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Abstract—A transform approach to network coding was in-
troduced by Bavirisetti et al. (arXiv:1103.3882v3 [cs.IT]) as a
tool to view wireline networks with delays as k-instantaneous
networks (for some large k). When the local encoding kernels
(LEKs) of the network are varied with every time block of length
k > 1, the network is said to use block time varying LEKs. In
this work, we propose a Precoding Based Network Alignment
(PBNA) scheme based on transform approach and block time
varying LEKs for three-source three-destination multiple unicast
network with delays (3-S 3-D MUN-D). In a recent work, Meng
et al. (arXiv:1202.3405v1 [cs.IT]) reduced the infinite setof
sufficient conditions for feasibility of PBNA in a three-source
three-destination instantaneous multiple unicast network as given
by Das et al. (arXiv:1008.0235v1 [cs.IT]) to a finite set and
also showed that the conditions are necessary. We show that
the conditions of Meng et al. are also necessary and sufficient
conditions for feasibility of PBNA based on transform approach
and block time varying LEKs for 3-S 3-D MUN-D.

I. I NTRODUCTION

The notion of Network Coding was introduced in [1] where
the capacity of wireline multicast networks is characterized.
Scalar linear network coding was found to achieve the capacity
of multicast networks [2]. In the meanwhile, it was shown
that [3] there exist solvable non-multicast networks where
scalar linear network coding is insufficient. In addition, [3]
also showed that determining the existence of linear network
coding solution for multiple unicast networks is NP-hard in
general. In [4], it was conjectured that vector linear network
coding suffices to solve networks with arbitrary message
demands. Subsequently, Dogherty et al. [5] disproved the
conjecture by showing that there exists networks where vector
linear network coding does not achieve network capacity
and that nonlinear network coding are required in general.
However, the practicality of linear network codes led to
construction of suboptimal network codes for Multiple Unicast
networks based on linear programming [6].

The concept of interference alignment originally introduced
in interference channels [7] was applied by Das et al. [8],
[9] in a three-source three-destination instantaneous multiple
unicast network (3-S3-D I-MUN), where the zero interference
conditions of Koetter et al. [10] cannot be met, to achieve a
rate of half for each source destination pair. Since precoding
matrices are used at the sources for interference alignmentand
exploited for network coding in3-S 3-D I-MUN, it came to
be known as Precoding Based Network Alignment (PBNA).
Though PBNA is not optimal in general for a3-S 3-D I-MUN

[9], it provides a simple and systematic manner of network
code construction that can guarantee (under certain conditions)
an asymptotic rate of half for every source destination pair
when the zero interference conditions cannot be met.

Sufficient conditions for feasibility of PBNA in a3-S 3-D
I-MUN were obtained in [8]. However, the set of conditions
were infinite and hence, impossible to check. Moreover, the
sufficient conditions were constrained by the use of particular
precoding matrices at the sources. These motivated the workof
Meng et al. [11] where, a finite set of conditions are obtained
for feasibility of PBNA in a 3-S 3-D I-MUN that are both
necessary and sufficient. We call these finite set of conditions
as the “reduced feasibility conditions”. The highlight of their
result is that PBNA with arbitrary precoding matrices is
feasible iff PBNA is feasible with the choice of precoding
matrices as in [8] (with the number of symbol extensions
being greater than or equal to five). The derivation of the result
involved taking into account graph related properties.

A Discrete Fourier Transform (DFT) based approach to
acyclic networks with delays was introduced by Bavirisettiet
al. [12] for arbitrary acyclic networks with delays. The primary
result of the work is that acyclic networks with delays can be
transformed intok instantaneous networks (for some largek).
This transform approach enabled the application of PBNA in
three-source three-destination multiple unicast networkwith
delays (3-S 3-D MUN-D) to achieve a throughput of half
for every source destination pair, where the zero interference
conditions cannot be met. It was also shown that, unlike in3-S
3-D I-MUN, there exists3-S 3-D MUN-D where PBNA based
on time-invariant local encoding kernels (LEKs) is feasible.
The PBNA was then generalized with the use of time-varying
LEKs and algebraic necessary and sufficient conditions for
feasibility of PBNA in 3-S 3-D MUN-D were obtained.
However, these conditions are applicable to only to the case
of precoding over a fixed number of symbol extensions, i.e.,
if the feasibility test fails over a symbol extension of length k,
it is not known if the test would fail for a symbol extension of
length greater thank. Hence, in the absence of an elegant set of
conditions that would help check the feasibility of PBNA in a
3-S 3-D MUN-D over any number of symbol extensions (like
in [11]), we are motivated to look for an alternative PBNA
scheme for3-S 3-D MUN-D. In this work, we shall propose a
PBNA scheme and show that its feasibility conditions inherit
the reduced feasibility conditions of Meng et al.
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Definition 1: A 3-S 3-D MUN-D is said to use block time
varying LEKs when the LEKs are varied with every time block
of lengthk > 1 and remain constant within each time block.

The contributions of the paper are as follows:
• A PBNA scheme for3-S3-D MUN-D based on transform

approach and block time varying LEKs is proposed.
• Necessary and sufficient conditions for feasibility of the

proposed PBNA scheme is shown to be the same as the
reduced feasibility conditions for3-S 3-D I-MUN.

The organization of this paper is as follows. In Section II,
we shall briefly review the system model and the transform
approach to3-S 3-D MUN-D. The PBNA scheme for3-S
3-D MUN-D based on transform approach and block time
varying LEKs shall be detailed in Section III. The necessary
and sufficient conditions for feasibility of the proposed scheme
will be discussed in Section IV. Section V will conclude the
paper.

Notations: For a variablep which takes integer values
between 0 to k − 1 where k is a positive integer, the
notation A(p) denotes matrices indexed byp. The notation
diag(A1, A2, · · · , An) represents a diagonal matrix whose
diagonal elements areA1, A2, · · · , An.

II. BACKGROUND

In this section, we shall review the system model for3-S
3-D MUN-D [10] and decomposition of3-S 3-D MUN-D into
k instantaneous networks [12].

A 3-S 3-D MUN-D is a network where Source-i, denoted
by Si, needs to communicate with Destination-i, denoted by
Ti (i ∈ {1, 2, 3}). The min-cut betweenSi andTi is assumed
to be 1. We consider a3-S 3-D MUN-D represented by a
Directed Acyclic Graph (DAG)G = (V,E), whereV is the set
of nodes andE is the set of directed links. Arbitrary (positive)
integer delay on each link is assumed. We assume that every
directed link between a pair of nodes represents an error-free
link and has a capacity of oneF2m symbol per link-use for
some positive integerm > 0.

The input random processesXi(D) of Si, output random
processesYi(D) at Ti and random processesZe(D) trans-
mitted on the linke are considered as a power series in a
delay parameterD, i.e., Xi(D) =

∑∞

t=0 X
(t)
i Dt, Yi(D) =

∑∞

t=0 Y
(t)
i Dt andZe(D) =

∑∞

t=0 Z
(t)
e Dt where,X(t)

i , Y (t)
i

and Z
(t)
e denote the input symbol ofSi, output symbol of

Ti and the symbol transmitted on linke respectively at time
instantt.

Scalar linear network coding is assumed on the3-S 3-D
MUN-D. The symbol transmitted on a linke at time instant
(t+ 1) is given by

Z
(t+1)
e =

3
∑

i=1

αi,eX
(t)
i +

∑

e′:head(e′)=tail(e)

βe′,eZ
(t)
e′

where,(αi,e, βe′,e) ∈ F2m andαi,e = 0 whenSi 6= tail(e), for
all i. The output symbol ofTi at time instant(t+ 1) is given
by Y

(t+1)
i =

∑

e′:head(e′)=Ti
ǫe′,iZ

(t)
e′

where, ǫe′,i ∈ F2m . The
scalarsαj,e, βe′,e and ǫe′,j are called local encoding kernels
(LEKs) denoted byε. The output random process atTj can

be written in terms of the transfer matrix fromSi to Tj, given
by Mij(D), as [10]

Yj(D) =
3

∑

i=1

Mij(D)Xi(D) (1)

where,Mij(D) =
∑dmax

d=0 M
(d)
ij Dd where,dmax is the differ-

ence between the maximum and minimum of the path delays
from Si to Tj, over all (i, j), between which a path exists.
Note that here,Mij(D) is a 1 × 1 matrix. Mij(D) is also a
function of the LEKs and is explicitly indicated only when
required (i.e., denoted byMij(ε,D)).

When the LEKs are varied with time, denote the set of LEKs
from time instantt1 to time instantt2 (t2 ≥ t1) by ε(t1,t2),
i.e., ε(t1,t2) = {ε(t1), ε(t1+1), . . . , ε(t2)} where,ε(ti) denotes
the LEKs at timeti. The output symbols ofTj at time instant
t is given by [12]

Yj
(t) =

s
∑

i=1

dmax
∑

d=0

M
(d)
ij (ε(t−d,t))Xi

(t−d). (2)

When the LEKs are time invariant,M (d)
ij (ε(t−d,t)) = M

(d)
ij .

The details of the exact dependence ofM
(d)
ij (ε(t−d,t)) on

ε(t−d,t) can be seen in [12]. We note that the output symbol
at time t at any destination depends only on the LEKs
ε(t−dmax,t).

A. Review of the Transform Approach of [12]

Denote ak-length input symbol ofSi by Xk
i , i.e, Xk

i =
[

X(k−1) X(k−2) · · · X(0)
]T

. Similarly denote ak-length

output symbol atTi by Y k
i . The set ofF2m-symbols generated

by the sources at any particular time instant are said to con-
stitute the same generation. Consider the transmission scheme
where, givenk(>> dmax) generations of input symbols at
each source, the lastdmax generations is transmitted first
(which is called thecyclic prefix) followed by thek generations
of input symbols. In effect,k+dmax time slots at each source
are used for transmittingk generations. Then,Y (k+dmax)

j is
written as(3) using (1). Then,Yj(D) can be written as (3)
using (1). Discarding the firstdmax outputs atTj , (3) is re-
written as (4). It is assumed thatk divides2m − 1.

Theorem 1 ( [12]): The matrix Mij , as defined in (4),
can be diagonalized asMij = FM̂ijF

−1 where,

M̂ij = diag
(

M̂
(k−1)
ij , M̂

(k−2)
ij , . . . , M̂

(0)
ij

)

. The elements

M̂
(l)
ij (l ∈ {0, 1, · · · (k − 1)}) are given by M̂

(l)
ij =

∑dmax

d=0 α(k−1−l)dM
(d)
ij and the matrixF is the DFT matrix

given by

F =















1 1 1 · · · 1
1 α α2 · · · αk−1

1 α2 α4 · · · α2(k−1)

...
...

...
...

...
1 αk−1 α2(k−1) · · · α(k−1)(k−1)















.

where,α ∈ F2m andαk = 1.
At each sourceSi, transmit X ′

i
k = FXi

k instead of
Xi

k. Then, at each destinationTj, the output symbol vector
of length k given by Y ′

j
k is pre-multiplied byF−1 after
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M
(1)
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M
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M
(1)
ij

M
(2)
ij

· · · M
(dmax)
ij

0 0 · · · 0 0 M
(0)
ij










︸ ︷︷ ︸

Mij





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


Xi
(k−1)

Xi
(k−2)

.

.

.
Xi

(0)









(4)

discarding the firstdmax symbols. Therefore, by application
of the above theorem, the effective output symbol is given by

Yj
k = F−1Y ′

j
k
= F−1

s
∑

i=1

FM̂ijF
−1FXi

k =
s

∑

i=1

M̂ijXi
k (5)

The3-S 3-D MUN-D is now said have been transformed into
k instantaneous networks.

III. PBNA U SING TRANSFORM APPROACH ANDBLOCK

TIME VARIANT LEKS

In this section, we propose a PBNA scheme different from
that given in [12] for3-S3-D MUN-D. Consider the following
transmission where, every sourceSi is required to transmit a
k(2n + 1)-length block of symbols(k >> dmax) given by
[X

(1)
i X

(2)
i · · · X

(k(2n+1))
i ]T for some positive integern > 0.

Partition the block of symbols into(2n + 1) blocks, each of
length k symbols. For each block ofk symbols, we add a
cyclic prefix of lengthdmax. The partitioning of input symbols
and addition of cyclic prefix (CP) are shown in Fig. 1.

The LEKs of the network are varied with every(k+dmax)
time instants starting from the time instantt = −dmax.
Therefore, whenSi transmits its first block of data as shown in
Fig. 1, the LEKs remain constant and when it starts the trans-
mission of the second block of data, the LEKs encountered in
the network are different.

At each destinationTi, discard the firstdmax outputs in each
received block of length(k + dmax) symbols, starting from
time instantt = −dmax. This is termed as discarding the
cyclic prefix. Denote the LEKs duringlth-block transmission
by εl (1 ≤ l ≤ (2n+ 1)). Now, consider the second block of
output symbols (i.e.,l = 2) at Tj after discarding the cyclic
prefix. Since the LEKs remain constant during one block of
transmission, from (2) and (3), we get (6) (at the top of the
next page). As in (4), (6) is re-written as (7). Using Theorem
1, Mij(ε2) can be diagonalized tôMij(ε2). Similarly, thelth-
block of output symbols, after discarding the cyclic prefix,can
be written in terms of the matrix̂Mij(εl) (1 ≤ l ≤ (2n+1)).
We note that

M̂ij(εl) =diag
(

Mij(εl, 1), Mij(εl, α), · · · , Mij(εl, α
(k−1))

)

(8)

Let X ′(n+1)k
1 , X ′nk

2 , andX ′nk
3 denote the(n+1)k-length,nk-

length, andnk-length independent symbols generated byS1,
S2, andS3 respectively. Partition each of the independent input

symbols intok blocks. Denote thepth-block of independent
input symbols ofSi by X ′

i(p) (0 ≤ p ≤ k − 1) which
is a column vector of lengths(n + 1) for S1, n for S2,
and n for S3. The symbolsX ′

i(p) (0 ≤ p ≤ k − 1)

are precoded ontoX(2n+1)
i as follows. DefineX(p⊕k)

i =
[

X
(p)
i X

(p+k)
i X

(p+2k)
i · · · X

(p+2nk)
i

]T

(0 ≤ p ≤ k − 1). Let

V
(p)
i denote the precoding matrices atSi (0 ≤ p ≤ k − 1).

The matrices, for allp, are of size(2n+1)×(n+1), (2n+1)×n
and (2n + 1) × n for i = 1, 2, and 3 respectively. Now, the
symbols to be transmitted bySi, before pre-multiplication by
F and addition of CP, are given byX(p⊕k)

i = V
(p)
i X ′

i(p).
In brief, thepth element of every block to be transmitted by
Si, before pre-multiplication byF and the addition of CP, are
obtained by precoding thepth block of independent symbols
X ′

i(p). The instance ofp = 0 is shown in Fig. 1.
After discarding the CP and pre-multiplying byF−1 at Tj,

we obtain(2n + 1)k-output symbols. These are partitioned
into k-blocks, each of length(2n+1)-symbols. Each block is

given by Y
(p⊕k)
i =

[

Y
(p)
i Y

(p+k)
i Y

(p+2k)
i · · · Y

(p+2nk)
i

]T

(0 ≤ p ≤ k − 1). The input-output relation is now given by

Y
(p⊕k)
i =

3
∑

i=1

diag (Mij(ε1, α
p), Mij(ε2, α

p), (9)

· · · , Mij(ε2n, α
p), Mij(ε(2n+1), α

p)
)

V
(p)
i X′

i(p).

Let Mp
ij = diag

(

Mij(ε1, α
p), · · · , Mij(ε(2n+1), α

p)
)

.

IV. FEASIBILITY OF PBNA USING TRANSFORM

APPROACH ANDBLOCK TIME VARYING LEKS

We assume that the min-cut betweenSi−Tj is not zero for
all i 6= j. The proof technique for feasibility of PBNA in the
case of min-cut betweenSi − Tj being zero for somei 6= j
will be similar to that used for non-zero min-cut.

PBNA using Transform Approach and Block Time Varying
LEKs requires that the following conditions be satisfied [8]
for 0 ≤ p ≤ k − 1.

Span(Mp
31V

(p)
3 ) ⊂ Span(Mp

21V
(p)
2 ),Span(Mp

32V
(p)
3 ) ⊂ Span(Mp

12V
(p)
1 ),

Span(Mp
23V

(p)
2 ) ⊂ Span(Mp

13V
(p)
1 ),



Fig. 1. The figure demonstrates the transmission of(2n+ 1) blocks of symbols, involving addition of CP for every block at Si. The pre-multiplication of
each block of symbols byF (not explicitly shown in the figure) is done after the precoding step and before the addition of CP.
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(6)

×
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Rank[Mp
11V

(p)
1 Mp

21V
(p)
2 ] = Rank[V (p)

1 Mp
11

−1Mp
21V

(p)
2 ] = 2n+ 1

(10)

Rank[Mp
22V

(p)
2 Mp

12V
(p)
1 ] = Rank[Mp

12
−1

Mp
22V

(p)
2 V

(p)
1 ] = 2n+ 1

Rank[Mp
33V

(p)
3 Mp

13V
(p)
1 ] = Rank[Mp

13
−1

Mp
33V

(p)
3 V

(p)
1 ] = 2n+ 1

We first note that recoveringX ′
i(0), for all i, represents

the feasibility problem of PBNA in the instantaneous version
of the original 3-S 3-D MUN-D. Suppose that we cannot
recoverX ′

i(0), for all i. But, if we can recoverX ′
i(p), for

all p 6= 0 and for all i, we can still achieve throughputs
of (n+1)(k−1)

(2n+1)k , n(k−1)
(2n+1)k , n(k−1)

(2n+1)k for S1 − T1, S2 − T2 and
S3 − T3 respectively. This means that asn and k become
arbitrarily large, a throughput close to12 can be achieved
for every source-destination pair. However, in this section we
show that ifX ′

i(0), for some i = i1, cannot be recovered
then,X ′

i1
(p) is not recoverable for anyp. Conversely, we also

show that ifX ′
i(0), for all i, can be recovered thenX ′

i(p) is
recoverable for allp and i.

Definition 2: PBNA in 3-S 3-D MUN-D using Transform
Approach and Block Time Varying LEKs is said to be feasible
if X ′

i(p) can be recovered fromY (p⊕k)
i for all i, for all p 6= 0,

and for everyn > 1.
Henceforth, PBNA in3-S 3-D MUN-D using Transform

Approach and Block Time Varying LEKs shall be simply
referred to as PBNA in3-S 3-D MUN-D. We now head
towards proving that the reduced feasibility conditions of
Meng et al. for feasibility of PBNA in3-S 3-D I-MUN are
also necessary and sufficient for PBNA in3-S 3-D MUN-D.

PBNA in 3-S 3-D MUN-D is feasible iff there exists a
choice of (n + 1) × n matricesA(p) andB(p), V (p)

1 , and a
n×n matrixC(p) (0 ≤ p ≤ k−1), all with entries fromF2m ,
such that [12]

det[V (p)
1 Mp

11
−1

Mp
21M

p
23

−1
Mp

13V
(p)
1 A(p)] 6= 0,

det[Mp
12

−1
M22M

p
23

−1
Mp

13V
(p)
1 A(p) V

(p)
1 ] 6= 0,

det[Mp
13

−1
Mp

33M
p
32

−1
Mp

12V
(p)
1 B(p) V

(p)
1 ] 6= 0,

U (p)V
(p)
1 AC = V

(p)
1 B.

where, U (p) = M
p
12

−1
M

p
32M

p
31

−1
M

p
21M

p
23

−1
M

p
13. The above

conditions are obtained from the network alignment conditions
in (10). For0 ≤ p ≤ k − 1 , define

η(p) =
M21(ε, αp)M32(ε, αp)M13(ε, αp)

M31(ε, αp)M23(ε, αp)M12(ε, αp)
,

b1(p) =
M21(ε, αp)M13(ε, αp)

M11(ε, αp)M23(ε, αp)
, b2(p) =

M22(ε, αp)M13(ε, αp)

M12(ε, αp)M23(ε, αp)
,

b3(p) =
M33(ε, αp)M12(ε, αp)

M13(ε, αp)M32(ε, αp)
.

As in [11], we shall consider the two cases ofη(0) not being
a constant and a constant, separately.

Case 1:η(0) is a not a constant. The choice of pre-coding
matrices are similar to that in [8] [11].

V
(p)
1 = [W U (p)W U (p)2W · · · U (p)nW ], (11)

V
(p)
2 = [R(p)W R(p)U (p)W R(p)U (p)2W · · · R(p)U (p)n−1

W ],

V
(p)
3 = [S(p)U (p)W S(p)U (p)2W · · · S(p)U (p)nW ].



where,R = M
p
13M

p
23

−1, S = M
p
12M

p
32

−1 (0 ≤ p ≤ k − 1), and
W = [1 1 · · · 1]T (all ones vector of size(2n+ 1)× 1).

Lemma 1:PBNA in 3-S 3-D MUN-D is feasible iff, for
1 ≤ p ≤ k − 1 and for all i,

bi(p) /∈ S
(p)
n =

{

f(η(p))

g(η(p))

∣

∣

∣

∣

f(x), g(x) ∈ F2m [x], f(x)g(x) 6= 0,

gcd(f(x), g(x)) = 1, deg(f) ≤ n, deg(g) ≤ n− 1} .

for anyn > 1.
Proof: Proof for sufficiency, with the choice of precoding

matrices as given in (11), is similar as that for instantaneous
network (p = 0) as in [13]. Proof for necessity, taking into
account other possible choices of precoding matrices satisfying
(10), is the same as that forp = 0 case as in [11].
The following theorem of Meng et al. gives the reduced
feasibility conditions for3-S 3-D I-MUN.

Theorem 2 ( [11] (Reduced Feasibility Conditions)):
X ′

i(0) can be recovered fromY (0⊕k)
i , for all i, iff

bi(0) /∈ S(0) =

{

1, η(0), η(0) + 1,
η(0)

η(0) + 1

}

. (12)

The following theorem shows thatbi(p) /∈ S
(p)
n iff bi(0) /∈

S(0).
Theorem 3:When η(0) is not a constant,X ′

i(p) can be
recovered fromY (p⊕k)

i , for all p, iff X ′
i(0) can be recovered

from Y
(0⊕k)
i .

Proof: First, we shall reduce the infinite set∪∞
n=1S

(p)
n to

the form similar to (12). We shall prove that if, forp 6= 0,

bi(p) /∈ S(p) =

{

1, η(p), η(p) + 1,
η(p)

η(p) + 1

}

(13)

then, bi(p) /∈ ∪∞
n=1S

(p)
n as well where,S(p)

n is defined in
Lemma 1. The linearization and square-term property [11]
hold good and following exactly the same steps as in [11],
∪∞
n=1S

(p)
n can be reduced to the set of the form

{

h0+h1η(p)
h2+h3η(p)

}

where,h0, h1, h2, h3 ∈ F2m , (h0, h1) 6= (0, 0) and(h2, h3) 6=
(0, 0). We shall now prove that ifbi(p) /∈ S(p) then

bi(p)/∈

{

h1η(p)

h2 + h3η(p)
(h0h1h2 6= 0), h0 + h1η(p) (h0h1 6= 0)

}

.

The proof for rest of the cases of the set
{

h0+h1η(p)
h2+h3η(p)

}

is
exactly the same as in [11]. We shall prove thatbi(p) /∈

h1η(p)
h2+h3η(p)

(h1h2h3 6= 0) and the other case can be proved

similarly. Letbi(p) /∈ S(p) and suppose thatbi(p) =
h1η(p)

h2+h3η(p)

for someh1, h2, h3 ∈ F2m \{0}. Consideri = 1 (the rest can
be proved in the same way). Substituting forb1(p) andη(p),
we have the equality as given in (14) (at the top of the next
page) where,χij represents the set of all paths fromSi to Tj,
G(Pij) represents the product of LEKs along the pathPij (i.e.,
the path gain) anddPij

represent the integer delay along the
pathPij . We refer toG(P11)G(P23)G(P32) asmonomialand

G(P11)G(P23)G(P32)α
p(dP11+dP23+dP32) asmonomial term.

Since min-cut betweenSi − Tj is non-zero for all(i, j), by
Menger’s theorem, there exists at least one non-zero monomial
term on the L.H.S of (14). Clearly, the monomial terms of the
L.H.S cannot cancel among themselves as different monomial
terms contain the product of path gains of different path tuples.

Now, consider the following two cases separately -(a) every
monomial term on the L.H.S cancels with one monomial term
on the R.H.S,(b) Some monomial term on the L.H.S cancels
with the sum of one monomial term fromSum1 and another
monomial term fromSum2.

(a) Every monomial term on the L.H.S cancels with
a monomial term either fromSum1 or Sum2. Sup-
pose thatG(P11)G(P23)G(P32)α

p(dP11+dP23+dP32) cancels
with h2

h1
G(P12)G(P23)G(P31)α

p(dP12+dP23+dP31). Clearly,
the LEKs occurring inG(P11)G(P23)G(P32) has to be the
same as that inG(P12)G(P23)G(P31). Therefore, it means
that every edge covered by the path tuple(P11, P23, P32)
are also covered by edges in the path tuple(P12, P23, P31)
including multiplicities. Hence,dP11 + dP23 + dP32 = dP12 +
dP23 +dP31 . So, h2

h1
= 1. By Menger’s theorem, there exists at

least one non-zero monomial term inSum2. A monomial term
in Sum2 has to cancel with a monomial term in L.H.S or with
a monomial term inSum1 or with a difference between two
monomial terms, one each from L.H.S andSum1. The last
possibility is similar to the one treated in case(b). If a mono-
mial term inSum2 cancels with a term in L.H.S then,h3

h1
= 1.

But, h2

h1
is also1. This contradicts the hypothesis thatbi(p) /∈

S(p). If a monomial term inSum2 cancels with a monomial
term in Sum1, then h3

h1
= h2

h1
. But h2

h1
= 1 which means that

h3

h1
= 1. This again contradictsbi(p) /∈ S(p). Similarly we

can prove that ifG(P11)G(P23)G(P32)α
p(dP11+dP23+dP32)

cancels withh3

h1
G(P21)G(P32)G(P13)α

p(dP21+dP32+dP13), it
leads to contradiction ofbi(p) /∈ S(p).

(b) Some monomial term on the L.H.S cancels with
the sum of one monomial term fromSum1 and another
monomial term fromSum2. Note that a monomial term on
the L.H.S cannot be the sum of two monomial terms, both
from Sum1 or Sum2, as different monomial terms ofSum1

contain product of path gains of different path tuples. If atall
a monomial term on the L.H.S cancels with the sum of two
monomial terms, one has to be fromSum1 and the other
from Sum2. Let G(P11)G(P23)G(P32)α

p(dP11+dP23+dP32)

cancel with h2

h1
G(P12)G(P23)G(P31)α

p(dP12+dP23+dP31) +
h3

h1
G(P21)G(P32)G(P13)α

p(dP21+dP32+dP13). Now, the mono-
mialsG(P12)G(P23)G(P31) andG(P21)G(P32)G(P13) have
to contain the same variables as that inG(P11)G(P23)G(P32).
So, dP11+dP23+dP32=dP12+dP23+dP31=dP21+dP32+dP13 .
Now, note that such a cancellation can happen iffh2+h3

h1
= 1.

If there exists a monomial term on the L.H.S that cancels
with a monomial term fromSum1 (Sum2), then h2

h1
= 1

(

h3

h1
= 1

)

which meansh3 = 0 (h2 = 0). This contradicts

b1(p) /∈ S(p). So, let every monomial term on the L.H.S
cancel with the sum of one monomial term fromSum1 and
another monomial term fromSum2. After these cancellations
if there are no monomial terms left over on the R.H.S of
(14) then clearly, the equality in (14) also holds good for
(

h2

h1
, h3

h1

)

= (1, 0) or
(

h2

h1
, h3

h1

)

= (0, 1) which contradicts

bi(p) /∈ S(p). If there are monomial terms left over inSum1



h1η(p)

h2 + h3η(p)
= b1(p) ⇒ M11(ε, α

p)M23(ε, α
p)M32(ε, α

p) =
h2

h1

M12(ε, α
p)M23(ε, α

p)M31(ε, α
p) +

h3

h1

M21(ε, α
p)M32(ε, α

p)M13(ε, α
p)

⇒

∑

P11∈χ11,P23∈χ23,P32∈χ32

G(P11)G(P23)G(P32)α
p
(

dP11
+dP23

+dP32

)

=
h2

h1

∑

P12∈χ12,P23∈χ23,P31∈χ31

G(P12)G(P23)G(P31)α
p
(

dP12
+dP23

+dP31

)

︸ ︷︷ ︸

Sum1

(14)

+
h3

h1

∑

P21∈χ21,P32∈χ32,P13∈χ13

G(P21)G(P32)G(P13)α
p
(

dP21
+dP32

+dP13

)

︸ ︷︷ ︸

Sum2

∑

P11∈χ11,P23∈χ23,P32∈χ32

G(P11)G(P23)G(P32) =
∑

P12∈χ12,P23∈χ23,P31∈χ31

G(P12)G(P23)G(P31)

︸ ︷︷ ︸

Sum′
1

+
∑

P21∈χ21,P32∈χ32,P13∈χ13

G(P21)G(P32)G(P13)

︸ ︷︷ ︸

Sum′
2

(15)

andSum2 after the cancellation of monomial terms of L.H.S
of (14), then every remaining monomial term ofSum1 has
to cancel with that ofSum2 which means thath2 = h3. But,
h2+h3

h1
= 1. Since the field of operation is of characteristic2

andh1 6= 0, h2+h3

h1
= 1 cannot be satisfied. Hence, case(b)

also leads to contradiction ofb1(p) /∈ S(p).
To prove the theorem, we now need to show thatbi(p) ∈

S(p) (p 6= 0) iff bi(0) ∈ S(0). We shall assumei = 1 and the
proof for the rest are similar.

If Part: Supposeb1(0) =
η(0)

1+η(0) . Substituting forb1(0) and
η(0), we get (15). As in the earlier part of the proof, the terms
on the L.H.S of (15) cannot cancel among themselves. So,
every term in the L.H.S has to cancel with a term inSum′

1

or Sum′
2. If the term in the L.H.S cancels with a term in

Sum′
1 thendP11 + dP23 + dP32 = dP12 + dP23 + dP31 ; if the

cancellation is with a term inSum′
2 thendP11 +dP23 +dP32 =

dP21 +dP32+dP13 . The remaining un-canceled terms inSum′
1

has to cancel with the un-canceled terms inSum′
2. For these

terms,dP12 + dP23 + dP31 = dP21 + dP32 + dP13 . Hence, (14)
is satisfied withh2

h1
= h3

h1
= 1. Therefore,b1(p) = η(p)

1+η(p) ,
∀ p 6= 0. Similarly it can be proved that ifbi(0) belongs to
any other element ofS(0) then,bi(p) ∈ S(p), ∀ p 6= 0.

Only If Part: Assume thatb1(p1) = η(p1)
1+η(p1)

for some
p1 6= 0. Following the same steps as in the “If Part” regarding
cancellation of terms one can prove thatb1(p) = η(p)

1+η(p) ,
∀ p 6= p1 which includesp = 0.

Hence,bi(p) /∈ S(p) (p 6= 0) iff bi(0) /∈ S(0).
In brief, the above theorem proves that the reduced feasibility
conditions of Meng et al. for feasibility of PBNA in3-S 3-
D I-MUN are also necessary and sufficient for feasibility of
PBNA in 3-S 3-D MUN-D when η(0) is not a constant.

Case 2: η(0) is a constant. Whenη(0) is a constant,
Theorem1 of [11] states thatX ′

i(0) can be recovered from
Y

(0⊕k)
i iff bi(0) is not a constant for eachi ∈ {1, 2, 3}. Similar

to Theorem1 of [11] we have the following lemma.
Lemma 2:PBNA in 3-S 3-D MUN-D is feasible iff bi(p)

is not a constant for eachi ∈ {1, 2, 3} and for1 ≤ p ≤ k− 1.
Proof: Proof is the same as forp = 0 case in [11].

The following proposition in combination with Theorem1 of
[11] and Lemma 2 shows that PBNA in a3-S 3-D MUN-D
is feasible iff PBNA in the3-S 3-D I-MUN is feasible.

Proposition 1: bi(p) is a constant iffbi(0) is a constant.
Proof: The proof follows using the same arguments as in

“If Part” and “Only If Part” in the proof of Theorem 3.
The feasibility conditions for PBNA in3-S 3-D MUN-D for
the case of zero min-cut betweenSi − Tj for some(i, j) are
also the same as that for3-S 3-D I-MUN as given in [11].

V. CONCLUSION

A new PBNA scheme for3-S 3-D MUN-D is proposed
which is different from PBNA with time-invariant LEKs and
time-varying LEKs [12] where, the independent symbols are
precoded within a single block of data to be transmitted after
addition of CP and pre-multiplication byF . In the proposed
PBNA scheme, the independent symbols are precoded across
multiple blocks of data which are demarcated by separate
CPs. We showed that the proposed PBNA scheme inherits the
reduced feasibility conditions of Meng et al. The motivation
for the new scheme was that the feasibility of PBNA with
time-invariant LEKs and time-varying LEKs [12] could not
be easily checked. However, a caveat in the proposed PBNA
scheme is that the decoding delay is higher compared to that
for PBNA with time-invariant LEKs and time-varying LEKs.

Using the proof technique of Theorem 3, it can shown that
the feasibility conditions for PBNA in3-S 3-D I-MUN are
also necessary conditions for feasibility of PBNA with time-
invariant LEKs in3-S 3-D MUN-D. However, sufficiency of
the conditions remain open. Further, necessary and sufficient
conditions for feasibility of PBNA with time-varying LEKs in
3-S 3-D MUN-D are known only for a given value of symbol
extensions and it is not known if PBNA using time-varying
LEKs is feasible when PBNA using transform approach and
block time varying LEKs is not feasible.
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