘rﬁ/(”%) for all p, iff X/(0) can be recovered S®).If a monomial term InSum2 }?ancels with a monomial
from v (0% term in Sumy, then 2 = 12 Byt 22 = 1 which means that
g :

Proof: First, we shall reduce the infinite sef_, S to i = 1. This agaln contradlcts ( ) ¢ S, Similarly we
the form similar to (12). We shall prove that if, fer= 0, can prove that IfG(Pu)G(st)G(sz)Oép(dP“+dp23+dP32)
bi(p) & S@ = {Ln(p),n(p) L1, @) } (13 cancels wich—?G(le)G(ng)G(Plg)ap(dPﬂ+dP32+dP13), it
n(p) +1 leads to contradiction of;(p) ¢ S®).
then, b;(p) ¢ U, S as well where, S is defined in (b)) Some monomial term on the L.H.S cancels with
Lemma 1. The linearization and square-term property [1tf}e sum of one monomial term fromMyum; and another

hold good and following exactly the same steps as in [LIJ)onomial term fromSums. Note that a monomial term on
U, S can be reduced to the set of the fo ﬁm} the L.H.S cannot be the sum of two monomial terms, both

h2+hsn(p) . .
where,ho, b1, ha, hs € Fam, (ho, h1) # (0,0) and (ha, hy) % from Sum; or Sums, as different monomial terms dum

= (») contain product of path gains of different path tuples. &t
(0,0). We shall now prove that ibi(p) ¢ 57 then a monomial term on the L.H.S cancels with the sum of two

bi(p)¢ {MTWT(;)(M (hohiha #0), ho + han(p) (hoh: 7'50)}~ monomial terms, one has to be frofum; and the other
from Sumsy. Let G(P11)G(PQg)G(PgQ)O[p(dPH+dp23 +dP32)
The proof for rest of the cases of the s{ef%% IS cancel with Z_fG(Pm)G(P%)G(PP)l)ap(dP12+dP23+dP31) n
exactly the same as in [11]. We shall prove tlbatp) ¢ h%G(P21)G(P32)G(P13)ap(dp21+dp32+dp13). Now, the mono-

h

h2+1;%(§%P) (hlh2h3 ?é O) and the other case can be proveﬁtlals G(Plg)G(P23)G(P31) andG(Pgl)G(P32)G(P13) have

similarly. Letb;(p) ¢ S® and suppose that(p) = % to contain the same variables as tha6i;, )G (Pas)G(Psz).

for somehy, ha, hs € Fam \{0}. Consideri = 1 (the rest can So, dpy, +dpyy+dps,=dp,,+dpy+dpy, =dpy, +dps,+dp,, .

be proved in the same way). Substituting fefp) andn(p), Now, note that such a cancellation can happerft’s = 1.

we have the equality as given in (14) (at the top of the nejt there exists a monomial term on the L.H.S that cancels

page) wherey;; represents the set of all paths fratnto T3, W|th a monomial term fromSum, (Sumy), then 22 = 1

G(P;;) represents the product of LEKs along the pBth(i.e., (n; _ 1) which meanshs — 0 (hs = 0). This contradicts

the path gain) andp,; represent the integer delay along th

path P,;. We refer toG(Pll)G(ng)G(ng) asmonomialand b1 (P) I¢ ftipth So, let (favery monoml_all Eefm ?Qﬁ;he L-Hds
p(dp,, +dpy, +dp : cancel wi e sum of one monomial term fro$wm, an

G(P11)G(Ps) G(Ps2)a (dr1s +desg¥dres) asmonomial term another monomial term frorffums. After these cancellations

Since min-cut betwee; — T} is non-zero for all(i, j), by it th ial t left the RH.S of
Menger’s theorem, there exists at least one non-zero maioni €re are no monomial terms €eft over on the R.H.> 0
4) then clearly, the equality in (14) also holds good for

term on the L.H.S of (14). Clearly, the monomial terms of th N o ) )
L.H.S cannot cancel among themselves as different monomiaf’ h_f) = (L,0) or (3, %) = (0,1) which contradicts
terms contain the product of path gains of different pathesip b;(p) ¢ S). If there are monomial terms left over ifum,



h h h
) bi(p) = Mii(e, ) Mas(e, aP)Msa (g, o) = —= Mis (e, o) Mas (g, o )Mz (g, o) + — Ma1 (g, o ) Msa (g, o ) Mis (e, o)
ha 4 h3n(p) hy h1

h
= > G(Pn)G(P23)G(P32)ap(dpll+dP23+dP32) =2 3 G(P12)G(P23)G(P31)ap(dP12+dP23+dP31) (14)
Pri1€x11,P23€x23,P32€xX32 b Pia€x12,P23€x23.P31€xX31
Sumq
h
+ =2 Z G(P21)G(P32)G(P13)ap(d1321 +dpgytdpg)
! Py1€x21,P32€x32.P13€X13
Sumag
> G(Pu)G(P23)G(Ps2) = D> G(Pu)G(Pa)G(Ps) + > G(P21)G(P32)G(Pi3) (15)

Pri1exi11:.P23€x23,P32€x32 Pr2exi12,P23€x23,P31 €x31 Pa1ex21:P326€x32:P13€X13

Sum| Suml,

and Sums after the cancellation of monomial terms of L.H.SIf Part” and “Only If Part” in the proof of Theorem 3. ®
of (14), then every remaining monomial term 8fum; has The feasibility conditions for PBNA i3-S 3-D MUN-D for
to cancel with that ofSum, which means thak, = h3. But, the case of zero min-cut betweéh— T for some(i, j) are
hatha — 1. Since the field of operation is of characteristic also the same as that 8¢S 3-D I-MUN as given in [11].
andh,; # 0, h2ths — 1 cannot be satisfied. Hence, ca#

also leads to contradiction &f (p) ¢ S®). V. CONCLUSION

To prove the theorem, we now need to show th#p) < A new PBNA scheme foB-S 3-D MUN-D is proposed
SW (p # 0) iff ;(0) € S©. We shall assume=1 and the \hich is different from PBNA with time-invariant LEKs and
proof for the rest are similar. time-varying LEKs [12] where, the independent symbols are
If Part: Supposé: (0) = %- Substituting forb; (0) and  precoded within a single block of data to be transmittedrafte
n(0), we get (15). As in the earlier part of the proof, the termgddition of CP and pre-multiplication b¥. In the proposed
on the L.H.S of (15) cannot cancel among themselves. SBBNA scheme, the independent symbols are precoded across
every term in the L.H.S has to cancel with a termSam’  multiple blocks of data which are demarcated by separate
or Sums. If the term in the L.H.S cancels with a term inCPs. We showed that the proposed PBNA scheme inherits the

Sum’l then dpn + dp23 + dp32 = dp12 + dp23 + dP:n; if the
cancellation is with a term iSum}, thendp,, +dp,, +dp,, =
dp,, +dp,, +dp,,. The remaining un-canceled termsSam/
has to cancel with the un-canceled termsSimn/,. For these
terms,dp,, + dp,, + dp,, = dp,, +dp,, + dp,,. Hence, (14)
is satisfied wich—f Z—i’ = 1. Therefore,b;(p) = 1157”()1)),
Y p # 0. Similarly it can be proved that ib;(0) belongs to

any other element of©) then,b;(p) € S®), V p # 0.

Only If Part: Assume thatb,(p;) = 11(77”(;)] for some
p1 # 0. Following the same steps as in the “If EDart"
cancellation of terms one can prove thalp) = %,
Y p # p1 which includesp = 0.

Hence,b;(p) ¢ S® (p # 0) iff b;(0) ¢ S©. [ |

reduced feasibility conditions of Meng et al. The motivatio
for the new scheme was that the feasibility of PBNA with
time-invariant LEKs and time-varying LEKs [12] could not
be easily checked. However, a caveat in the proposed PBNA
scheme is that the decoding delay is higher compared to that
for PBNA with time-invariant LEKs and time-varying LEKSs.
Using the proof technique of Theorem 3, it can shown that
the feasibility conditions for PBNA i3-S 3-D I-MUN are
also necessary conditions for feasibility of PBNA with time

regardinmvariant LEKs in3-S 3-D MUN-D. However, sufficiency of

the conditions remain open. Further, necessary and suifficie
conditions for feasibility of PBNA with time-varying LEKsi
3-S 3-D MUN-D are known only for a given value of symbol

In brief, the above theorem proves that the reduced fe#gibilextensions and it is not known if PBNA using time-varying

conditions of Meng et al. for feasibility of PBNA i8-S 3-

LEKs is feasible when PBNA using transform approach and

D I-MUN are also necessary and sufficient for feasibility oblock time varying LEKs is not feasible.

PBNA in 3-S 3-D MUN-D when»(0) is not a constant.
Case 2:7(0) is a constant. Whem(0) is a constant,
Theorem1 of [11] states thatX/(0) can be recovered from
Yi(o@k) iff b;(0) is not a constant for eache {1, 2, 3}. Similar
to Theoreml of [11] we have the following lemma.
Lemma 2:PBNA in 3-S 3-D MUN-D is feasible iff b;(p)
is not a constant for eache {1,2,3} and forl <p <k —1.
Proof: Proof is the same as for=0 case in [11]. &
The following proposition in combination with Theoremof
[11] and Lemma 2 shows that PBNA in&S 3-D MUN-D
is feasible iff PBNA in the3-S 3-D I-MUN is feasible.
Proposition 1: b;(p) is a constant iffb;(0) is a constant.
Proof: The proof follows using the same arguments as
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