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Abstract—The design of modulation schemes for the physi-
cal layer network-coded two way relaying scenario has been
extensively studied recently with the protocol which employs two
phases: Multiple access (MA) Phase and Broadcast (BC) Phase.
It was observed by Koike-Akino et al. that adaptively changing
the network coding map used at the relay according to the
channel conditions greatly reduces the impact of multiple access
interference which occurs at the relay during the MA Phase
and all these network coding maps should satisfy a requirement
called the exclusive law. In [10] it is shown that every network
coding map that satisfies the exclusive law is representableby
a Latin Square and conversely, and this relationship can be
used to get the network coding maps satisfying the exclusive
law. But, only the scenario in which the end nodes useM -PSK
signal sets (whereM is of the form 2λ, λ being any positive
integer) is extensively studied in [10]. In this paper, we address
the case in which the end nodes useM -QAM signal sets (where
M is of the form 22λ, λ being any positive integer). In a fading
scenario, for certain channel conditionsγejθ, termed singular
fade states, the MA phase performance is greatly reduced. We
show that the square QAM signal sets give lesser number of
singular fade states compared to PSK signal sets. Because of
this, the complexity at the relay is enormously reduced. Moreover,
lesser number of overhead bits are required in the BC phase. The
fade stateγejθ = 1 is singular for all constellations of arbitrary
size including PSK and QAM. For arbitrary PSK constellation
it is well known that the Latin Square obtained by bit-wise XOR
mapping removes this singularity. We show that XOR mapping
fails to remove this singularity for QAM of size more greater than
4 and show that a doubly block circulant Latin Square removes
this singularity. Simulation results are presented to showthe
superiority of QAM over PSK.

I. PRELIMINARIES AND BACKGROUND

We consider the two-way wireless relaying scenario shown
in Fig.1, where bi-directional data transfer takes place between
the nodes A and B with the help of the relay R. It is
assumed that all the three nodes operate in half-duplex mode,
i.e., they cannot transmit and receive simultaneously in the
same frequency band. The relaying protocol consists of the
following two phases: themultiple access(MA) phase, during
which A and B simultaneously transmit to R using identical
squareM -QAM signal sets and thebroadcast (BC) phase
during which R transmits to A and B using possibly with
another squareM -QAM or constellations of size more than
M . Network coding is employed at R in such a way that A
(B) can decode the message of B (A), given that A (B) knows
its own message.

(a) MA Phase

(b) BC Phase

Fig. 1. The Two Way Relay Channel

A. Background

The concept of physical layer network coding has attracted a
lot of attention in recent times. The idea of physical layer net-
work coding for the two way relay channel was first introduced
in [1], where the multiple access interference occurring atthe
relay was exploited so that the communication between the
end nodes can be done using a two stage protocol. Information
theoretic studies for the physical layer network coding scenario
were reported in [2], [3]. The design principles governing the
choice of modulation schemes to be used at the nodes for
uncoded transmission were studied in [4]. An extension for
the case when the nodes use convolutional codes was done
in [5]. A multi-level coding scheme for the two-way relaying
scenario was proposed in [6].

It was observed in [4] that for uncoded transmission, the
network coding map used at the relay needs to be changed
adaptively according to the channel fade coefficients, in order
to minimize the impact of the multiple access interference.
The proposed Latin Square scheme was studied in [10], [11]
by considering a two way relaying usingM -PSK signal sets
at the end nodes. In [4] analysis of 16-QAM is done under
the assumption that precoding is done at the end nodes. We
address the situation where no precoding assumption is made
and to the best of our knowledge no work has been reported
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for such a scenario with generalM -QAM modulation.

B. Signal Model

Multiple Access (MA) Phase:Let S denote the squareM -
QAM constellation used at A and B, whereM = 22λ, λ
being a positive integer. Assume that A (B) wants to transmit
an 2λ-bit binary tuple to B (A). Letµ : S → F22λ denote the
mapping from complex symbols to bits used at A and B. Let
µ(xA) = sA, µ(xB) = sB ∈ S denote the complex symbols
transmitted by A and B respectively, wheresA, sB ∈ F22λ .
The received signal atR is given by,

YR = HAxA +HBxB + ZR,

whereHA andHB are the fading coefficients associated with
the A-R and B-R links respectively. The additive noiseZR

is assumed to beCN (0, σ2), whereCN (0, σ2) denotes the
circularly symmetric complex Gaussian random variable with
varianceσ2. We assume a block fading scenario, with the ratio
HB/HA denoted asz = γejθ, whereγ ∈ R+ and−π ≤ θ <
π, is referred as thefade stateand for simplicity, also denoted
by (γ, θ).

Let SR(γ, θ) denote the effective constellation at the relay
during the MA Phase, i.e.,

SR(γ, θ) =
{

xi + γejθxj |xi, xj ∈ S
}

,

and dmin(γe
jθ) denote the minimum distance between the

points inSR(γ, θ), i.e.,

dmin(γe
jθ) = min

(xA,xB),(x′
A,x′

B)∈S2

(xA,xB) 6=(x′
A,x′

B)

|
(

xA − x′A
)

+ γejθ
(

xB − x′B
)

|. (1)

From (1), it is clear that there exists values ofγejθ for
which dmin(γe

jθ) = 0. Let H = {γejθ ∈ C|dmin(γ, θ) = 0}.
The elements ofH are said to bethe singular fade states.
Singular fade states can also be defined as

Definition 1: A fade stateγejθ is said to be a singular fade
state, if the cardinality of the signal setSR(γ, θ) is less than
M2.

For example, consider the case when symmetric 4-QAM
signal set used at the nodes A and B, i.e.,S = {(±1±j)/

√
2}.

For γejθ = (1 + j)/2, dmin(γe
jθ) = 0, since,

∣

∣

∣

∣

(

1 + j√
2

− 1− j√
2

)

+
(1 + j)

2

(−1− j√
2

− 1 + j√
2

)∣

∣

∣

∣

= 0.

Alternatively, when γejθ = (1 + j)/2, the constellation
SR(γ, θ) has only 12 (<16) points. Henceγejθ = (1 + j)/2
is a singular fade state for the case when 4-QAM signal set is
used at A and B. Let(x̂A, x̂B) ∈ S2 denote the Maximum
Likelihood (ML) estimate of(xA, xB) at R based on the
received complex numberYR, i.e.,

(x̂A, x̂B) = arg min
(x′

A
,x′

B
)∈S2

|YR −HAx
′
A −HBx

′
B |. (2)

Broadcast (BC) Phase:Depending on the value ofγejθ, R
chooses a mapMγ,θ : S2 → S ′, whereS ′ is the signal set (of
size betweenM andM2) used by R duringBC phase. The
elements inS2 which are mapped on to the same complex
number inS ′ by the mapMγ,θ are said to form a cluster.
Let {L1,L2, ...,Ll} denote the set of all such clusters. The
formation of clusters is called clustering, and denoted byCγejθ

to indicate that it is a function ofγejθ. The received signals
at A and B during the BC phase are respectively given by,

YA = H ′
AXR + ZA, YB = H ′

BXR + ZB, (3)

whereXR = Mγ,θ(x̂A, x̂B) ∈ S ′ is the complex number
transmitted by R. The fading coefficients corresponding to the
R-A and R-B links are denoted byH ′

A andH ′
B respectively

and the additive noisesZA andZB areCN (0, σ2).
In order to ensure that A (B) is able to decode B’s (A’s)

message, the clusteringC should satisfy the exclusive law [4],
i.e.,

Mγ,θ(xA, xB) 6= Mγ,θ(x′A, xB), for xA 6= x′A , ∀xB ∈ S,
Mγ,θ(xA, xB) 6= Mγ,θ(xA, x

′
B), for xB 6= x′B , ∀xA ∈ S.

}

(4)

Definition 2: The cluster distance between a pair of clusters
Li andLj is the minimum among all the distances calculated
between the pointsxA + γejθxB , x

′
A + γejθx′B ∈ SR(γ, θ)

where (xA, xB) ∈ Li and (x′A, x
′
B) ∈ Lj . The minimum

cluster distanceof the clusteringC is the minimum among
all the cluster distances, i.e.,

dCmin(γe
jθ) = min

(xA,xB),(x′
A,x′

B)

∈S2,

Mγ,θ(xA,xB) 6=Mγ,θ(x′
A,x′

B)

|
(

xA − x′A
)

+ γejθ
(

xB − x′B
)

|.

The minimum cluster distance determines the performance
during the MA phase of relaying. The performance during the
BC phase is determined by the minimum distance of the signal
setS ′. For values ofγejθ in the neighborhood of the singular
fade states, the value ofdmin(γe

jθ) is greatly reduced, a
phenomenon referred asdistance shortening. To avoid distance
shortening, for each singular fade state, a clustering needs to be
chosen such that the minimum cluster distance at the singular
fade state is non-zero and is also maximized.

A clusteringC is said to remove a singular fade stateh ∈ H,
if dCmin(h) > 0. For a singular fade stateh ∈ H, let C{h}
denote a clustering which removes the singular fade state
h (if there are multiple clusterings which remove the same
singular fade stateh, consider a clustering which maximizes
the minimum cluster distance). LetCH =

{

C{h} : h ∈ H
}

denote the set of all such clusterings. Letdmin(C{h}, γ′, θ′)
be defined as,

dmin(C{h}, γ′, θ′) = min
(xA,xB),(x′

A,x′
B)∈S2,

M{h}(xA,xB) 6=M{h}(x′
A,x′

B)

|
(

xA − x′A
)

+ γ′ejθ
′ (

xB − x′B
)

|.



The quantitydmin(C{h}, γ,′ θ′) is referred to as the mini-
mum cluster distance of the clusteringC{h} evaluated atγ′ejθ

′

.

In practice, the channel fade state need not be a singular
fade state. In such a scenario, among all the clusterings which
remove the singular fade states, the one which maximizes
the minimum cluster distance is chosen. In other words, for
γ′ejθ

′

/∈ H, the clusteringCγ′,θ′

is chosen to beC{h}, which
satisfiesdmin(C{h}, γ′, θ′) ≥ dmin(C{h′}, γ′, θ′), ∀h 6= h′ ∈
H. Since the clusterings which remove the singular fade states
are known to all the three nodes and are finite in number, the
clustering used for a particular realization of the fade state can
be indicated by R to A and B using overhead bits.

Example 1: In the case of BPSK, if channel condition is
γ = 1 and θ = 0 the distance between the pairs(0, 1)(1, 0)
is zero as in Fig.2(a).The following clustering remove this
singular fade state.

{{(0, 1)(1, 0)}, {(1, 1)(0, 0)}}

The minimum cluster distance is non zero in this clustering.

01 1 0

(1,1) (0,0)
(0,1) (1,0)

(1,0) (1,1)(0,0) (0,1)

Effective Constellation at the relay for γ = 1 and θ = π

Effective Constellation at the relay for γ = 1 and θ = 0

BPSK Constellation used at the node A BPSK Constellation used at the node B

(a)

(b)

Fig. 2. Effective Constellation at the relay for singular fade states, when the
end nodes use BPSK constellation.

To remove the distance shortening effect a procedure is
given in [4] when the nodes A and B use QPSK signal set. The
procedure suggested in [4] to obtain the channel quantization
and the clusterings, was using a computer algorithm, which
involved varying the fade state values over the entire complex
plane, i.e.,0 ≤ γ < ∞, 0 ≤ θ < 2π in small discrete steps
and finding the clustering for each value of channel realization.
But such an approach have many issues. In [4], it is claimed
that the clustering used by the relay is indicated to A and B
by using overhead bits. However, the procedure suggested in
[4] to obtain the set of all clusterings, was using a computer
search algorithm (called Closest Neighbour Clustering (CNC)
algorithm), which involved varying the fade state values over
the entire complex plane, i.e.,0 ≤ γ < ∞, 0 ≤ θ < 2π and
finding the clustering for each value of channel realizationas
discussed in previous sections. The total number of network
codes which would result is known only after the algorithm
is run for all possible realizationsγejθ which is uncountably
infinite and hence the number of overhead bits required is not
known beforehand. Moreover, performing such an exhaustive

search is extremely difficult in practice, especially when the
cardinality of the signal setM is large.

The implementation complexity of CNC suggested in [4]
is extremely high: It appears that, for each realization of the
singular fade state, the CNC algorithm of [4] needs to be run
at R to find the clustering.

In the CNC algorithm suggested in [4], the network coding
map is obtained by considering the entire distance profile. The
disadvantages of such an approach are two-fold.

• Considering the entire distance profile, instead of the
minimum cluster distance alone which contributes dom-
inantly to the error probability, results in an extremely
large number of network coding maps. For example, for
16-QAM signal set, the CNC algorithm results in more
than 18,000 maps [4].

• The CNC algorithm tries to optimize the entire distance
profile, even after clustering signal points which con-
tribute the minimum distance. As a result, for several
channel conditions, the number of clusters in the clus-
tering obtained is greater than the number of clusters in
the clustering obtained by taking the minimum distance
alone into consideration. This results in a degradation in
performance during the BC phase, since the relay uses a
signal set with cardinality equal to the number of clusters.
For example, for 16-QAM signal set, the relay has to use
signal sets of cardinality 16 to 29 [4].

In [4], to overcome the two problems mentioned above,
another algorithm is proposed, in which for a givenγejθ,
an exhaustive search is performed among all the network
coding maps obtained using the closest-neighbour clustering
algorithm and a map with minimum number of clusters is
chosen. The difficulties associated with the implementation of
the CNC algorithm carry over to the implementation of this
algorithm as well.

The contributions and organization of the paper are as
follows:

• A procedure to obtain the number of singular fade states
for PAM and QAM signal sets is presented.

• It is shown that for the same number of signal pointsM ,
the number of singular fade states for squareM -QAM
is lesser in comparison with the number of singular fade
states forM -PSK. The advantages of this result are two
fold - QAM offers better distance performance in MA
Phase and QAM requires lesser number of Latin squares
(i.e., a reduction in number of overhead bits).

• To remove the singular fade state(γ = 1, θ = 0) for√
M -PAM, a Latin Square is constructed. It is shown that

the bit-wise XOR mapping cannot remove the singular
fade state(γ = 1, θ = 0) for anyM -QAM and a different
mapping is obtained to remove the singular fade state
(γ = 1, θ = 0), from the Latin Square to remove the
singular fade state(γ = 1, θ = 0) for

√
M -PAM.

• By simulation it is shown that the choice of 16-QAM
leads to better performance for both the Rayleigh and
the Rician fading scenario, compared to 16-PSK.



The remaining content is organized as follows:
In Section II we discuss the relationship between singular

fade states and difference constellation of the signal setsused
by the end nodes. We present expressions to get the number of
singular fade states for PAM and square QAM signal sets in
Subsections II-A and II-B respectively. In Subsection II-Cit is
proved that the number of singular fade states forM -QAM is
always lesser in comparison with that ofM -PSK signal sets. In
Section III the clustering for a singular fade state is obtained
through completing a Latin Square and a Latin Square for
removing the singular fade statez = 1 is analytically obtained
for PAM and QAM signal sets. In Section IV simulation results
are provided to show the advantage of Latin Square scheme
for QAM over XOR network coding scheme as well as Latin
Square scheme for PSK signal sets under Rayleigh and Rician
fading channel assumptions.

II. SINGULAR FADE STATES AND DIFFERENCE

CONSTELLATIONS

In this section we show the relationships between singular
fade states and difference constellation of the signal set used
by the end nodes. The following lemma discusses the location
of singular fade states in complex plane for any constellation
used at end nodes.

Lemma 1:Let node A use a constellationS1 of sizeM1 and
let node B use a constellationS2 of sizeM2. Let xA, x′A ∈ S1

andxB , x′B ∈ S2, then the singular fade statesz = γejθ are
given by

z = γejθ =
xA − x′A
x′B − xB

(5)

wherexA, x′A ∈ S1 andxB, x′B ∈ S2.
Proof: The pair(xA, x′A) and(xB , x′B) result in the same

point in the effective constellation at the relay if the complex
numbersxA + γejθxB andx′A + γejθx′B are the same. The
expression (5) is obtained by equating these complex numbers.

From Lemma 1 it can be seen that all the singular fade states
in the complex plane is of the form of ratio of difference
constellation points of the signal sets used by end nodes,
i.e., the singular fade states are decided by the difference
constellation points. Henceforth, throughout the paper, we
assume both the end nodes use same constellation,S. Let
∆S denote the difference constellation of the signal set used
at the end nodesS, i.e., ∆S = {xi − x′i|xi, x′i ∈ S}. For a
fade statez = γejθ to become a singular fade state, it has
to satisfy (5), or in other wordsz(x′B − xB) = (xA − x′A),
where(x′B −xB) and(xA−x′A) are any point in∆S. Hence,
a singular fade state can be alternatively defined as follows.

Definition 3: A singular fade statez is a mappingZ from
∆S to the complex planeC so that at least onedk ∈ ∆S is
mapped to somedl ∈ ∆S. The set of all singular fade states
is given by{Z : ∆S → C| ∃Z(dk) = dl}.

Remark 1:The singular fade statez = 1 is the mapping
from ∆S to itself that maps every point to itself.

In the rest of this section, we focus on the singular fade
states for symmetric PAM and square QAM signal sets.

0 1 2 3

-3 -1 1 3

n =

S = −(
√
M − 1) + 2n

(a)
√
M PAM constellation

0 1 2 3 4 5 6

-6 -4 -2 0 2 4 6

n =

∆S = −2(
√
M − 1) + 2n

(0,3) (0,2),(1,3) (0,1)(1,2)(2,3) (1,1)(2,2)(3,3)(0,0) (1,0)(2,1)(3,2) (2,0)(3,1) (3,0)

∆S
+

(b) Difference Constellation

(c) Singular fade states

Fig. 3.
√
M PAM constellation, difference constellation and singularfade

states for
√
M = 4

A. Singular Fade States of PAM signal sets

The symmetric
√
M -PAM signal set is given by

S = −(
√
M − 1) + 2n, n ∈ (0, · · · ,

√
M − 1)

and its difference constellation is given by

∆S = −2(
√
M − 1) + 2n, n ∈ (0, · · · , 2(

√
M − 1)).

For example the 4-PAM signal set and it’s difference constel-
lation is given in Fig.3(a) and Fig.3(b) respectively. For each
of the difference constellation point, the pair in the signal set
which correspond to this point is also shown. We will often
consider only the first quadrant of∆S only, denoted as∆S+,
which for a general complex signal set is given by

∆S+ = {α : real(α) > 0, imaginary(α) ≥ 0}.

The following lemma gives the number of singular fade states
for PAM signal sets.

Lemma 2:The number of singular fade states, for a regular√
M -PAM signal set, denoted byN(

√
M−PAM) is given by

N(
√
M−PAM) = 2 + 4

√
M−1
∑

n=1

n
∏

p|n

(

1− 1

p

)

(6)

wherep|n stands for prime numberp dividing n.
Proof: There are2(

√
M − 1) non-zero signal points in

the difference constellation∆S and since∆S is symmetric
about zero there are

√
M − 1 signal points in∆S+. All these

are scaled version of nonzero elements ofZ√
M .



TABLE I
SINGULAR FADE STATES FOR8-PAM

n, Elements Relative primes Singular fade ψ(n)
in ∆S+ less thann states,z > 1

1 0
2 1 2 1
3 1,2 3,3

2
2

4 1,3 4,4
3

2
5 1,2,3,4 5,5

2
, 5
3
, 5
4

4
6 1,5 6,6

5
2

7 1,2,3,4,5,6 7,7
2
, 7
3
, 7
4
, 7
5
, 7
6

6

The number of positive integers less than or equal ton that
are relatively prime ton is given by Euler’s totient function,

ψ(n) = n
∏

p|n

(

1− 1

p

)

where the product is taken over distinct prime numbersp
dividing n. To get the total number of relatively prime pairs in
Z√

M , we take the sum over all nonzeron ∈ Z√
M which gives

∑

√
M−1

n=1 n
∏

p|n

(

1− 1
p

)

. One relatively prime pair(a, b)

gives two singular fade states,a/b andb/a. The multiplication
factor 4 in (6) accounts for the negative side of the in-phase
axis as well as the inverses. Finally, 2 is added to count the
singular fade statez = 1 andz = −1.

Example 2:Consider the case of 4-PAM (M = 16) signal
set as given in Fig.3. There are2(

√
M − 1) = 6 non-zero

signal points in the difference constellation. Scaled∆S+ is
having (

√
M − 1) = 3 signal points-{1, 2, 3}. And there are

14 singular fade states-
{

1,
1

2
,
1

3
,
2

3
, 2, 3,

3

2
,−1,

−1

2
,
−1

3
,
−2

3
,−2,−3,

−3

2

}

.

These singular fade states are shown in Fig.3(c). Calculating
Euler totient functionψ(n) for n = 1,2,3 we get 0,1,2
respectively and substituting in (6), leads toN(4−PAM) =
2 + 4(0 + 1 + 2) = 14.

Example 3:For 8-PAM signal set the singular fade states
with z > 1 are shown in Table.I. For each suchz given in the
table there exists singular fade states−z, 1z and− 1

z . Hence,
totally, there are 70 (2+4(0+1+2+2+4+2+6)) singular
fade states.

B. Singular Fade States for QAM signal sets

We consider squareM -QAM signal setS = {AmI +
jAmQ} whereAmI andAmQ take values from the

√
M -PAM

signal set−(
√
M − 1)+2n, n ∈ (0, · · · ,

√
M − 1). We use

the mappingµ : S → Zm given by

AmI+jAmQ →
1

2
[(
√
M−1+AmI)

√
M+(

√
M−1+AmQ)] (7)

for concreteness and our analysis and results hold for any
map. The difference constellation∆S of square QAM signal
sets form a part of scaled integer lattice with(2

√
M − 1)2

points. The 16-QAM signal set with the above mapping and
its difference constellation is shown in Fig.4(a) and in Fig.4(b).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) 16−QAM constellation

∆S
+

(b) The Difference Constellation

Fig. 4. 16−QAM constellation and its difference constellation

Definition 4: [12] The Gaussian integers are the elements
of the setZ[j] = {a+ bj : a, b ∈ Z} whereZ denotes the set
of integers.

The signal points in the difference constellation are Gaus-
sian integers. To get the number of singular fade states for
square QAM signal sets, the notion of primes and relatively
primes in the set of Gaussian integers is useful.

Definition 5: [12] A Gaussian integerα is called a Gaus-
sian prime if and only if the only Gaussian integers that divide
α are:1,−1, j,−j, α,−α, αj and−αj. The Gaussian integers
which are invertible inZ[j] are called units inZ[j] and they
are±1 and±j. Let α, β ∈ Z[j]. If the only common divisors
of α andβ are units, we sayα andβ are relatively prime.

Lemma 3:The number of singular fade states for the square
M -QAM signal set, denoted byNM−QAM is given by

NM−QAM = 4 + 8φ(∆S+)

whereφ(∆S+) is the number of relative prime pairs in∆S+.



0

1

2

3

(a) 4−QAM constellation

∆S
+

(b) The Difference Constellation

(c) Singular fade states

Fig. 5. 4−QAM constellation, its difference constellation and singular fade
states

Proof: All the possible ratios of elements from∆S give
singular fade states. We consider only ratios in∆S+ and
multiply the number of possible such ratios with a factor of 4
to account the ratios with points in all the other quadrants.To
avoid multiplicity while counting we take only relative prime
pairs in∆S+ and one such pair(a, b) gives two singular fade
statesa/b and b/a. Because of this the multiplication factor
becomes 8. Finally, the factor 4 is added to count the units.

Example 4:For a 4-QAM signal set shown in Fig.5(a) the
number of singular fade states,N(z4−QAM ) is given by4 +
8.1 = 12. Scaled∆S+ have only two elements{1, 1 + j} in
this case as shown in Fig.5(b). They form one relatively prime
pair. The singular fade states±1,±j,±1± j, 1

±1±j is shown
in Fig. 5(c).

Example 5:Consider the case of 16-QAM signal set. Table
II discusses the prime factorization of the elements in∆S+.
From the table there are 96 relatively prime pairs, but it counts

TABLE II
PRIME FACTORS OFGAUSSIAN INTEGERS IN∆S+

Elements in∆S+ Prime factors No. of relatively prime pairs
1 1 11

1+j 1+j 6
2 1+j 6

1+2j 1+2j 10
2+j 2+j 10
2+2j 1+j 6

3 3 10
3+j (1+j),(1+2j) 5
1+3j (1+j),(2+j) 5
3+2j 3+2j 11
2+3j 2+3j 11
3+3j (1+j),3 5

the pair (a, b) and (b, a) separately. So there are 48 distinct
pairs of relative primes, and from Lemma 3,N16−QAM turns
to be 388. The singular fade states of 16-QAM is shown in
Fig.6(a).

TABLE III
COMPARISON BETWEENM -PSKAND M -QAM ON NUMBER OF

SINGULAR FADE STATES

M No. of singular fade No. of singular fade
states forM -PSK states forM -QAM

4 12 12
16 912 388
64 63,552 8388

C. Singular fade states ofM -PSK andM -QAM signal sets

In this section we show that the number of singular fade
states forM -QAM signal sets is lesser in comparison with
that of M -PSK signal sets. The advantages of this are two
fold- QAM offers better distance performance and it requires
lesser number of overhead bits since the required number of
relay clusterings are lesser in the case of QAM compared with
PSK.

Lemma 4:The number of singular fade states forM -
QAM signal set is upper bounded by4(n2 − n + 1), where

n =
[(2

√
M − 1)2 − 1]

4
, which is same as4(M2) − (2M −

1)
√
M + 1).
Proof: There are[(2

√
M−1)2−1] non zero signal points

in ∆S which are distributed equally in each quadrant, i.e., the

number of signal points in∆S+,
[(2

√
M − 1)2 − 1]

4
which

we denote byn. The maximum number of relatively prime
pairs in a set ofn Gaussian integers isn(n−1)

2 . Since an upper
bound is of interest we substitute this in Lemma 3 instead of
φ(∆S+). This completes the proof.

The number of singular fade states forM -QAM signal set is
lesser in comparison with that ofM -PSK signal sets. In [11]
it is shown that the number of singular fade states forM -
PSK signal set isM(M

2

4 − M
2 +1), in O(M3). From Lemma

4, an upper bound on the number of singular fade states for
M -QAM is in O(M2).

Example 6:The singular fade states of 16-PSK signal set
is given in Fig.6(b). There are 912 singular fade states in total.
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Fig. 6. Singular Fade States for16−QAM and 16−PSK modulation schemes

The advantage of square QAM constellation is highly ef-
fective in higher order constellations, for example 64-QAM
is having 8,388 singular fade states where as a 64-PSK has
63,552 singular fade states and relay has to adaptively use
63,552 clusterings. With the use of square QAM constellations
the complexity is enormously reduced.

III. E XCLUSIVE LAW AND LATIN SQUARES

Definition 6: [7] A Latin Square L of orderM with the
symbols from the setZt = {0, 1, · · · , t − 1} is an M × M
array, in which each cell contains one symbol and each symbol
occurs at most once in each row and column.

In [10] it is shown that when the end nodes use signal sets
of same size all the relay clusterings which satisfy exclusive-
law can be equivalently representable by Latin Squares, with
the rows (columns) indexed by the constellation point used by
node A (B) and the clusterings are obtained by taking all the
slots in Latin Squares which are mapped to the same symbol
in one cluster.

A. Removing Singular fade states and Constrained Latin
Squares

The minimum size of the constellations needed in the BC
phase isM, but it is observed that in some cases relay may
not be able to remove the singular fade states witht =M and
t > M results in severe performance degradation in the MA
phase [4]. Let(k, l)(k′, l′) be the pairs which give same point
in the effective constellationSR at the relay for a singular
fade state, wherek, k′, l, l′ ∈ {0, 1, ....,M − 1} and k, k′

are the constellation points used by node A andl, l′ are the
corresponding constellation points used by node B. If they are
not clustered together, the minimum cluster distance will be
zero. To avoid this, those pairs should be in same cluster. This
requirement is termed as asingularity-removal constraint. So,
we need to obtain Latin Squares which can remove singular
fade states and with minimum value fort. Towards this end,
initially we fill the slots in theM × M array such that for
the slots corresponding to a singularity-removal constraint the

same element is used to fill slots. This removes that particular
singular fade state. Such a partially filled Latin Square is called
a Constrained Partially Latin Square(CPLS). After this, to
make this a Latin Square, we try to fill the other slots of the
CPLS with minimum number of symbols.

Definition 7: A Latin SquareLT is said to be the Transpose
of a Latin SquareL, if LT (i, j) = L(j, i) for all i, j ∈
{0, 1, 2, ..,M − 1}.

Lemma 5:For any constellation, if the Latin SquareL
removes the singular fade statez then the Latin SquareLT

will remove the singular fade statez−1.
Proof: Let the singular fade statez as given in (5) with

constraint{(xA, xB), (x′A, x′B)}. Then, by taking the inverse

z−1 =
x′B − xB
xA − x′A

.

Now the constraints are modified to{(xB, xA), (x′B , x′A)},
i.e., the role of node A and node B are interchanged, which
clearly results in the transpose of the Latin Square.

From the above lemma, it is clear that we have to get Latin
Squares only for singular fade states|z| ≤ 1 or |z| ≥ 1.

The square QAM signal set has a symmetry which isπ/2
degrees of rotation. This results in a reduction of the number of
required Latin Squares by a factor 4 as shown in the following
lemma.

Lemma 6: If L is a Latin Square that removes a singular
fade statez, then there exist a column permutation ofL such
that the permuted Latin SquareL′ removes the singular fade
statezejπ/2.

Proof: For the singular fade statez is given in (5) with
constraint{(xA, xB), (x′A, x′B)}, the singular fade statezejπ/2

is given by

zejπ/2 =
[xA − x′A]

[x′B − xB]
ejπ/2

=⇒ zejπ/2 =
[xA − x′A]

[x′Be
−jπ/2 − xBe−jπ/2]

.



Since in the square QAM constellation there exist signal points
with x′Be

−jπ/2 andxBe−jπ/2, all the constraints are changed
but the new constraints are obtainable from the permutation
of signal points in the constellation used by node B. The
columns of the Latin Squares are indexed by the signal points
used by B and the effective permutation in the constellationis
representable by column permutation in the Latin Square.

Note that the fade statez = 1 or (γ = 1, θ = 0) is a singular
fade state for any signal set.

Definition 8: A Latin Square which removes the singular
fade statez = 1 for a signal set is said to be a standard Latin
Square for that signal set.

When the signal sets is a2λ-PSK signal set then, in [11] it
has been shown that the Latin Square obtained by Exclusive-
OR (XOR) is a standard Latin Square for any integerλ. It turns
out that forM−QAM signal sets the Latin Square given by
bitwise Exclusive-Or (XOR) is not a standard Latin Square
for any M > 4. This can be easily seen as follows: Any
squareM -QAM signal set (M > 4) has points of the form
a, a + jb, a − jb, for some integersa and b. For z = 1, the
effective constellation at R during the MA phase contains the
point 2a can result in at least two different ways, since2a =
a + za = (a + jb) + z(a − jb) for z = 1. Let l1, l2 and l3
denote the labels fora, a + jb, and a − jb respectively. For
the singular fade statez = 1, we have{(l1, l1), (l2, l3)} as a
singularity removal constraint. But the Latin Square obtained
by bitwise XOR mapping does not satisfy this constraint since
l1 ⊕ l1 = 0 6= l2 ⊕ l3.

B. Standard Latin Square for
√
M−PAM

In this subsection, we obtain standard Latin Squares for√
M−PAM signal sets.
Definition 9: An M ×M Latin square in which each row

is obtained by a left cyclic shift of the previous row is called
a left-cyclic Latin Square.

Lemma 7:For a
√
M -PAM signal set a left-cyclic Latin

Square removes the singular fade statez = 1.
Proof: Consider the

√
M -PAM signal set with the signal

points labelled from left to right as discussed in Section II.
Let {(k1, l1)(k2, l2)} be a singularity removal constraint. To
get the same point in the received constellation at the relayR,
whenz = 1, we havek1+l1 = k2+l2. Consider the following
two cases satisfying this equality. Case (i):k2 = l1, l2 = k1
In this case the constraint becomes{(k1, l1)(l1, k1)}, i.e., the
Latin Square which removesz = 1 should be symmetric about
main diagonal.
Case (ii): k2 = k1 + m, l2 = l1 − m for any m ≤

√
M.,

The constraint now becomes{(k1, l1)(k1+m, l1−m)} which
means the symbol ink1-th row andl1-th column should be
repeated in thek1 + 1-th row and thel1 − 1-th column.
It is easily seen that a left-cyclic Latin Square satisfies both
this requirements.

Example 7:Consider the received constellation at the relay
when the end nodes use 4-PAM constellation and let the
channel condition bez = 1 as given in Fig.7. The singularity

removal constraints are

{(0, 1)(1, 0)}, {(0, 2)(1, 1)(2, 0)}, {(0, 3)(1, 2)(2, 1)(3, 0)},
{(1, 3)(2, 2)(3, 1)}, and{(2, 3)(3, 2)}.

The Latin Square which removes this singular fade state is
given in Fig.9.

(0,0)

(0,1)(1,0)

(0,2)(1,1)(2,0)

(0,3)(1,2)(2,1)(3,0)

(1,3)(2,2)(3,1)

(2,3)(3,2)

(3,3)

Fig. 7. Received Constellation at the relay forz = 1.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Fig. 9. Left-cyclic Latin Square to remove the singular fadestatez = 1

C. Standard Latin Square forM−QAM

In this subsection standard Latin Square for a squareM -
QAM constellation is obtained from that of

√
M -PAM con-

stellation.
Let PAM − i, for i = 1, 2, · · · ,

√
M, denote the symbol

set consisting of
√
M symbols{(i− 1)

√
M, ((i− 1)

√
M) +

1, ((i − 1)
√
M) + 2, · · · , ((i − 1)

√
M) + (

√
M − 1)}. Let

LPAM−i denote the standard Latin Square with symbol set
PAM − i for

√
M -PAM and also letLQAM denote the

standard Latin Square forM -QAM. Then, LQAM is given
in terms ofLPAM−i, i = 1, 2, · · · ,

√
M, as the block left-

cyclic Latin Square shown in Fig. 10. This is formally shown
in the following Lemma.

Lemma 8:Let PAM − i for i = 1, 2, · · · ,
√
M, denote

the symbol set consisting of
√
M symbols{(i− 1)

√
M, ((i−

1)
√
M)+1, ((i−1)

√
M)+2, · · · , ((i−1)

√
M)+(

√
M−1)}

and letLPAM−i stand for the Latin Square that removes the
singular fade statez = 1 with a symbol setPAM − i for√
M -PAM. Then arranging the cyclic Latin SquaresLPAM−i

as shown Fig.10 where each row is a blockwise left-cyclically
shifted version of the previous row results in a Latin Square
which removes the singular fade statez = 1 for M -QAM.

Proof: Note that the matrix in Fig. 10 is aM×M matrix,
which is also a

√
M×

√
M block left-cyclic matrix where each

block is a
√
M ×

√
M left-cyclic matrixLPAM−i for somei.

Let a1+jb1, a2+jb2, a′1+jb
′
1 anda′2+jb

′
2, whereai, a′i, bi

andb′i ∈ {−(
√
M − 1),−(

√
M − 3), · · · , (

√
M − 3), (

√
M −

1)} for i ∈ {1, 2} be fourM -QAM constellation points such
that a1 + jb1 anda′1 + jb′1 are used by node A anda2 + jb2
and a′2 + jb′2 are used by end node B, and result in a same
point in the effective received constellation at the relay node
for singular fade statez = 1, i.e.,

a1 + jb1 + a2 + jb2 = a′1 + jb′1 + a′2 + jb′2.

Let a′1 = a1 + m1 and b′1 = b1 + m2 wherem1,m2 ∈
{−2(

√
M − 1),−2(

√
M − 2), · · · , 2(

√
M − 2), 2(

√
M − 1)}.
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Fig. 8. Standard Latin SquareLQAM for 16-QAM.

Then,a′2 = a2 −m1 andb′2 = b2 −m2. Then, using the map
defined in 7, let

k1 = µ(a1 + jb1)

l1 = µ(a2 + jb2)

k2 = µ(a′1 + jb′1) = µ(a1 +m1 + j(b1 +m2))

l2 = µ(a′2 + jb′2) = µ(a2 −m1 + j(b2 −m2))

Since, for z = 1, the four complex numbers result in
the same point in the effective constellation at the relay,
{(k1, l1)(k2, l2)} is a singularity removal constraint forz = 1.
From the above equations it follows that

k2 = k1 +
1

2
(m1

√
M +m2)

l2 = l1 −
1

2
(m1

√
M +m2)

The above equations precisely mean the construction shown
in Fig.10. This completes the proof.

The standard Latin Square for 16-QAM is shown in Fig.8.
We define a minimal Latin Square as,
Definition 10: An M ×M Latin Square withM symbols

is termed as a minimal Latin Square.

IV. SIMULATION RESULTS

The proposed Latin Square (LS) Scheme ( [10]) is based
on removing the singular fade states. For 16-PSK all the
912 singular fade states can be removed with minimal Latin
Squares, but for 16-QAM some singular fade states cannot
be removed with minimal Latin Squares. Since 16-QAM
have only 388 singular fade states, in comparison with 912
singular fade states of 16-PSK, 16-QAM offers better distance
distribution in the MA stage. For a given average energy, the
end to end BER is a function of distance distribution of the
constellations used at the end nodes as well as at the relay.

LPAM−1 LPAM−2 L
PAM−

√

M

LPAM−2 LPAM−3 LPAM−1

L
PAM−

√

M
LPAM−1 L

PAM−

√

M−1

Fig. 10. Construction ofLQAM for z = 1.

The simulation results for the end to end BER as a function of
SNR is presented in this section for different fading scenarios.

Consider the case whenHA, HB, H
′
A and H ′

B are dis-
tributed according to Rayleigh distribution, with the variances
of all the fading links are assumed to be 0 dB. The end to
end BER as a function of SNR in dB when the end nodes
use 16-QAM signal sets as well as 16-PSK signal sets with
same average energy is given in Fig.11. The end to end BER
for XOR network code for 16-QAM is also given. It can be
observed that the LS Scheme for 16-QAM outperforms LS
Scheme for 16-PSK as well as XOR network code.

Consider the case whenHA, HB, H
′
A and H ′

B are dis-
tributed according to Rician distribution, with the Ricianfactor
of 5 dB and the variances of all the fading links are assumed
to be 0 dB. In Fig.12 the end to end BER as a function of SNR
in dB for LS scheme for 16-PSK, 16-QAM and XOR network
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Fig. 11. SNR vs BER for different schemes when the end nodes use 16-QAM
and 16-PSK for a Rayleigh fading scenario.

coding for 16-QAM is given. It is observed that the LS scheme
gives large gain over the XOR network coding scheme. The
LS scheme for QAM is better in end to end BER performance
in comparison with the LS scheme for PSK.

V. DISCUSSION

In this paper, for the design of modulation schemes for
the physical layer network-coded two way relaying scenario
with the protocol which employs two phases: Multiple access
(MA) Phase and Broadcast (BC) phase, with both end nodes
use square QAM constellation is studied. We showed that
there are many advantages of using square QAM constellation.
With the help of the relation between exclusive law satisfying
clusterings and Latin Squares we propose a method to remove
the singular fade states. This relation is used to get all the
maps to be used at the relay efficiently. We proposed a
construction scheme to get the Latin Square for square QAM
constellation from PAM constellation. Here we concentrated
only on singular fade states and the clusterings to remove that
with only the minimum cluster distance under consideration.
We are not considering the entire distance profile as done in
[4]. Unlike in the case of [4], we could remove most of the
singular fade states with standard Latin Square and its isotopes.
We presented the simulation results showing the end to end
BER performance when the end nodes use PSK constellation
as well as QAM constellations.
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