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Abstract—In this paper, we consider the problem of minimizing
the total transmission cost for exchanging channel state informa-
tion. We proposed a network coded cooperative data exchange
scheme, such that the total transmission cost is minimized while
each client can decode all the channel information held by all
other clients. In this paper, we first derive a necessary and
sufficient condition for a feasible transmission. Based on the
derived condition, there exists a feasible code design to guarantee
that each client can decode the complete information. We further
formulate the problem of minimizing the total transmission
cost as an integer linear programming. Finally, we discuss the
probability that each client can decode the complete information
with distributed random linear network coding.

Keywords: network coding, cooperative data exchange,
channel state information.

I. I NTRODUCTION

In wireless networks, it is always beneficial for the nodes
to know the global knowledge of channel state information
(CSI), e.g., channel gain or link loss probability, since global
information can greatly ease the network optimization and
improve the performance. Generally, such CSI on a connected
link can be regarded as a local information and known between
two connected nodes (e.g., nodei andj). However, for athird-
party node, e.g., the nodek 6= i, j, the channel information of
link (i, j) is unknown to it. In some network design, such third-
party information communication [1], [2] is often necessary.

Recently, cooperative data exchange among the users [3]
becomes one of the most promising approaches in designing
efficient data communications. In cooperative data exchange,
each client initially holds a subset of packets, which are
broadcast from the server or locally generated by itself. The
objective is to guarantee that all the clients finally obtainthe
whole packets by cooperatively exchanging the data. Recent
works showed that network coding [4]–[6] can reduce the
number of transmissions or delay required for cooperative data
exchange. However, finding the optimal solution with network
coding to minimize the number of transmissions [3], [7], [8]
or the transmission cost [9], [10] is non-trivial for general
cooperative data exchange problem.

The work in [1] designs a coded cooperative data exchange
scheme to minimize the number of transmissions for third-
party information exchange. Compared with general coop-
erative data exchange problem, in third-party information
exchange, each client initially has the local CSI to all other

connected clients, and wants to know all CSI knowledge that
is unknown to it. The work in [1] showed an optimal trans-
mission scheme to minimize the total number of transmissions
for exchanging third-party information.

Although the work in [1] gives the optimal solution to
minimize the total number of transmissions required for third-
party information exchange, it does not consider the case
where each client is associated with a transmission cost, as
studied in [9]. Consider a three-client network as shown in
Fig. 1, wherexi,j denotes the CSI between clienti and client
j. It is assumed that the links are symmetric, i.e.,xi,j = xj,i.
Initially, client i knows only the local informationxi,j for
∀j 6= i. Without considering the cost, client1 and client2
may be selected to transmit the encoded packetsx1,2 + x1,3

andx1,2 + x2,3, respectively, to complete the data exchange
process. However, if we consider the cost given asδi, selecting
client 2 and 3 as the transmitters is a better choice than the
former solution in terms of the total transmission cost.

δ3 = 1

client 2: x1,2, x2,3

client 3: x1,3, x2,3

1

2 3

Initiall information:

x1,2 x1,3

x2,3

δ1 = 3

δ2 = 2

client 1: x1,2, x1,3

Fig. 1. Third-party information exchange among three clients

In this paper, we design an algorithm to determine the
number of packets that each client should send and how the
packets should be encoded for each transmission, so as to
minimize the total transmission cost required for the third-
party information exchange problem. Similar to the previous
works [1], [3], [7], we consider there is a common control
channel which allows reliable broadcast by any client to all
the other clients. The main contributions of this paper can be
summarized as follows:

• We derive a necessary and sufficient condition for a
feasible transmission scheme such that there exists a code
design for every client to successfully decode all the
packets from other clients.
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• Based on the necessary and sufficient condition for fea-
sible transmission, we formulate the problem of mini-
mizing the total transmission cost as an integer linear
programming.

• Our analysis shows that the clients with lower transmis-
sion costs should send more packets than the clients with
higher transmission costs.

• We analyze the probability that every client can decode
all other packets when random linear network coding is
locally performed at each client.

The rest of the papers are organized as follows. The problem
is formulated in Section II. Section III derives the necessary
and sufficient condition for a feasible transmission scheme. In
Section IV, we give the optimal solution with the minimum
transmission cost and analyze the performance with random
network coding. We conclude the paper in Section V.

II. PROBLEM FORMULATION

Consider a network withN clients inC = {c1, c2, · · · , cN},
where each clientci ∈ C is associated with a transmission
cost δi for sending a single packet. Suppose thatxi,j is
the CSI (e.g., channel gain or link loss probability) of the
link between clientci and client cj . Initially, each client
ci only knows the local CSI, i.e., clientci only holds the
packets inXi = {xi,j |∀j ∈ {1, 2, · · · , N} \ {i}}. We assume
that the links are symmetric, i.e.,xi,j = xj,i for ∀i, j. In
other words, for every two clientsci and cj , they hold one
common packetxi,j . Thus, the set of all the packets isX =
{x1,2, · · · , x1,N , x2,3, · · · , x2,N , · · · , xN−1,N}. Suppose that
K is the total number of the packets in the network, i.e.,
K = |X | = N(N−1)

2 .
There is a lossless broadcast channel for clients to send or

receive the packets [1], [3], [7]–[11]. Each transmitted packet
is encoded over the packets initially held by the sender. Letyi
be the number of packets required to be transmitted by client
ci. The total transmission cost can thus be written as

δ =

N
∑

i=1

δiyi (1)

In this paper, our goal is to find a network coded transmission
scheme that satisfies the following two conditions:

• Each clientci ∈ C can finally decode all the packets in
X from the packets sent by other clients via broadcast
channel.

• The total transmission costδ defined in Eq. (1) is mini-
mum among all the transmission schemes that satisfy the
first condition.

Without loss of generality, we useXi to denote the set of
“wanted” packets by clientci ∈ C , i.e., Xi = X\Xi ⊆ X .
We also assume that the clients inC are ordered with the non-
decreasing order of the transmission cost, i.e.,δ1 ≤ · · · ≤ δN .

III. F EASIBLE TRANSMISSION SCHEME

Although the work in [1] already proposed a feasible
transmission scheme, which can complete the third-party in-
formation exchange process with minimum transmissions, itis

a special case of our problem, where it does not consider the
transmission cost. In this section, we aim to derive a necessary
and sufficient condition for a feasible transmission scheme,
such that there exists a feasible code design for every client
to successfully decode its “wanted” packets. Then, based on
the derived condition, we can give the transmission scheme to
minimize the total transmission cost in Section IV.

A. Encoding Matrix

In this section, we define the encoding matrix of the
transmitted packets. Before sending the packets, each client
first generates a linear encoded packet based on the packets it
initially has over a finite field. Then, thek-th encoded packet
sent by clientci can be written as a linear combination of
packets inXi, i.e.,

fk
i =

N
∑

j=1,j 6=i

ζki,jxi,j (2)

whereζki,j is the coefficient selected for packetxi,j by thek-th
encoded packet ofci over finite fieldGF (q).

The encoding vectors sent by all the clients can then be
written as follows.
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In the above encoding matrixE, each column vector denotes
the encoding vector of a transmitted packet, and each row
vector represents how a native packet is encoded in the
transmitted packets. For example, the first column vector
denotes the encoding vector of packetf1

1 sent by client
1, while in the first row vector, if the element is non-
zero, it means the packetx1,2 is participated in the encoded
packet represented by that column. Letvki be the encoding
vector of the packetfk

i , which is of size N(N−1)
2 . For

example,v11 = (ζ11,2, ζ
1
1,3, · · · , ζ

1
1,N , 0, · · · , 0). Thus, E =

[v11 , · · · , v
y1

1 , v12 , · · · , v
yN

N ]T .
Without loss of generality, for each client, we define a local

receiving matrix as follows.

Definition 1 The localreceiving matrixof clienti, namedRi,
is defined as the sub-matrix ofE, which includes almost all
the rows and columns ofE except the followings:

• The rows, which represent the encoding status of native
packets inXi;

• The columns, which represent the encoding vectors of
packets sent by clienti.

Thus, a row vector ofRi denotes how a “wanted” packet of
client i is encoded in the received packets.



For example,R1 does not include the firstN − 1 rows of
E, as the firstN − 1 rows represent how the native packets
in X1 = {x1,i′ |∀i

′ ∈ {2, · · · , N}} participate in the received
packets, and does not include the firsty1 columns ofE, as
thesey1 columns denotes the packets sent by client1. Thus,
Ri is a (N−1)(N−2)

2 × (
∑N

i′=1,i′ 6=i yi′) matrix including the
encoding vectors received by clientci. We useβl to denote
the l-th row vector of local receiving matrixRi.

B. Condition for a Receiving Matrix with Full Row Rank

We first investigate the condition, under which there exists
a code design for a receiving matrix with full row rank.

Definition 2 We definecoefficient elementas the element in
a row encoding vectorv, which is non-zero and is selected
over GF (q). Let Coef(v) be the set of columns inv whose
elements are coefficient elements.

For example,Coef(v11) = {1, 2, 3, · · · , N − 1}.
Let R = (β1, β2, · · · , βm)T be a generalm × n receiving

matrix, wherem ≤ n and βi is the i-th row vector ofR.
We then give the necessary and sufficient condition that there
exists a code design to ensure the rank ofM is m as follows.

Lemma 1 There exists a code design such that the rank of
the receiving matrixRm×n is m, if and only if for anyr row
vectors in{βi1 , βi2 , · · · , βir}, the size of

⋃r

j=1 Coef(βij ) is
at leastr, where1 ≤ ij , r ≤ m.

Proof: We first prove the necessary condition, where we
assume that there exists a code design such that the rank of
the local receiving matrixRm×n is m.

According to this assumption, for a matrixR, we can find at
least a set ofm coefficient elements which are selected from
different rows and different columns. In other words, form

rows, the size of
⋃m

i=1 Coef(βi) is m.
In addition, as the number of rows of matrixR is m and the

rank ofR is m, each row vector should be linear independent
with each other. Hence, it means for each sub-matrix ofR

with r rows, its rank is the number of rows it includes, i.e.,r.
So, in anyr rows {i1, i2, · · · , ir}, we can find at least a set
of r coefficient elements which are selected fromr different
rows andr different columns, i.e.,|

⋃r

j=1 Coef(βij )| ≥ r.
Thus, the necessary condition is proved.

We then prove the sufficient condition, where we assume
that, for any r row vectors of local receiving matrixR,
{i1, i2, · · · , ir}, the size of

⋃r

j=1 Coef(βij ) is at leastr.
First, we consider the first row vector ofR. There must be at

least a coefficient element in row one, since|Coef(β1)| ≥ 1.
We select any of such columns, e.g.,l1 ∈ Coef(β1). Then,
considering the second row vector ofR, there must be at
least a coefficient element, whose column number is notl1,
since |Coef(β1)

⋃

Coef(β2)| ≥ 2. We then select such a
column l2 in Coef(β1)

⋃

Coef(β2), where l2 6= l1. We
repeat this process, and in each of the following rows, we will
be able to find a coefficient element, whose column number

has not been selected so far, since|
⋃r

j=1 Coef(βj)| ≥ r.
Let {l1, l2, · · · , lm} be the set ofm columns that have been
selected.

Suppose thatR′
m×m is a sub-matrix ofR, whereR′ includes

m column vectors ofR and the set of the indices of thesem
columns is{l1, l2, · · · , lm}.

We can then design the feasible code as follows. Consid-
ering the elements in thek-th row vector ofR′, only the
coefficient element located in thelk-th column is assigned
with non-zero, while the other coefficient elements that arein
other columns of rowk are assigned with zero.

According to the above coefficient assignment, the deter-
minant of matrixR′ can be expressed as the product ofm

non-zero elements from different rows and different columns,
e.g., in thek-th row, the non-zero element located in column
lk is selected. Since the determinant of matrixR′ is non-zero,
the rank ofR′ is thusm. Correspondingly, the rank ofR is
alsom. Thus, the sufficient condition is proved.

Hence, Lemma 1 is proved.

C. Necessary and Sufficient Condition for Feasible Transmis-
sion

In this section, we aim to find a feasible transmission
scheme, such that there exists a code design for encoding ma-
trix to ensure the ranks of all the local receiving matricesRis
are full (i.e., (N−1)(N−2)

2 ), for ∀i ∈ {1, · · · , N}. To simplify
the following presentation, we first define the following

Definition 3 Let {xi1,i
′

1
, xi2,i

′

2
, · · · , xir ,i′r

} be a r-subset of
packets inX . We defineIDX({xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

}) as
the indices set of the clients who hold at least one of packets
in {xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

}.

For example, for a2-subset{x1,2, x2,3}, we can obtain that
IDX({x1,2, x2,3}) = {1, 2, 3}.

Before deriving the necessary and sufficient condition, we
first prove the following lemma.

Lemma 2 For any r-subset{xi1,i
′

1
, xi2,i

′

2
, · · · , xir ,i′r

} of na-
tive packets inX , when

(

k−1
2

)

+ 1 ≤ r ≤
(

k

2

)

for ∀r, k ≥ 1,
the size ofIDX({xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

}) is at leastk.

Proof: Firstly, we consider the case whenr =
(

k−1
2

)

+1.
We can easily obtain that more thank − 1 clients involve in
the defined set. This is because, for anyk − 1 clients, the
number of packets held by them, but not held by any other
client is at most

(

k−1
2

)

. Thus, for r =
(

k−1
2

)

+ 1 packets,
we still need at least another one client to include the extra
packet. In other words, at leastk clients are needed, i.e.,
|IDX({xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

})| ≥ k.
We then considerr =

(

k

2

)

. As in the above case,
more than k − 1 clients involve in the defined set.
The worst case is thatr packets are only held byk
clients but not held by any other clients, e.g., packets
in {xi1,i2 , · · · , xi1,ik , xi2,i3 , · · · , xi2,ik , · · · , xik−1,ik} are only
held by clients in{ci1 , ci2 , · · · , cik}. In this case, onlyk clients



can involve theser packets in their encoded packets, i.e.,
|IDX({xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

})| = k.
When

(

k−1
2

)

+ 1 < r <
(

k

2

)

, we can also similarly prove
that at leastk clients are needed, by just consideringr packets
in {xi1,i2 , · · · , xi1,ik , xi2,i3 , · · · , xi2,ik , · · · , xik−1,ik}.

Hence, the lemma is proved.

Based on the above Lemmas, we then discuss the necessary
and sufficient condition of the feasible transmission scheme for
our third-party information exchange problem.

Theorem 1 For any client inC, there exists a code design
such that it can decode all its “wanted” packets, if and only
if the total number of packets that anyk clients send is at
least

(

k

2

)

. That is

k
∑

t=1

yit ≥

(

k

2

)

, ∀1 ≤ k < N (3)

where∀{i1, i2, · · · , ik} ⊆ {1, 2, · · · , N} and it 6= it′ .

Proof: To guarantee that clientcj ∈ C can eventually
decode its “wanted” packets inXj , the rank of its local
receiving matrixRj should be(N−1)(N−2)

2 .
We first prove the necessary condition, where we assume

that after receivingy1, · · · , yj−1, yj+1, · · · , yN packets from
clients1, · · · , j − 1, j + 1, · · · , N respectively, there exists a
code design such that clientj can decode its “wanted” packets.
In other words, there exists a code design such that the rank
of matrix Rj is (N−1)(N−2)

2 .
According to Lemma 1, to guarantee the rank ofRj is

(N−1)(N−2)
2 , for any r row vectors ofRj , we must have

|

r
⋃

i=1

Coef(βli)| ≥ r (4)

Note that each row vector denotes how a native packet
is participated in the received encoded packets. In other
words, r row vectors representr native packets to partic-
ipate in the encoded packets. According to Lemma 2, for
any r-subset packets in{xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

}, we have
|IDX({xi1,i

′

1
, xi2,i

′

2
, · · · , xir ,i′r

})| ≥ k, when
(

k−1
2

)

+ 1 ≤

r ≤
(

k
2

)

. In the worst case, for ar-subset of packets, e.g.,
{xi1,i2 , · · · , xi1,ik , xi2,i3 , · · · , xi2,ik , · · · , xik−1,ik}, we have
|IDX({xi1,i2 , · · · , xi1,ik , xi2,i3 , · · · , xi2,ik , · · · , xik−1,ik})| = k,
wherer =

(

k

2

)

. That is, onlyk clients can encode the packets
in this r-subset into their encoded packets. Letlt be the index
of the row vector that represents how the native packetxit,i

′

t

in the abover-subset is participated in the received packets.
Thus, |

⋃r

t=1 Coef(βlt)| =
∑k

t=1 yit . According to Eq. (4),
we have

k
∑

t=1

yit ≥ r =

(

k

2

)

(5)

which thus proves the necessary condition.
We then prove the sufficient condition, where we assume

that for anyk clients, the total number of packets they send

is at least
(

k
2

)

, which means
∑k

t=1 yit ≥
(

k
2

)

, where it ∈
{1, · · · , N}.

According to Lemma 2, we can obtain that for anyr native
packets, at leastk clients (e.g.,{i1, i2, · · · , ik}) can encode
them in their sending packets, where

(

k−1
2

)

+ 1 ≤ r ≤
(

k

2

)

.
Thus, for theser rows, we can obtain that

|

r
⋃

t=1

Coef(βlt)| ≥

k
∑

t=1

yit (6)

where{l1, l2 · · · , lr} is supposed to be the indices set of the
row vectors representing the encoding status of theser native
packets.

According to the assumption, we have

|

r
⋃

t=1

Coef(βlt)| ≥

(

k

2

)

≥ r (7)

In addition, since
∑k

t=1 yit ≥
(

k
2

)

, we can obtain that

N
∑

i=1,i6=j

yi ≥

(

N − 1

2

)

=
(N − 1)(N − 2)

2
(8)

which means, the row number ofRj is less than the column
number ofRj.

Thus, the size of
⋃r

t=1 Coef(βlt) is at leastr, if for any k

clients, the total number of packets they sent is at least
(

k
2

)

.
According to Lemma 1, we can obtain thatRj is with full row
rank (N−1)(N−2)

2 , which thus proves the sufficient condition.
Thus, we complete the proof of Theorem 1.

IV. T RANSMISSION SCHEME WITH M INIMUM

TRANSMISSION COST

In this section, we first formulate the problem of minimizing
the total transmission cost as an integer linear programming.
Based on the proposed transmission scheme, we analyze the
performance that can be achieved with random linear network
coding overGF (q).

A. Transmission Scheme with Minimum Cost

Based on Section III-C, we can formulate the problem of
minimizing the total transmission cost such that all clients
can decode their “wanted” packets, as an Integer Linear
Programming (ILP) as follows.

min

N
∑

i=1

δiyi (9)

subject to

k
∑

t=1

yit ≥

(

k

2

)

, ∀it ∈ {1, · · · , N}, 1 ≤ k < N (10)

Based on the above ILP, we can obtain the transmission
scheme with the minimum total transmission cost.

We also prove the following theorem, which can be used to
further simplify Constraint (10) of the ILP.



Theorem 2 Suppose that{y1, y2, · · · , yN} is the optimal
transmission scheme with the minimum total transmission cost.
We must havey1 ≥ y2 ≥ · · · ≥ yN , when it is assumed that
δ1 ≤ δ2 ≤ · · · ≤ δN .

Proof: We omit the proof due to its simplicity.
Based on the above theorem, we can conclude that the client

with lower transmission cost needs to transmit more packets
than the client with higher transmission cost.

Corollary 1 The constraint (10) of ILP can be reduced to

k
∑

i=1

yN−i+1 ≥

(

k

2

)

, ∀k ∈ {1, 2, · · · , N − 1} (11)

yi−1 ≥ yi, ∀k ∈ {2, 3, · · · , N} (12)

when it is assumed thatδ1 ≤ δ2 ≤ · · · δN .

Proof: We now prove that with the Constraint (11) and
(12), Constraint (10) can also be satisfied.

For anyk < N , with constraint (11), we can obtain that
yk−1 + yk + · · · , yN ≥

(

k
2

)

. From Theorem 2, we can easily
obtain the constraint (12), i.e.,y1 ≥ y2 ≥ · · · ≥ yN . Thus,
for any k clients, the total number of packets they send
must be no less thanyk−1 + yk + · · · , yN . That is, for any
{i1, i2, · · · , ik} ⊆ {1, 2, · · · , N}, we have

yi1 + yi2 + · · ·+ yik ≥ yk−1 + yk + · · ·+ yN

≥

(

k

2

)

(13)

wherei1 6= i2 6= · · · 6= ik.
From the above equation, we can obtain that for anyk

clients, where1 ≤ k < N , the total number of packets they
need to send is at least

(

k

2

)

, which thus proved the above
Corollary.

B. Illustration with an Example

We consider a network with four clients as an example.
Suppose that the transmission cost at each client isδ1 =
1, δ2 = 2, δ3 = 3, δ4 = 4. As shown in Fig. 2, with
our transmission scheme, the total transmission cost is9.
On contrary, with the transmission scheme proposed in [1],
which aims to minimize the total number of transmissions,
the transmission cost is10. In addition, we can easily check
that with the code design in our scheme each client can
decode its “wanted” packets. Fig. 2 also verifies the result
given in Theorem 2, i.e., the clients with lower transmission
costs should send more packets than the clients with higher
transmission costs.

C. Performance Analysis with Random Network Coding

With the ILP in Eq. (9) and Constraints (11) (12), we can
obtain the optimal number of packets each client should send,
so as to minimize the total transmission cost. To guarantee
that each clienti can finally decode its “wanted” packets with
matrixRi, we can design a deterministic code as introduced in
Lemma 1. However, the deterministic encoding matrix needs

cost
Transmissions 

x1,4 + x2,4

δ1 = 1

δ2 = 2

δ3 = 3

δ4 = 4

δ1 = 1

δ2 = 2

δ3 = 3

δ4 = 4

scheme

Transmission

scheme in [1]

y1 = 2

y2 = 2

y3 = 1

y4 = 0

y1 = 1

y2 = 1

y3 = 1

y4 = 1

Our transmission

Code Desgin Total cost

x2,3 + x2,4,

x1,2 + x1,3,

∑
4

i=1
δiyi=9

∑
4

i=1
δiyi=10

x1,2 + x1,4

x2,3 + x1,2

Number of
transmissions

x3,4 + x1,3

x1,2 + x1,3

x2,3 + x2,4

x3,4 + x1,3

Fig. 2. Different transmission schemes with different total transmission costs.

to be centrally designed, which may incur high overhead.
Instead, we use random linear network coding at each client to
locally determine the encoding vectors of the packets it sends.

We let each clientci ∈ C locally conduct random linear
network coding over the packets that it initially has, wherethe
number of encoded packets that each client should generate is
determined by the ILP given in the above section.

Before analyzing further result, we introduce the following
Schwartz-Zippel Lemma [12].

Lemma 3 (Schwartz-Zippel lemma [12]) LetP (z1, · · · , zN )
be a non-zero polynomial of degreed ≥ 0 over a fieldF. Let
S be a finite subset ofF, and the value of eachz1, z2, · · · , zN
be selected independently and uniformly at random fromS.
Then the probability that the polynomial equals zero is at most
d
|S| , i.e.,Pr(P (z1, · · · , zN) = 0) ≤ d

|S| .

Based on the above lemma, we can derive the following
probability.

Theorem 3 With random linear network coding and the
transmission scheme{y1, y2, · · · , yN} obtained by ILP, the
probability that each clienti ∈ {1, 2, · · · , N} can finally
decode its “wanted” packets is at least

1−
(N − 1)(N − 2)

2q
(14)

whereq is the field size.

Proof: As in Theorem 1, for anyk < N clients, the total
number of packets they send is at least

(

k

2

)

. We then try to find
a feasible set of the coefficients such that the local receiving
matrix of each clienti, Ri, is with rank (N−1)(N−1)

2 .
For a matrix with maximum rank(N−1)(N−2)

2 , the maxi-
mum degree of the coefficient variants should be(N−1)(N−2)

2 .
According to Lemma 3, the probability that the determinant
of this matrix is zero should be at most(N−1)(N−2)

2q . Hence,
the probability that the determinant of the matrix is non-zero
is at least

1−
(N − 1)(N − 2)

2q

whereq is the field size.
Thus, the probability that clienti can finally decode its

“wanted” packets with the local receiving matrixRi is at least
1− (N−1)(N−2)

2q .



Based on the above lemma, when the number of clientsN is
fixed, we can increase the field size to enhance the probability
that each client can finally decode its “wanted” packets. The
lower bound of the probability is shown in Table I.

TABLE I
THE PROBABILITY LOWER BOUND IN THEOREM 3

N=4 N=6 N=8 N=10 N=12
K=6 K=15 K=28 K=45 K=66

q=256 0.9883 0.9609 0.9180 0.8594 0.7852
q=512 0.9941 0.9805 0.9590 0.9297 0.8926

For example, when the total number of clients isN = 6,
which means the total number of packets needed to be
exchanged isK = N(N−1)

2 = 15, the probability that each
client can decode its “wanted” packets is more than98.05%,
if we randomly select the coefficients fromq = 512.

V. CONCLUSION

In this paper, we aim to design a network coded coop-
erative information exchange scheme to minimize the total
transmission cost for exchanging third-party information. We
derive a necessary and sufficient condition for the feasible
transmission scheme. We prove that for anyk clients, where
1 ≤ k < N , if the total number of packets they send is at
least

(

k
2

)

, there exists a feasible code design to make sure
each client can finally obtain its “wanted” packets. We further
formulate the problem of minimizing the total transmission
cost for third-party information exchange as an integer linear
programming. Our analysis also shows that the clients with
lower transmission cost should send more packets than the
clients with higher transmission cost. Finally, based on the
transmission scheme obtained by ILP, we provide a lower
bound of the probability that each client can decode its
“wanted” packets, if random network coding is used.
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