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Abstract—The design of modulation schemes for the physi-
cal layer network-coded two way relaying scenario has been HA HB
extensively studied recently with the protocol which emplgs two 0 @ B
phases: Multiple access (MA) Phase and Broadcast (BC) Phase
It was observed by Koike-Akino et al. that adaptively changng A R B
the network coding map used at the relay according to the
channel conditions greatly reduces the impact of multiple acess
interference which occurs at the relay during the MA Phase (2) MA Phase
and all these network coding maps should satisfy a requirene
called the exclusive law In [L0] it is shown that every network

coding map that satisfies the exclusive law is representabley H H

a Latin Square and conversely, and this relationship can be .' A . B ..
used to get the network coding maps satisfying the exclusive

law. But, only the scenario in which the end nodes usé/-PSK Y X Y
signal sets (whereM is of the form 2*, X\ being any positive A R B

integer) is extensively studied in[[1D]. In this paper, we adress

the case in which the end nodes us&/-QAM signal sets (where

M is of the form 2%*, \ being any positive integer). In a fading (b) BC Phase
scenario, for certain channel conditions~e’?, termed singular
fade states, the MA phase performance is greatly reduced. We
show that the square QAM signal sets give lesser number of
singular fade states compared to PSK signal sets. Because of
this, the complexity at the relay is enormously reduced. Mogover, A. Background

lesser number of overhead bits are required in the BC phase. fe

fade stateye?® = 1 is singular for all constellations of arbitrary The concept of physical layer network coding has attracted a

size including PSK and QAM. For arbitrary PSK constellation ot of attention in recent times. The idea of physical layet-n
';15' Wien” krgmzéga:gge;ﬁ“& asric:”a\'ﬁeogﬁ’(‘)'cve?hg%’ )?gg‘fneaxq': work coding for the two way relay channel was first introduced
failsr,)'?o rgemove this singulaﬁty foryQAM of size more greater?r?ang in [1], where the_ multiple access lnterference_occurrlnmat
4 and show that a doubly block circulant Latin Square removes 'elay was exploited so that the communication between the
this singularity. Simulation results are presented to showthe end nodes can be done using a two stage protocol. Information
superiority of QAM over PSK. theoretic studies for the physical layer network codingisci®
were reported in_[2],[[3]. The design principles governihg t
choice of modulation schemes to be used at the nodes for
We consider the two-way wireless relaying scenario showicoded transmission were studied [in [4]. An extension for
in Fig[d, where bi-directional data transfer takes pladevben the case when the nodes use convolutional codes was done
the nodes A and B with the help of the relay R. It ign [5]. A multi-level coding scheme for the two-way relaying
assumed that all the three nodes operate in half-duplex mosieenario was proposed inl [6].
i.e., they cannot transmit and receive simultaneously & th It was observed in[]4] that for uncoded transmission, the
same frequency band. The relaying protocol consists of thetwork coding map used at the relay needs to be changed
following two phases: thenultiple acces$MA) phase, during adaptively according to the channel fade coefficients, deor
which A and B simultaneously transmit to R using identicdb minimize the impact of the multiple access interference.
square M-QAM signal sets and théroadcast(BC) phase The proposed Latin Square scheme was studied in [10], [11]
during which R transmits to A and B using possibly witby considering a two way relaying using-PSK signal sets
another squaré/-QAM or constellations of size more thanat the end nodes. Inl[4] analysis of 16-QAM is done under
M. Network coding is employed at R in such a way that ghe assumption that precoding is done at the end nodes. We
(B) can decode the message of B (A), given that A (B) knowasldress the situation where no precoding assumption is made
its own message. and to the best of our knowledge no work has been reported

Fig. 1. The Two Way Relay Channel

|. PRELIMINARIES AND BACKGROUND
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for such a scenario with generd-QAM modulation. Broadcast (BC) PhaseDepending on the value ofe’?, R
chooses a map17? : S? — &', whereS' is the signal set (of
B. Signal Model size betweenV/ and M?) used by R duringBC phase. The

SPTRE
Multiple Access (MA) Phased:et S denote the squard/- elembents_ |n§ bWhr']Ch are m";"?,ped on .Ejo th? same (iomplex
QAM constellation used at A and B, whedel — 22, A number inS’ by the mapAM™-* are said to form a cluster.

being a positive integer. Assume that A (B) wants to transn’l%'ltet {£1, L, .., L1} denote the set of all such clusters. The

. . . J6
an 2)-bit binary tuple to B (A). Lety : S — Fyer denote the ormation of clusters is called clustering, and denoted by
= . . 2

o L ) 20 . :
mapping from complex symbols to bits used at A and B. Léﬁ indicate that_ it is a function ofe’”. The rec_:elved _S|gnals

- o at A and B during the BC phase are respectively given by,
w(xa) = sa, u(xp) = sp € S denote the complex symbols

transmitted by A and B respectively, whesg, sp € Faax. Ya=H\Xp+ 24, Yp = HyXg + Zs, (3)
The received signal aR is given by,
where Xp = M"9(324,25) € S’ is the complex number
Yr = Hava+ Hpzp + ZR, transmitted by R. The fading coefficients correspondindne t
) o ) _R-A and R-B links are denoted b}/, and H; respectively
where H, and Hp are the fading coefficients associated witQnq the additive noiseg, and Zp areCN (0, 02).
the A-R and B-R links respectively. The additive noigg In order to ensure that A (B) is able to decode B's (As)

is assumed to bé{N(OaUQ)’ whereCN(O,az) denotes the essage, the clusteritgshould satisfy the exclusive lawl[4],
circularly symmetric complex Gaussian random variablénwit o

variances?. We assume a block fading scenario, with the ratio ’
Hp/H, denoted ag = 'Yeje- wherey € R* and—m <0 < MYV (x4, 28) # MYVO(2!,, xp), forza # ', ,Vzp €S,
w, is referred as théade stateand for simplicity, also denoted MV (x4, 25) # M”’e(xj:,:cjg% for zp # xfg Va4 €S. }

by (v, 0). @
Let Sr(v,0) denote the effective constellation at the relay
during the MA Phase, i.e., Definition 2: The cluster distance between a pair of clusters
" L; andL; is the minimum among all the distances calculated
Sr(7,0) = {zi +ve'’zj|zi, x5 € S}, between the points 4 + ve'?zp, 2y + vel2’y € Sg(v,0)

. . . where (z4,25) € L£; and (¢/4,2%3) € L£;. The minimum
. 70 As 7 Ar'B) VAN
an_d tdm.mge )ede_note the minimum distance between th(?Iuster distanceof the clusteringC is the minimum among
points inSg(7,6), i.e., all the cluster distances, i.e.,

. 76 — . o 76 A . 0 . 0
dmin(e’™) = min | L(ga-aa) Hrel s -ab) @ gl e = min, | [(ea—a) 496 (25— ) |
s NFATB)S (za,zB),(zy,2p)
(za,xp)#(zy,2p) €s?,

MV (zg,zp)AMY O (2 ,20)

From [1), it is clear that there exists values of/ for

Which doin (7€9%) = 0. Let H = {ve3? € C|dmin(7,60) = 0}. The minimum cluster distance determines the performance
The elements of{ are said to behe singular fade states during the MA phase of relaying. The performance during the
Singular fade states can also be defined as BC phase is determined by the minimum distance of the signal

Definition 1: A fade stateye?? is said to be a singular fadeSetsS’. For values ofye?? in the neighborhood of the singular
state, if the cardinality of the signal sk (7, 0) is less than fade states, the value of,.;,(ve’%) is greatly reduced, a
M2. phenomenon referred dsstance shorteninglo avoid distance

For example, consider the case when symmetric 4_QA§h10rtening,foreach singular fade state, a clusteringsieee

signal set used at the nodes A and B, i®= {(+1+5)/v/2}. chosen such that the minimum cluster distance at the singula
For vei® = (1 + )/2, dmin(v€’) = 0, since, fade state is non-zero and is also maximized.

A clusteringC is said to remove a singular fade state H,
’(1 +3J 1—j) N (1+7) (—1—j 1+j)‘ —0 if d,,(h) > 0. For a singular fade state € H, let Cyy,
V2 V2 2 V2 V2 - denote a clustering which removes the singular fade state
_ h (if there are multiple clusterings which remove the same
Alternatively, when~e’® = (1 + j)/2, the constellation singular fade staté, consider a clustering which maximizes
Sr(7,0) has only 12 £16) points. Henceye’’ = (1+j)/2  the minimum cluster distance). L&y = {Cyy : h € H}
is a singular fade state for the case when 4-QAM signal setdenote the set of all such clusterings. lag,tm(c{h},,y/, 0
used at A and B. Letia,ip) € S? denote the Maximum pe defined as,
Likelihood (ML) estimate of(xz4,zp) at R based on the
received complex numbéry, i.e.,

dmin(CPY 4 0) = min | (za —y) + el (zB —2%) |-
(wa,xp),(2)y,ap)ES?,

(JA?A, j?B) =arg In,in |YR — HAI;X — HB.CC/B| (2) MUY (@ 4 2 p)E M (2l ,20)
(z'y,2'5)€S?



The quantityd,,;, (C1"},~,'8’) is referred to as the mini- search is extremely difficult in practice, especially whie t
mum cluster distance of the clusteri@§*} evaluated at’e?® .  cardinality of the signal set/ is large.

In practice, the channel fade state need not be a singulaifhe implementation complexity of CNC suggested [in [4]
fade state. In such a scenario, among all the clusteringshwhis extremely high: It appears that, for each realizationhef t
remove the singular fade states, the one which maximizgsgular fade state, the CNC algorithm bf [4] needs to be run
the minimum cluster distance is chosen. In other words, fat R to find the clustering.
~v'el? ¢ H, the clusteringz??" is chosen to b&€{"}, which  In the CNC algorithm suggested inl [4], the network coding
satisfiesd,nin (C1, 7, 0') > dpin (C1M'},4/,6"),Yh # h' € map is obtained by considering the entire distance proftie. T
‘H. Since the clusterings which remove the singular fade statfisadvantages of such an approach are two-fold.
are knc_)wn to all the thre_e nodes a_nd are finite in number, the, Considering the entire distance profile,
clustering used for a particular realization of the fadéestan minimum cluster distance alone which contributes dom-

be indicated by R to A and B using overhead bits. inantly to the error probability, results in an extremely
Example 1:In the case of BPSK, if channel_ condition is large number of network coding maps. For example, for
7 =1 andf = 0 the distance between the pai§ 1)(1,0)  16-QAM signal set, the CNC algorithm results in more
is zero as in Figl2(a).The following clustering remove this  han 18,000 maps [4].
singular fade state. « The CNC algorithm tries to optimize the entire distance
profile, even after clustering signal points which con-
{0, 1)@, 00}, {(1,1)(0,0)}} tribute the minimum distance. As a result, for several
channel conditions, the number of clusters in the clus-
tering obtained is greater than the number of clusters in
the clustering obtained by taking the minimum distance
alone into consideration. This results in a degradation in
performance during the BC phase, since the relay uses a
- - signal set with cardinality equal to the number of clusters.
For example, for 16-QAM signal set, the relay has to use
oy P e signal sets of cardinality 16 to 29][4].

instead of the

The minimum cluster distance is non zero in this clustering.

0 Bt Comstalbation . the e o o — 1 a0 In [4], to overcome the two problems mentioned above,
‘ another algorithm is proposed, in which for a given’?,
an exhaustive search is performed among all the network
@ aneo (o) coding maps obtained using the closest-neighbour clasteri
- &

algorithm and a map with minimum number of clusters is
chosen. The difficulties associated with the implementatib
the CNC algorithm carry over to the implementation of this
algorithm as well.

The contributions and organization of the paper are as

To remove the distance shortening effect a procedure fdlows:
given in [4] when the nodes A and B use QPSK signal set. Thee A procedure to obtain the number of singular fade states
procedure suggested inl [4] to obtain the channel quardizati for PAM and QAM signal sets is presented.
and the clusterings, was using a computer algorithm, whiche It is shown that for the same number of signal poihfs
involved varying the fade state values over the entire cerpl the number of singular fade states for squafeQAM
plane, i.e.,0 < v < o0, 0 < 6 < 27 in small discrete steps is lesser in comparison with the number of singular fade
and finding the clustering for each value of channel reatinat states forM -PSK. The advantages of this result are two
But such an approach have many issuesl In [4], it is claimed fold - QAM offers better distance performance in MA
that the clustering used by the relay is indicated to A and B Phase and QAM requires lesser number of Latin squares
by using overhead bits. However, the procedure suggested in (i.e., a reduction in number of overhead bits).
[4] to obtain the set of all clusterings, was using a computere To remove the singular fade stae = 1,0 = 0) for
search algorithm (called Closest Neighbour Clustering @ECN v/ M-PAM, a Latin Square is constructed. It is shown that
algorithm), which involved varying the fade state valuegrov the bit-wise XOR mapping cannot remove the singular
the entire complex plane, i.6),< v < o0, 0 < 6 < 27 and fade staté~y = 1,6 = 0) for any M-QAM and a different
finding the clustering for each value of channel realizadsn mapping is obtained to remove the singular fade state
discussed in previous sections. The total number of network (y = 1,6 = 0), from the Latin Square to remove the
codes which would result is known only after the algorithm  singular fade statéy = 1,6 = 0) for v/M-PAM.
is run for all possible realizationge’? which is uncountably « By simulation it is shown that the choice of 16-QAM
infinite and hence the number of overhead bits required is not leads to better performance for both the Rayleigh and
known beforehand. Moreover, performing such an exhaustive the Rician fading scenario, compared to 16-PSK.

(b) Effective Constellation at the relay for y =1 and 6 = 7

Fig. 2. Effective Constellation at the relay for singuladdastates, when the
end nodes use BPSK constellation.
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The remaining content is organized as follows:

In Section[I) we discuss the relationship between singular
fade states and difference constellation of the signalsstd
by the end nodes. We present expressions to get the number of
singular fade states for PAM and square QAM signal sets in AS*
SubsectionST-A and 1B respectively. In Subsecfiont I
proved that the number of singular fade statesMQAM is y o 5 !
always lesser in comparison with thataf-PSK signal sets. In
Section 1] the clustering for a singular fade state is adi
through completing a Latin Square and a Latin Square for
removing the singular fade state= 1 is analytically obtained
for PAM and QAM signal sets. In SectiénllV simulation results
are provided to show the advantage of Latin Square scheme
for QAM over XOR network coding scheme as well as Latin
Square scheme for PSK signal sets under Rayleigh and Rician
fading channel assumptions. = = = s i z

S=-(WM-1)+m 3 1 1 3
(a) vV M PAM constellation

AS=-2(VM -1)+2n

Il. SINGULAR FADE STATES AND DIFFERENCE
CONSTELLATIONS

In this section we show the relationships between singular
fade states and difference constellation of the signal setl u
by the end nodes. The following lemma discusses the location
of singular fade states in complex plane for any constelati rig. 3. /a7 PAM constellation, difference constellation and singutade
used at end nodes. states fory/M = 4

Lemma 1:Let node A use a constellatidh of size M, and
let node B use a constellatidf of size M. Letx 4,2y € $1 . )
andzp, 2y € Sy, then the singular fade states= ye/? are A. Singular Fade States of PAM signal sets

(c) Singular fade states

given by ) The symmetricy/ M-PAM signal set is given by
z=rel = TAT T (5)
s — B S=-(WVM-1)+2n, ne(0,---,vM-1)

wherez 4,2’y € S1 andxp, 2y € Ss.

Proof: The pair(za,z’y) and(zp, z3) result in the same
point in the effective constellation at the relay if the cdexp AS = _2(\/M —~1)+2n, ne(0,--- ’2(\/M —-1)).
numbersz 4 + e’z and 2’y + vel?xz’y are the same. The
expressior((5) is obtained by equating these complex nusnbéror example the 4-PAM signal set and it's difference constel

m lation is given in Fig.3(a) and F[g.3(b) respectively. Fack
From LemmdL it can be seen that all the singular fade sta@fgthe difference constellation point, the pair in the sigset
in the complex plane is of the form of ratio of differencevhich correspond to this point is also shown. We will often
constellation points of the signal sets used by end nodeéensider only the first quadrant dS only, denoted ag\S™,
i.e., the singular fade states are decided by the differentbich for a general complex signal set is given by
constellation points. Henceforth, throughout the papes, w
assume both the end nodes use same constellafiohet

AS denote the dn‘fgrence constellatlo? of tr)e signal set us?ﬂe following lemma gives the number of singular fade states
at the end nodes, i.e., AS = {z; — ajlx;, 2] € S}. Fora ¢, pay signal sets

= je i i .
fade statez = ye’” to become a singular fade state, it has | 4 - The number of singular fade states, for a regular

to satisfy [5), or in other words(z; — zp) = (va — 2/), /57 ; e
where(2’; —xp) and (x4 —a'y) are any point inAS. Hence, M-PAM signal set, denoted b /z7_p 1) IS given by

a singular fade state can be alternatively defined as follows V-1 )

Definition 3: A singular fade state is a mappingz from N —9244 n (1 _ _) 6
AS to the complex plan€ so that at least oné, € AS is (VM—PAM) ; H p ©)
mapped to somd; € AS. The set of all singular fade states

and its difference constellation is given by

AST = {a: reala) > 0,imaginarya) > 0}.

pln

is given by{Z : AS — C|3Z(dy) = d;}. wherep|n stands for prime number dividing n.
Remark 1:The singular fade state = 1 is the mapping Proof: There are2(v/ M — 1) non-zero signal points in
from AS to itself that maps every point to itself. the difference constellatioS and sinceAS is symmetric

In the rest of this section, we focus on the singular fadsbout zero there ar¢/ M — 1 signal points inAS™. All these
states for symmetric PAM and square QAM signal sets.  are scaled version of nonzero element<of;;.



TABLE |
SINGULAR FADE STATES FOR8-PAM

n, Elements| Relative primes| Singular fade | ¥ (n) 3 e e e Be
in ASt less thamn states,z > 1 |
1 0 ;
2 1 2 1 !
3 12 32 2 2 o 6o | l0g 144
4 13 4.5 2 |
5 1,234 53,23 A L
6 15 ¢ 2 ]
T 7T 7T T !
7 1,2,3,4,5,6 7,57 ﬁ, Z, E, E 6 1 . 5 . : 9 . 13 .
The number of positive integers less than or equal that |
are relatively prime to is given by Euler’s totient function, 0 e l 5 o 124
1 l
w(n):nH<1—§) ‘
pln (a) 16—QAM constellation
where the product is taken over distinct prime numbgers AS\*‘
dividing n. To get the total number of relatively prime pairs in Do Ry
. . [ ] [ ] [ ] [ ] [ ) [ ]
Z\/ﬁwe take the sum over all nonzemos Z 57 which gives ' ‘
M—-1 1 . . . !
anl an‘n (1 — 5 ) - One relatively prime F.)alll’(a,-b) . . . . . . .
gives two singular fade states/b andb/a. The multiplication !
factor 4 in (@) accounts for the negative side of the in-phase . . . # . . .
axis as well as the inverses. Finally, 2 is added to count the .
singular fade state = 1 andz = —1. ] !
Example 2:Consider the case of 4-PAM\( = 16) signal B ¢ ¢ ¢ o M M
set as given in Figl3. There at$+/M — 1) = 6 non-zero
signal points in the difference constellation. Scaled™ is . . . ° . . .
having (v M — 1) = 3 signal points{1,2,3}. And there are
14 singular fade states- . o . . . . .
112_ .3 -1 -1 -2 -3 |
1,-,-,-,2,3, =, -1, —, —, —,-2,-3,— ¢ . ‘
{’273’3’7127 7273’37 ) 72} [ ] [ ] [ ] .‘ [ ] [ ) [ ]
These singular fade states are shown in[Fig.3(c). Caloglati (b) The Difference Constellation

Euler totient functiony(n) for n = 1,2,3 we get 0,1,2
respectively and substituting inl(6), leads 3,_parn) =
2+4(0+1+2) = 14.

Example 3:For 8-PAM signal set the singular fade states
with z > 1 are shown in Tablg.l. For each suglgiven in the
table there exists singular fade states,% and —%. Hence,
totally, there are 70(+4(0+1+2+2+4+2+6)) singular
fade states.

Fig. 4. 16—QAM constellation and its difference constellation

Definition 4: [12] The Gaussian integers are the elements
of the setZ[j] = {a +bj : a,b € Z} whereZ denotes the set
of integers.

The signal points in the difference constellation are Gaus-
sian integers. To get the number of singular fade states for

B. Singular Fade States for QAM signal sets square QAM signal sets, the notion of primes and relatively

We consider squaré/-QAM signal setS = {An; + primes in the set of Gaussian integers is useful.
jAmq} whereA,,; andA,,, take values from the/A-PAM Definition 5: [12] A Gaussian integet is called a Gaus-
signal set-(VM —1)+2n, n e (0,---,v/M—1). We use Sian prime if and only if the only Gaussian integers thatd#vi
the mapping: : S — Z,, given by aare:l,—1,4,—j,a, —a,aj and—qj. The Gaussian integers
1 which are invertible inZ[j] are called units irZ[;j] and they

Amr+jAmq — 5[(\/M—1+Am1)\/ﬂ+(\/ﬂ—1+AmQ)] (7) are+1 and+j. Let o, 3 € Z[j]. If the only common divisors

f ¢ d IVsi q its hold f of o and 8 are units, we say and S are relatively prime.

mc;; C??\Cer?ji?fg?(:r?cinco:;trel?arl%zsoﬁgqu;erseu QSAMosigr?arll A emma _3: The number of singular fade _stat_es for the square
sets form a part of scaled integer lattice withy/M — 1)? M-QAM signal set, denoted by —qan is given by
poin.ts. The 16-QAM s!gna_ll set With the above mgpping and Nay—ganm = 4+ 8p(AST)

its difference constellation is shown in ig.4(a) and in/&{g).

whereg(AST) is the number of relative prime pairs iRS™+.



le | o3
! TABLE Il
! PRIME FACTORS OFGAUSSIAN INTEGERS INAST
77777777 3”””” Elements inAST | Prime factors| No. of relatively prime pairs
! 1 1 11
0 | 2 1+4] 1+ 6
¢ ; ¢ 2 i 6
. 1+2] 1+2j 10
(a) 4—QAM constellation 24] % 10
| + 2+2] 1+ 6
! AS 3 3 10
! . 34 (1+)),(1+2)) 5
| N 13 (@).@) 5
. ? ° 3+2 3+2 11
| : 2+3 2+3 11
| 3+3 (14,3 5
,,,,,,,, S
! the pair(a,b) and (b, a) separately. So there are 48 distinct
| pairs of relative primes, and from Lemmh8;6_¢gan turns
. * . to be 388. The singular fade states of 16-QAM is shown in
| Fig[6(a)-
| TABLE Il
‘ COMPARISON BETWEENM -PSKAND M-QAM ON NUMBER OF
(b) The Difference Constellation SINGULAR FADE STATES
/ ; M | No. of singular fade| No. of singular fade
4 o —— "% states forM-PSK states forM-QAM
4 12 12
o L 16 912 388
T & 2 64 63,552 8388
or 1 .
C. Singular fade states df/-PSK andM-QAM signal sets
I : . P p , In this section we show that the number of singular fade
B N states forM-QAM signal sets is lesser in comparison with
that of M-PSK signal sets. The advantages of this are two
45 o w5 0 05 1 15 fold- QAM offers better distance performance and it require
() Singular fade states lesser number of overhead bits since the required number of

relay clusterings are lesser in the case of QAM compared with
Fig. 5. 4—QAM constellation, its difference constellation and silegifade PSK
states ' .
Lemma 4:The number of singular fade states far-

QAM signal set is upper bounded bin? — n + 1), where

/ 2
Proof: All the possible ratios of elements frokS give 5, = [(2vM —1)" - 1]7 which is same ag(M?) — (2M —
singular fade states. We consider only ratiosArs™ and VWAL + 1) 4
multiply the number of possible such ratios with a factor of }1 .

] A2 . .
to account the ratios with points in all the other quadrafs. Proof. There ar€/(2vM —1)”— 1] non zero signal points

. L . . ) . in AS which are distributed equally in each quadrant, i.e., the
avoid multiplicity while counting we take only relative pre 2V —1)2 — 1]
pairs inAS™ and one such paiia, b) gives two singular fade number of signal points iAS™, which
statesa/b and b/a. Because of this the multiplication factorwe denote byn. The maximum number of relatively prime
becomes 8. Finally, the factor 4 is added to count the unijsairs in a set of Gaussian integers ;g(nQ;U Since an upper
B hound is of interest we substitute this in Lemia 3 instead of
Example 4:For a 4-QAM signal set shown in Fig.5(a) thep(AS+). This completes the proof. |
number of singular fade stated](z4_gan) iS given by4 + The number of singular fade states fa-QAM signal set is
8.1 = 12. ScaledAS™ have only two element§l, 1+ j} in lesser in comparison with that @f/-PSK signal sets. I [11]
this case as shown in Hig.5(b). They form one relatively primit is shown that the number of singular fade states fé¢

pair. The singular fade stateisl, £5, +1 =+ 7, ﬁ is shown PSK signal set isj\/[(MT2 -2 4+1),in O(M?). From Lemma

in Fig.[5(c). [4, an upper bound on the number of singular fade states for
Example 5:Consider the case of 16-QAM signal set. Tabld/-QAM is in O(M?).
[Mdiscusses the prime factorization of the element\ifi™. Example 6:The singular fade states of 16-PSK signal set

From the table there are 96 relatively prime pairs, but intsu is given in Fig.6(H). There are 912 singular fade statestai.to
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Fig. 6. Singular Fade States fé6—QAM and 16—PSK modulation schemes

The advantage of square QAM constellation is highly ebame element is used to fill slots. This removes that paaticul
fective in higher order constellations, for example 64-QAMNingular fade state. Such a partially filled Latin Squarealted
is having 8,388 singular fade states where as a 64-PSK lea€onstrained Partially Latin SquaréCPLS). After this, to
63,552 singular fade states and relay has to adaptively usake this a Latin Square, we try to fill the other slots of the
63,552 clusterings. With the use of square QAM constel&tioCPLS with minimum number of symbols.

the complexity is enormously reduced. Definition 7: A Latin SquareL” is said to be the Transpose
of a Latin SquareL, if LT (i,j) = L(j,4) for all i,j €
I11. EXCLUSIVE LAW AND LATIN SQUARES {0,1,2,., M —1}.

Definition 6: [[7] A Latin Square L of orderM with the Lemma 5:For any constellation, if the Latin Squark
symbols from the seZ, = {0,1,---,t — 1} is anM x M removes the singular fade statethen the Latin Squaré™
array, in which each cell contains one symbol and each symhwill remove the singular fade state™'.
occurs at most once in each row and column. Proof: Let the singular fade state as given in[(b) with

In [10] it is shown that when the end nodes use signal sesnstraint{(z 4, zg), (z/y, z’z)}. Then, by taking the inverse
of same size all the relay clusterings which satisfy exekisi o — zp
law can be equivalently representable by Latin Squares wit =B 2
the rows (columns) indexed by the constellation point used b
node A (B) and the clusterings are obtained by taking all ti¢ow the constraints are modified oz g, 4), (27, 24)},

slots in Latin Squares which are mapped to the same symb8l. the role of node A and node B are interchanged, which
in one cluster. clearly results in the transpose of the Latin Square. =

From the above lemma, it is clear that we have to get Latin
A. Removing Singular fade states and Constrained Lat@yuares only for singular fade states < 1 or |z| > 1.

Squares The square QAM signal set has a symmetry whichr i€
The minimum size of the constellations needed in the Bdegrees of rotation. This results in a reduction of the nurobe
phase isM, but it is observed that in some cases relay mdgquired Latin Squares by a factor 4 as shown in the following

not be able to remove the singular fade states with)M/ and lemma.

t > M results in severe performance degradation in the MA Lemma 6:1f L is a Latin Square that removes a singular
phase([4]. Letk,1)(k’,1’) be the pairs which give same pointfade statez, then there exist a column permutationfofsuch

in the effective constellatios, at the relay for a singular that the permuted Latin Square removes the singular fade
fade state, wherd:, k’,1,1’ € {0,1,....M — 1} and k, k’ statezel™/2.

are the constellation points used by node A and are the Proof: For the singular fade stateis given in [$) with
corresponding constellation points used by node B. If tirey sconstraint{(z., ), (z/4, 2’5 )}, the singular fade state:"/>

not clustered together, the minimum cluster distance wéll S given by

zero. To avoid this, those pairs should be in same clustés. Th

requirement is termed assingularity-removal constraintSo,

we need to obtain Latin Squares which can remove singular ‘
fade states and with minimum value farTowards this end, — ze/"/2 =
initially we fill the slots in theM x M array such that for

the slots corresponding to a singularity-removal constriie

T -y

2eI /2 — [za — 4] eI /2
= 4
[z — 5]
[xa — 2]
[x)ge=i7/2 — xge—i™/2]




Since in the square QAM constellation there exist signat{soi removal constraints are

with 2/3e=7™/2 andzge~77/2, all the constraints are changed

but the new constraints are obtainable from the permutatiéliio’ 11,00}, {(0,2)(1,1)(2,0)}, {(0,3)(1,2)(2,1)(3,0)},

of signal points in the constellation used by node B. The {(1,3)(2,2)(3, 1)}, and{(2,3)(3,2)}.
columns of the Latin Squ_ares are md_exe_d by the 5|gnal_ POIRRe Latin Square which removes this singular fade state is
used by B and the effective permutation in the Constellaﬁongiven in Figl9

representable by column permutation in the Latin Squase. '

Note that the fade state= 1 or (v = 1,0 = 0) is a singular (0.1)(10) (03)(12)(21)(3.0) 23)32)
: - -~ *----- *~----- *------ *~----- o------ .
fade state for any signal set. 00) 02)(L1)20) (1322630 (33)
Definition 8: A Latin Square which removes the singular
fade state: = 1 for a signal set is said to be a standard Latin Fig. 7. Received Constellation at the relay for= 1.

Square for that signal set.

When the signal sets is®&-PSK signal set then, in [11] it
has been shown that the Latin Square obtained by Exclusive-
OR (XOR) is a standard Latin Square for any integelt turns
out that for M —QAM signal sets the Latin Square given by
bitwise Exclusive-Or (XOR) is not a standard Latin Square 3]|0]1]2
for any M > 4. This can be easily seen as follows: Any Fig. 9. Left-cyclic Latin Square to remove the singular fatatez = 1
squareM-QAM signal set (/ > 4) has points of the form
a,a +.jb,a — jb, fqr some integer& andb. Forz =1, the C. Standard Latin Square fat/—QAM
effective constellation at R during the MA phase contaires th
point 2¢ can result in at least two different ways, sirnke=
a+ za = (a+ jb) + z(a — 5b) for z = 1. Let I3, and i3
denote the labels fot, a + jb, and a — jb respectively. For . .
the singular fade state = 1, we have{(l1,11), (I2,13)} as a Let PAM —q, for i = 1,2, - ) VM, denqte the symbol
singularity removal constraint. But the Latin Square ahedi S€t COnsisting ot/ M symbols{(i — DVM, ((i = )VM) +
by bitwise XOR mapping does not satisfy this constraintaind (1 ~ DVM) 42, ((i = 1)\/.]V_[) + (VM N 1)}. Let
Wl =041 dls. Lpani—i Qenote the standard Latin Square with symbol set

PAM — i for vVM-PAM and also letLgay denote the
. standard Latin Square fab/-QAM. Then, Lgoaas is given
B. Standard Latin Square foy'2/ —PAM in terms of Lpanr—i, i = 1,2,---,v/M, as the block left-

In this subsection, we obtain standard Latin Squares feyclic Latin Square shown in Fig.110. This is formally shown
v/ M—PAM signal sets. in the following Lemma.

Definition 9: An M x M Latin square in which each row Lemma 8:Let PAM — i for i = 1,2,--- ,v/M, denote
is obtained by a left cyclic shift of the previous row is cdlle the symbol set consisting af M symbols{(i — 1)v/M, ((i —

N| | O
W|IN| -~
Ol WIN
| Ol W

In this subsection standard Latin Square for a squdre
QAM constellation is obtained from that af A/-PAM con-
stellation.

a left-cyclic Latin Square. DVM)+1,((i—1)VM)+2,--- ((—1)VM)+(VM-1)}
Lemma 7:For a+/M-PAM signal set a left-cyclic Latin and letLpay—; stand for the Latin Square that removes the
Square removes the singular fade state 1. singular fade state = 1 with a symbol setPAM — i for

Proof: Consider the,/A7-PAM signal set with the signal v/A-PAM. Then arranging the cyclic Latin Squarbs 1a—;
points labelled from left to right as discussed in Secfidn 1&s shown Fi§. 10 where each row is a blockwise left-cyclcall
Let {(k1,11)(ko,12)} be a singularity removal constraint. Toshifted version of the previous row results in a Latin Square
get the same point in the received constellation at the ilaywhich removes the singular fade state= 1 for //-QAM.
whenz = 1, we havek; +1; = ko +1,. Consider the following Proof: Note that the matrix in Fig. 10 is &/ x M matrix,
two cases satisfying this equality. Case ) = l1,1» = k; Which is also a/M x /M block left-cyclic matrix where each
In this case the constraint becomiggy, 11 )(I1, k1 )}, i.e., the block is av/M x /M left-cyclic matrix Lpan—; for somei.
Latin Square which removes= 1 should be symmetric about Leta; +3jb1, a2 +jbs, a +jby anda; +5b5, wherea;, a;, b;
main diagonal. andb, € {—(VM —1),-(VM =3),--- ,(VM —3), VM —
Case (i):ky = ky +m,lo = I, —m for anym < /M., 1)} forie {1,2} be four M-QAM constellation points such
The constraint now becomésk;, l1)(k, +m,l; —m)} which thata; + jb; anda) + jb} are used by node A ang; + jb>
means the symbol ik;-th row andl;-th column should be andaj + jb, are used by end node B, and result in a same

repeated in thé; + 1-th row and thel; — 1-th column. point in the effective received constellation at the relaya
It is easily seen that a left-cyclic Latin Square satisfiethbofor singular fade state = 1, i.e.,
this requirements. ]

. . . b iby = a b ! 129
Example 7:Consider the received constellation at the relay 01301+ a2+ ghy = 4y 40+ ap + 50

when the end nodes use 4-PAM constellation and let thelLet a} = a1 + my and b} = by + ma wheremy,ms €
channel condition be = 1 as given in Fid.l7. The singularity {—2(vVM —1), —2(vVM —2),--- ,2(V M —2),2(vV M —1)}.



0| 1|23 4 | 5|6 |7 8 | 9 (10|11 12| 13| 14| 15
112|3]0 516 |74 9 10| 11| 8 || 13| 14| 15| 12
2 1 3|]0]1 6 | 7|4 |5|10/11| 8| 9 | 14|15|12| 13
31012 714 |5|61|11| 8| 9 |10 15|12 13| 14
4 | 5|6 |7 8 9|10|11|12| 13|14 |15 0| 1|2 | 3
516 |74 9 |10|11| 8 || 13| 14|15|12 1| 2|3 | O
6 |7|4|5|10{12| 8|9 (14151213} 2|3 |01
7(4|5|61|11| 8|9 (101512 13|14} 3| 0| 1| 2
8 | 9|10|11|/12| 13| 14|15 0| 1| 2| 3 4 |56 |7
9 110|11| 8 ||13|14|15|12 1|2 |3 |0 516 |74
10{11) 8 | 9 || 1415|1213} 2|3 |01 6 | 7|4 |5
11| 8 | 9 |10 15(12| 13| 14| 3 | 0| 1| 2 714 |56
1211314 |15| 0 |21 | 2| 3 4 | 5|6 |7 8910|121
13|14 15|12 1 (2| 3|0 516 |74 9 110|111 | 8
1411511213 2 | 3| 0| 1 6 | 7| 4|51 10|11| 8| 9
151121314 3 | 0| 1| 2 714 |5|6]|11| 8] 9|10
Fig. 8. Standard Latin Squarkg 4 s for 16-QAM.
Then,a), = as — my andby = by — mo. Then, using the map
defined inY, let Lpani—1 Lpani-2 e Lpay it
k1 = p(ar + jb1)
lh = p(ag + jbz)
ke = p(ay + jb}) = plar +my + j5(b1 + ma)) Lpan—2 Lpan-3 - Lpan—1
lo = p(ay + jby) = p(az —ma + j(ba — m2))

Since, for z = 1, the four complex numbers result in

the same point in the effective constellation at the relay,

{(k1,11)(k2,12)} is a singularity removal constraint far= 1.

From the above equations it follows that

1
ko =ki+ -(mivM
2 1+ 2 (m1 + m2) LPAM—N Lpan— e LPAA/—N—1
1
ZQ = ll — i(mlvM—i-mQ)

The above equations precisely mean the construction shown
in Fig[I0. This completes the proof.

Fig. 10. Construction oLg s for z = 1.

The standard Latin Square for 16-QAM is shown in [Hig.8rhe simulation results for the end to end BER as a function of
We define a minimal Latin Square as, SNR is presented in this section for different fading sciesar
Definition 10: An M x M Latin Square with)M symbols Consider the case whel 4, Hg, H), and H}; are dis-
is termed as a minimal Latin Square. tributed according to Rayleigh distribution, with the \aarces
of all the fading links are assumed to be 0 dB. The end to
IV. SIMULATION RESULTS end BER as a function of SNR in dB when the end nodes
The proposed Latin Square (LS) Schemé (] [10]) is basede 16-QAM signal sets as well as 16-PSK signal sets with
on removing the singular fade states. For 16-PSK all tlsame average energy is given in Eig.11. The end to end BER
912 singular fade states can be removed with minimal Latior XOR network code for 16-QAM is also given. It can be
Squares, but for 16-QAM some singular fade states canmditserved that the LS Scheme for 16-QAM outperforms LS
be removed with minimal Latin Squares. Since 16-QAMscheme for 16-PSK as well as XOR network code.
have only 388 singular fade states, in comparison with 912Consider the case wheH 4, Hg, H, and Hj are dis-
singular fade states of 16-PSK, 16-QAM offers better distantributed according to Rician distribution, with the Ricifattor
distribution in the MA stage. For a given average energy, tloeé 5 dB and the variances of all the fading links are assumed
end to end BER is a function of distance distribution of th be 0 dB. In Fig. IR the end to end BER as a function of SNR
constellations used at the end nodes as well as at the relaydB for LS scheme for 16-PSK, 16-QAM and XOR network



10 T T T 10 T T
—8-LS Scheme for 16-QAM —8—LS Scheme for 16-QAM

—6—LS Scheme for 16-PSK —6—LS Scheme for 16-PSK
—+—XOR NW code for 16-QAM —+—XOR NW Code for 16-QAM
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Fig. 11. SNR vs BER for different schemes when the end noded &AM  Fig. 12. SNR vs BER for different schemes when the end noded &AM
and 16-PSK for a Rayleigh fading scenario. and 16-PSK for a Rician fading scenario with Rician factorE d

coding for 16-QAM is given. Itis observed that the LS scheni@ Chris A. Rodger “Recent Results on The Embedding of L&tares and

gives large gain over the XOR network coding scheme. The\F;;'a;ffvﬁt(”llgg”g)e_sﬁgsf“a Sgstezrg;_ggg Graph Designs.", tertiche,
LS scheme for QAM is better in end to end BER performangg pouglas . Stones, “On the Number of Latin Rectangle$.DP Thesis,

in comparison with the LS scheme for PSK. Monash University, November 2009.
[9] B. Burton, “Completion of partial latin squares”, HonsuThesis, Uni-
V. DISCUSSION versity of Queensland, 1997.

[10] Vishnu Namboodiri, Vijayvaradharaj Muralidharan @ddSundar Rajan,
In this paper, for the design of modulation schemes for "Wireless Bidirectional Relaying and Latin Squares,” Rredings of IEEE

. . . Wireless Communications and Networking Conference (WCN12,
the phyS|caI Iayer network-coded two way relaylng scenario Paris, France, 1-4 April, 2012 (a detailed version of thiggrds available

with the protocol which employs two phases: Multiple access in arxiv: 1110.0084v2 [cs.IT], 16 Nov. 2011).

(MA) Phase and Broadcast (BC) phase, with both end nodég Vijayvaradharaj Muralidharan, Vishnu Namboodiri,daB. Sundar Ra-

. . . jan, "Channel Quantization for Physical Layer Network-€ddTwo-Way
use square QAM constellation is studied. We showed thatRelaying,” Proceedings of IEEE Wireless Communicationd Betwork-

there are many advantages of using square QAM constellationing Conference (WCNC 2012), Paris, France, 1-4 April, 204 2i¢tailed
With the help of the relation between exclusive law satigfyi ~ version of this paper is available in arXiv: 1109.6101v2.I[Ep 16
C|USte_ringS and Latin Square_s we pr.opotse a method to rem Olj/ézeoli.l)léutler, " A Classification of Gaussian Primes”.aable online
the singular fade states. This relation is used to get all theat the URL, "www.maths.bris.ac.uk/ malab/PDFs/2ndYeasgpdf’.
maps to be used at the relay efficiently. We proposed a

construction scheme to get the Latin Square for square QAM

constellation from PAM constellation. Here we concentlate

only on singular fade states and the clusterings to remae th

with only the minimum cluster distance under consideration

We are not considering the entire distance profile as done in

[4]. Unlike in the case of[[4], we could remove most of the

singular fade states with standard Latin Square and itspest

We presented the simulation results showing the end to end

BER performance when the end nodes use PSK constellation

as well as QAM constellations.

REFERENCES

[1] S. Zhang, S. C. Liew and P. P. Lam, “Hot topic: PhysicalelaNetwork
Coding”,ACM MobiCom '06, pp. 358-365, Sept. 2006.

[2] S. J. Kim, P. Mitran and V. Tarokh, “Performance Bounds Bidirec-
tional Coded Cooperation Protocols”, IEEE Trans. Inf. Toyed/0l. 54,
pp.5235-5241, Nov. 2008.

[3] P. Popovski and H.Yomo, “Physical Network Coding in Ty Wire-
less Relay Channels”, IEEE ICC, Glasgow, Scotland, Jun&.200

[4] T.Koike-Akino, P.Popovski and V.Tarokh, “Optimized rstellation for
two-way wireless relaying with physical network codingEBE Journal
on selected Areas in Comm., Vol.27, pp. 773- - 787, June 2009.

[5] T.Koike-Akino, P.Popovski and V.Tarokh, “Denoising raegy for
convolutionally-coded bidirectional relaying”, IEEE ICZ009, Dresden,
Germany, June 2009.

[6] B.Hern and K.Narayanan , “Multilevel Coding Schemes @ompute-
and-Forward”, IEEE ISIT, St. Petersburg, Russia, July 2011



	I Preliminaries and Background
	I-A Background
	I-B Signal Model

	II Singular Fade states and Difference Constellations
	II-A Singular Fade States of PAM signal sets
	II-B Singular Fade States for QAM signal sets
	II-C Singular fade states of M-PSK and M-QAM signal sets

	III Exclusive Law and Latin Squares
	III-A Removing Singular fade states and Constrained Latin Squares
	III-B Standard Latin Square for M-PAM
	III-C Standard Latin Square for M-QAM

	IV SIMULATION RESULTS
	V DISCUSSION
	References

