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Abstract—In this paper, we consider the problem of minimizing connected clients, and wants to know all CSI knowledge that
the total transmission cost for exchanging channel state forma-  js yunknown to it. The work in[J1] showed an optimal trans-

tion. We proposed a network coded cooperative data exchange mission scheme to minimize the total number of transmission
scheme, such that the total transmission cost is minimized hile . . . .
for exchanging third-party information.

each client can decode all the channel information held by &l ’ ] ) )
other clients. In this paper, we first derive a necessary and Although the work in [[1] gives the optimal solution to
sufficient condition for a feasible transmission. Based onhie minimize the total number of transmissions required fordthi
derived condition, there exists a feasible code design to gantee  party information exchange, it does not consider the case

that each client can decode the complete information. We fuher e e each client is associated with a transmission cost, as
formulate the problem of minimizing the total transmission

cost as an integer linear programming. Finally, we discusste Studied in [9]. Consider a three-client network as shown in
probability that each client can decode the complete inforration ~ Fig.[l, wherez; ; denotes the CSI between clienand client

with distributed random linear network coding. j. Itis assumed that the links are symmetric, isg,; = z; ;.
Keywords: network coding, cooperative data exchangenitially, client ; knows only the local information:; ; for
channel state information. Vj # i. Without considering the cost, clierit and client2

may be selected to transmit the encoded packets+ x1 3
andz; 2 + z2 3, respectively, to complete the data exchange
In wireless networks, it is always beneficial for the nodgsrocess. However, if we consider the cost gives,aselecting
to know the global knowledge of channel state informatioglient 2 and 3 as the transmitters is a better choice than the

(CSlI), e.g., channel gain or link loss probability, sincelsl former solution in terms of the total transmission cost.
information can greatly ease the network optimization and
improve the performance. Generally, such CSI on a connected
link can be regarded as a local information and known between
two connected nodes (e.g., nodend;). However, for ahird-
party node, e.g., the node # i, j, the channel information of
link (4, 7) is unknown to it. In some network design, such third-
party information communication[1].[2] is often necessar .
Recently, cooperative data exchange among the users [3] 4, —, ’ 55— 1
becomes one of the most promising approaches in designing
efficient data communications. In cooperative data exceang  Fig. 1. Third-party information exchange among three ¢tien
each client initially holds a subset of packets, which are
broadcast from the server or locally generated by itsele Th ) ) ) ]
objective is to guarantee that all the clients finally obtiie !N this paper, we design an algorithm to determine the
whole packets by cooperatively exchanging the data. Rec8HfnPer of packets that each client should send and how the
works showed that network coding] [4[-[6] can reduce tr@cke?s should be encod_ed_for each traqsm|55|0n, so as to
number of transmissions or delay required for cooperatata d Minimize the _total transmission cost re_ql_ured for the thlrd
exchange. However, finding the optimal solution with netwoParty information exchange problem. Similar to the presiou
coding to minimize the number of transmissiofs [3], [7], [8)°'ks []. [3], [7], we consider there is a common control
or the transmission cosE][9]_[L0] is non-trivial for gerieraCha”nE| Wh_lch allows reh_able br_oad_cast by any client to all
cooperative data exchange problem. the othe_r clients. The main contributions of this paper can b
The work in [1] designs a coded cooperative data exchangi@mmarized as follows:
scheme to minimize the number of transmissions for third-. We derive a necessary and sufficient condition for a
party information exchange. Compared with general coop- feasible transmission scheme such that there exists a code
erative data exchange problem, in third-party information design for every client to successfully decode all the
exchange, each client initially has the local CSI to all othe  packets from other clients.

I. INTRODUCTION

Initiall information:
client 1: x12,213
client 2: x1,2,22,3

client 3: x13,223



http://arxiv.org/abs/1207.0877v2

« Based on the necessary and sufficient condition for fea-special case of our problem, where it does not consider the
sible transmission, we formulate the problem of minitransmission cost. In this section, we aim to derive a necgss
mizing the total transmission cost as an integer lineand sufficient condition for a feasible transmission scheme
programming. such that there exists a feasible code design for everytclien

« Our analysis shows that the clients with lower transmise successfully decode its “wanted” packets. Then, based on
sion costs should send more packets than the clients witle derived condition, we can give the transmission scheme t
higher transmission costs. minimize the total transmission cost in Sectiod IV.

o We analyze the probability that every client can decod&

) ) . Encoding Matrix
all other packets when random linear network coding Is . g ) ] ] .
locally performed at each client. In this section, we define the encoding matrix of the

(%rﬂnsmitted packets. Before sending the packets, eacht clie

is formulated in Sectioflll. Secti Il derives the necegsal!lSt generates a linear encoded packet based on the packets i
! . ! lofL] ) W o initially has over a finite field. Then, the-th encoded packet

and sufficient condition for a feasible transmission schdme X . i S
Section[T¥, we give the optimal solution with the minimuns€Nt by pllentgi can be written as a linear combination of
transmission cost and analyze the performance with rand&%Ckets InX, l.e.,
network coding. We conclude the paper in Secfidn V. . N .

fi = Z Q‘,jxi,j (2

II. PROBLEM FORMULATION =
J=Lj#i

iy vt erec i he coficient slcte o packe; b he-
¢ encoded packet aof; over finite fieldGF(q).

cost ¢; for sending a single packet. Suppose thali is ~ The encoding vectors sent by all the' clients can then be
the CSI (e.g., channel gain or link loss probability) of thevritten as follows.

The rest of the papers are organized as follows. The probl

link between cliente; and client¢;. Initially, each client SRR L SR> SRS A T 0
. N . 1 Y 1
¢; only knows the local CSlI, i.e., client; only holds the e Gy 0 0@y 0
packets inX; = {z; ;|Vj € {1,2,---, N} \ {i}}. We assume SRS S SO :
that the links are symmetric, i.es;; = x;,; for Vi,j. In dn gy o . 0 o XN
. 1 Yy 1
other words, for every two clients; and ¢;, they hold one O 0 G Gl G 0
) E = 0 0 €24 0 G2 0 0
common packet; ;. Thus, the set of all the packets s = ¥ ;
{12, 21,8, %23, - , T2 N, - ,ZN_1,N }. Suppose that : : K 12 S -
K is the total number of the packets in the network, i.e., o O SN o SN 0 0
N(N*l) 0 0 0 0 gé4 CyNN2
K = |x| = M50, | S
There is a lossless broadcast channel for clients to send or| , . o o o o

YN
CN,N -1

receive the packets[1].I[3J. [7;=[L1]. Each transmitted i In the above encoding matrik, each column vector denotes

is encoded over the packets initially held by the senderyl et . ;
be the number of packets required to be transmitted by cIietHF encoding vector of a transmitted packet, and each row

. . vector represents how a native packet is encoded in the
¢;. The total transmission cost can thus be written as . .
transmitted packets. For example, the first column vector

5= N 5 denotes the encoding vector of packgt sent by client
_Z iYi @) 1, while in the first row vector, if the element is non-
i=1

zero, it means the packet o is participated in the encoded

In this paper, our goal is to find a network coded transmissig&cket represented by that column. Lét be the encoding

scheme that satisfies the following two conditions: vector of the packetf*, which is of size N(Z\;fl)_ For

« Each clientc; € C can finally decode all the packets inexample, vl = (¢l,, (L, ¢l vy 0,0+ ,0). Thus, E =

X from the packets sent by other clients via broadcaﬁyll Y T S ,U?VNTT. ’

channel. o S ~ Without loss of generality, for each client, we define a local
« The total transmission costdefined in Eq.[{L) is mini- receiving matrix as follows.

mum among all the transmission schemes that satisfy the
first condition. Definition 1 The localreceiving matrixof clienti, namedR?,
Without loss of generality, we us&; to denote the set of is defined as the sub-matrix &f, which includes almost all
“wanted” packets by client; € C' , i.e.,, X; = X\X; C X. the rows and columns of except the followings:
We also assume that the clientsGihare ordered with the non- . The rows, which represent the encoding status of native
decreasing order of the transmission cost, dgx -+ < . packets inX;;
o The columns, which represent the encoding vectors of
packets sent by client

IIl. FEASIBLE TRANSMISSION SCHEME

Although the work in [[1] already proposed a feasible
transmission scheme, which can complete the third-party ifihus, a row vector ofR’ denotes how a “wanted” packet of
formation exchange process with minimum transmissions, itclient : is encoded in the received packets.



For example,R! does not include the firs¥ — 1 rows of has not been selected so far, sir|¢§§:1 Coef(B;)| > r.
E, as the firstV — 1 rows represent how the native packetket {l,l2,--- ,l,,} be the set ofn columns that have been
in Xy = {z,#|Vi’ € {2,---,N}} participate in the received selected.
packets, and does not include the figgt columns of E, as Suppose thaR!,, ., is a sub-matrix ol?, whereR’ includes
thesey; columns denotes the packets sent by clienThus, m column vectors ofR and the set of the indices of these
Riis a W=LIN=2) o (ZZJLU,# yy) matrix including the columns is{ly,ls,--- Ly}
encoding vectors received bﬂ/ clieat We usef; to denote  We can then design the feasible code as follows. Consid-
the I-th row vector of local receiving matrig’. ering the elements in thé-th row vector of R/, only the
B. Condition for a Receiving Matrix with Full Row Rank cqefflment e'eme’?t located in thl%_.th column s aSS|g!'1ed
with non-zero, while the other coefficient elements thatiare
We first inVeStigate the Condition, under which there existﬁher columns of rowk are assigned with zero.
a code design for a receiving matrix with full row rank. According to the above coefficient assignment, the deter-
minant of matrix R’ can be expressed as the productnof
Definition 2 We definecoefficient elemengs the element in hon-zero elements from different rows and different colemn
a row encoding vecton, which is non-zero and is selecteds . in thek-th row, the non-zero element located in column
over GF(q). Let Coef(v) be the set of columns in whose ;, 'is selected. Since the determinant of matfikis non-zero,
elements are coefficient elements. the rank of R’ is thusm. Correspondingly, the rank aR is
For exampleCoef(v}) = {1,2,3,--- ,N — 1}. alsom. Thus, the sufficient condition is proved.

Let R = (81,2, , )T be a generaln x n receiving ~ H€NCe Lemma&l1 is proved. u

matrix, wherem < n and j; is the i-th row vector of R. ¢ Necessary and Sufficient Condition for Feasible Transmis
We then give the necessary and sufficient condition thaethegiy,

exists a code design to ensure the rankbfis m as follows. , i ) i , .
In this section, we aim to find a feasible transmission

scheme, such that there exists a code design for encoding ma-

Lemma 1 There exists a code design such that the rank §f* © en_surez}[rlel)r(?vn_lés) of all the local receiving matri¢&s
the receiving matrixR,.x, is m, if and only if for anyr row are full (i.e,, =——5=—=), for vi € {1,---, N}. To simplify
vectors in{f;,, Bi,, -, Bi. }, the size OU§:1 Cocf(B;,) is the following presentation, we first define the following
at leastr, wherel <i;,r <m. o
Definition 3 Let {x;, i1, iy, 2i, i} b€ ar-subset of
Proof: We first prove the necessary condition, where wgackets inX. We defineIDX({wil,ig,xiz,i;, L wi g }) as
assume that there exists a code design such that the rankhefindices set of the clients who hold at least one of packets
the local receiving matrix,, <, is m. iN {2, o0 @igi, e iy )
According to this assumption, for a matr¥ we can find at
least a set ofn coefficient elements which are selected frorffor example, for &-subset{z1 2,72 3}, we can obtain that
different rows and different columns. In other words, for DX ({z12,223}) = {1,2,3}.
rows, the size of JI", Coef(53;) is m. Before deriving the necessary and sufficient condition, we
In addition, as the number of rows of matdikis m and the first prove the following lemma.
rank of R is m, each row vector should be linear independent
with each other. Hence, it means for each sub-matrix?of Lemma 2 For any r-subset{z;, i, i, iy, - , %, } Of na-
with r rows, its rank is the number of rows it includes, i., tive packets inX, when (*') +1 < r < (%) for Vr,k > 1,
So, in anyr rows {i, iz, - ,i,}, we can find at least a setthe size off DX ({x;, i, %, ,i,ir }) IS at leastk.
of r coefficient elements which are selected frondifferent
rows andr different columns, i.e.] U§:1 Coef(Bi,)| > r. Proof: Firstly, we consider the case when-= (k;1) +1.
Thus, the necessary condition is proved. We can easily obtain that more than- 1 clients involve in
We then prove the sufficient condition, where we assuriiee defined set. This is because, for any- 1 clients, the
that, for anyr row vectors of local receiving matriz, number of packets held by them, but not held by any other
{i1,ia,- -+ iy}, the size ofugzl Coef(B;,) is at leastr. client is at mOst(kgl)_ Thus, forr = (kgl) + 1 packets,
First, we consider the first row vector & There must be at we still need at least another one client to include the extra
least a coefficient element in row one, sirfc&ef(8;)| > 1. packet. In other words, at leagt clients are needed, i.e.,
We select any of such columns, e.4.,€ Coef(B1). Then, [IDX({zi, i1, @iy, 5 Tiir })| > k.
considering the second row vector &f there must be at We then considerr = (’2“) As in the above case,
least a coefficient element, whose column number isinot more than k& — 1 clients involve in the defined set.
since [Coef(51)JCoef(B2)| > 2. We then select such aThe worst case is that packets are only held by
column iy in Coef(B1)JCoef(B2), wherels # l;. We clients but not held by any other clients, e.g., packets
repeat this process, and in each of the following rows, We Wih {z;, iy, , Tiyigs Tinsiss "+ s Tinsins " s Tip_y,ix | AF€ ONlY
be able to find a coefficient element, whose column numbleeld by clients in{¢;,, ¢;,, - - - , ¢, }. Inthis case, only: clients



k

can involve theser packets in their encoded packets, i.eis at Ieast(’g), which meanst:1 Yi, = (2

), wherei; €

DX ({@iy i1 Tig iy Tipir )| = k. {1,--- N}

When (*;') +1 < r < (}), we can also similarly prove ~According to Lemm&I2, we can obtain that for anpative
that at leask: clients are needed, by just consideringackets packets, at least clients (e.g.,{i1,%2,--- ,ix}) can encode
in {xi17i21 C s iy ig s Ligigs * 0 Ligigy 7" ’xik—hik}' them in their Sending packets, Whe‘ijégl) +l<r< (g)

Hence, the lemma is proved. Thus, for these' rows, we can obtain that

. r k

Basec_i on the ab_o_ve Lemmas, we then d|S(_:us_,s the necessary | U Coef(B,)] > Z i, (6)

and sufficient condition of the feasible transmission salém =1 o

our third-party information exchange problem. where{ly,l>--- 1.} is supposed to be the indices set of the

row vectors representing the encoding status of thesative
ackets.
According to the assumption, we have

Theorem 1 For any client inC, there exists a code design
such that it can decode all its “wanted” packets, if and only
if the total number of packets that aryclients send is at

least (£). That is T L
o U coes@l = (5) =7 @
Zyitz(k),\ﬂgkdv ©) o
=1 2 In addition, since>_;_; y;, > (), we can obtain that
whereV{iy, o, -+ ,ig} C {1,2,--- N} andi; # ip. N N_1 (N—1)(N —2)
, Sy = ®)
Proof: To guarantee that client; € C can eventually Lot 2 2

decode its “wanted” packets ing-, the rank of its local
receiving matrixk?’ should be(N;Q(N’Q). n

We first prove the necessary condition, where we assu . . . .
P y hus, the size of J,_, Coef(f;,) is at leastr, if for any &

that after receivingy1, - ,yi—1, Y541, ", ackets from .
@ Yi-1, Vit N P clients, the total number of packets they sent is at I¢&jt

clients1,---,5— 1,7+ 1,--- , N respectively, there exists a i a btain that is with full
code design such that clieptan decode its “wanted” packets.AccozN'g%(tJ?,l‘gmm , 1, we can obtain thiat IS with Tull row
Qk ~——5——, which thus proves the sufficient condition.

In other words, there exists a code design such that the rafl

which means, the row number @¥ is less than the column
lér;\ber of R7.

of matrix &7 is (N—1)2(N—2). Thus, we complete the proof of Theoréin 1. [ |
w, for anyr row vectors ofR7, we must have TRANSMISSIONCOST

" In this section, we first formulate the problem of minimizing
| U Coef(Bi,)l = r (4)  the total transmission cost as an integer linear programmin
=1 Based on the proposed transmission scheme, we analyze the

Note that each row vector denotes how a native packedrformance that can be achieved with random linear network
is participated in the received encoded packets. In oth&dding overGF(q).

words, r row vectors represent native packets to partic-

ipate in the encoded packets. According to Lenima 2, fér Transmission Scheme with Minimum Cost

any r-subset packets i{z;, i1, %, i, -, i}, We have  Based on SectioR IIIAC, we can formulate the problem of
\IDX ({xi, i1 Tiyiy -+ @i 1) >k, when (*3') + 1 < minimizing the total transmission cost such that all ckent

r < (’;) In the worst case, for a-subset of packets, e.g.,can decode their “wanted” packets, as an Integer Linear

Tiyins s Tiy ins Tinigs s Tigins " > Tip_1.ix J» W€ have Programming (ILP) as follows.
[IDX({Tiy,iny s Tin g Tinyigs " > Tigyigs T y,ix 1) = K, N
wherer = (’;) That is, onlyk clients can encode the packets min Z S5:ys 9)
in this r-subset into their encoded packets. Lebe the index i1

of the row vector that represents how the native paaket :
. . g . . s subject to
in the abover-subset is participated in the received packets.

Thus, |UJl_, Coef(B,)| = S2F . vi,. According to Eq.[4), k k

we have - Sz () vie (Lo N ISE<N (0)
k t=1
Zyit > = <k> (5) Based on the above ILP, we can obtain the transmission
=1 2 scheme with the minimum total transmission cost.

which thus proves the necessary condition. We also prove the following theorem, which can be used to

We then prove the sufficient condition, where we assunfigther simplify Constraint(10) of the ILP.
that for anyk clients, the total number of packets they send



Theorem 2 Suppose that{ys,ys, -+ ,yn} is the optimal T Pt oh | CoteDessin | ot
transmission scheme with the minimum total transmissish co 5= Y1 =2 | 212421 212 +o1a
We must have;, > yo > --- > yn, When it is assumed that | ow transmissiof 6, = Y2=2 |matmamatoa|
01 <9y <o < Ip. scheme 03 = yz3 =1 T34+ T13 Yim1 hii=9
0y =4 ys =0
Proof: We omit the proof due to its simplicity. [ | =1 yp=1 o1+ 113
Based on the above theorem, we can conclude that the clientansmission 22 =2 y2=1 P23t 224 S fii10
. . . . i P— 2 = i=1 %Y=
with lower transmission cost needs to transmit more packets*m [ — Y3 1 “*41“3
4= Yq = T1,4+T24

than the client with higher transmission cost.

i Fig. 2. Different transmission schemes with different tttansmission costs.
Corollary 1 The constraint[{TI0) of ILP can be reduced to

k
k
> v > (2>,Vk €{L,2,---,N—-1} (11) to be centrally designed, which may incur high overhead.
i=1 Instead, we use random linear network coding at each clent t
Yi-1 > vy, Vke{2,3,--- N} (12) locally determine the encoding vectors of the packets idsen
when it is assumed that < 6, < --- . We let each client;; € C locally conduct random linear

network coding over the packets that it initially has, whigre
Proof: We now prove that with the Constraiff {11) anchumber of encoded packets that each client should generate i
(12), Constraint[(ZI0) can also be satisfied. determined by the ILP given in the above section.
For anyk < N, with constraint[(IIl), we can obtain that Before analyzing further result, we introduce the follogin

Y1 U+ yn > (’;) From Theorenil2, we can easilySchwartz-Zippel Lemmaé [12].
obtain the constrain{{12), i.eyy > vy > --- > yn. Thus,
for any k clients, the total number of packets they sendemma 3 (Schwartz-Zippel lemma [12]) Le® (21, -, zn)
must be no less thag,_, + y, + --- ,yn. That is, for any be a non-zero polynomial of degrée> 0 over a fieldFF. Let

{i1,ig, -+ ,ixy € {1,2,--- ,N}, we have S be a finite subset df, and the value of eachy, zo, - - , zn
be selected independently and uniformly at random f®&m
Yion T Y+ T Vi, 2 Y—1 T U+ T yn Then the probability that the polynomial equals zero is asmo
d _ d
> (15) (13) 79 e Pr(P(z, o 2n) = 0) < (.

o _ Based on the above lemma, we can derive the following
whereiy # iy # - - # ip. probability.
From the above equation, we can obtain that for any

clients, wherel < k < N, the total number of packets theyTheorem 3 With random linear network coding and the

need to send is at Ieaséf;), which thus proved the abovetransmission scheméy, v, -+ ,yn} obtained by ILP, the
Corollary. B probability that each clienti € {1,2,---,N} can finally
B. Illustration with an Example decode its “wanted” packets is at least

We consider a network with four clients as an example. 1 — w (14)
Suppose that the transmission cost at each client; is= 2q

1,60 = 2,83 = 3,64 = 4. As shown in Fig.[R, with whereg is the field size.
our transmission scheme, the total transmission codd. is

On contrary, with the transmission scheme proposedin [1], Proof: As in Theorenil, f_or any: < IV clients, the tqtal
O T . “Trumber of packets they send is at leffgt We then try to find
which aims to minimize the total number of transmissions, : .- .
. . o ; a feasible set of the coefficients such that the local recgivi
the transmission cost i80. In addition, we can easily check . Co (N—1)(N—1)
matrix of each client, R*, is with rank -———.,

that with the code design in our scheme each client can o . (N-1)(N=2) .
decode its “wanted” packets. Figl 2 also verifies the resultPOr @ matrix with maximum ran 3 the maxi-

given in Theorent2, i.e., the clients with lower transmissioTum degree of the coefficient variants should‘8e-"—2..
costs should send more packets than the clients with higifigcording to Lemmd3, the probability that the determinant
transmission costs. of this matrix is zero should be at mo¥—N=2) Hence,
the probability that the determinant of the matrix is noneze

C. Performance Analysis with Random Network Coding s at least

With the ILP in Eq. [®) and Constraints_(11) {12), we can 1_ N -D(N=-2)
obtain the optimal number of packets each client should,send 29
so as to minimize the total transmission cost. To guarantedereq is the field size.
that each client can finally decode its “wanted” packets with Thus, the probability that client can finally decode its
matrix R?, we can design a deterministic code as introduced iwanted” pﬁcgﬁts with the local receiving matd¥ is at least

Lemmall. However, the deterministic encoding matrix needs- % ]



Based on the above lemma, when the number of clidhis

(7]

fixed, we can increase the field size to enhance the probyabilit
that each client can finally decode its “wanted” packets. The

lower bound of the probability is shown in Talile I.

TABLE |
THE PROBABILITY LOWER BOUND IN THEOREM[3|
N=4 N=6 N=8 N=10 N=12
K=6 K=15 K=28 K=45 K=66
=256 | 0.9883 | 0.9609 | 0.9180 | 0.8594 | 0.7852
=512 | 0.9941 | 0.9805| 0.9590 | 0.9297 | 0.8926

For example, when the total number of clientsNs= 6,

(8]

[0

[20]

[11]

which means the total number of packets needed to be

H N(N-1
exchanged isK = %

client can decode its “wanted” packets is more thar05%,
if we randomly select the coefficients frogn= 512.

V. CONCLUSION

= 15, the probability that each [12]

In this paper, we aim to design a network coded coop-
erative information exchange scheme to minimize the total

transmission cost for exchanging third-party informatigve

derive a necessary and sufficient condition for the feasible

transmission scheme. We prove that for a@nglients, where

1 < k < N, if the total number of packets they send is at
least (£), there exists a feasible code design to make sure

each client can finally obtain its “wanted” packets. We farth

formulate the problem of minimizing the total transmission

cost for third-party information exchange as an integegdin

programming. Our analysis also shows that the clients with
lower transmission cost should send more packets than the
clients with higher transmission cost. Finally, based oa th
transmission scheme obtained by ILP, we provide a lower
bound of the probability that each client can decode its

“wanted” packets, if random network coding is used.
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