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Abstract

We consider the wireless two-way relay channel, in which two-way data transfer takes place between

the end nodes with the help of a relay. For the Denoise-And-Forward (DNF) protocol, it was shown by

Koike-Akino et. al. that adaptively changing the network coding map used at the relay greatly reduces the

impact of Multiple Access interference at the relay. The harmful effect of the deep channel fade conditions

can be effectively mitigated by proper choice of these network coding maps at the relay. Alternatively,

in this paper we propose a Distributed Space Time Coding (DSTC) scheme, which effectively removes

most of the deep fade channel conditions at the transmittingnodes itself without any CSIT and without

any need to adaptively change the network coding map used at the relay. It is shown that the deep

fades occur when the channel fade coefficient vector falls ina finite number of vector subspaces of

C2, which are referred to as the singular fade subspaces. DSTC design criterion referred to as the

singularity minimization criterionunder which the number of such vector subspaces are minimized is

obtained. Also, a criterion to maximize the coding gain of the DSTC is obtained. Explicit low decoding

complexity DSTC designs which satisfy the singularity minimization criterion and maximize the coding

gain for QAM and PSK signal sets are provided. Simulation results show that at high Signal to Noise

Ratio, the DSTC scheme provides large gains when compared tothe conventional Exclusive OR network

code and performs slightly better than the adaptive networkcoding scheme proposed by Koike-Akino

et. al.

I. BACKGROUND AND PRELIMINARIES

A. Background

We consider the two-way wireless relaying scenario shown inFig.1. Two-way data transfer takes place

between the nodes A and B with the help of the relay R. It is assumed that all the three nodes operate in
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half-duplex mode, i.e., they cannot transmit and receive simultaneously in the same frequency band. The

idea of physical layer network coding for the two way relay channel was first introduced in [1], where the

multiple access interference occurring at the relay was exploited so that the communication between the

end nodes can be done using a two phase protocol. A protocol called Denoise-And-Forward (DNF) was

proposed in [2], which consists of the following two phases:the multiple access(MA) phase (Fig. 1(a)),

during which A and B simultaneously transmit to R and thebroadcast(BC) phase (Fig. 1(b)) during

which R transmits to A and B. Network coding map, which is alsoreferred to as the denoising map, is

chosen at R in such a way that A (B) can decode the messages of B (A), given that A (B) knows its own

messages. During the MA phase, the transmissions from the end nodes were allowed to interfere at R,

but the harmful effect of this interference was mitigated bya proper choice of the network coding map

used at R. Information theoretic studies for the physical layer network coding scenario were reported in

[3], [4]. A differential modulation scheme with analog network coding for bi-directional relaying was

proposed in [5]. The design principles governing the choiceof modulation schemes to be used at the

nodes for uncoded transmission were studied in [6]. An extension for the case when the nodes use

convolutional codes was done in [7]. A multi-level coding scheme for the two-way relaying scenario was

proposed in [8]. Power allocation strategies and lattice based coding schemes for bi-directional relaying

were proposed in [9].

It was observed in [6] that the network coding map used at the relay needs to be changed adaptively

according to the channel fade coefficients, in order to minimize the impact of the Multiple Access Inter-

ference (MAI). A computer search algorithm called theClosest-Neighbour Clustering(CNC) algorithm

was proposed in [6] to obtain the adaptive network coding maps resulting in the best distance profile

at R. An adaptive network coding scheme for MIMO two-way relaying based on the CNC algorithm

was proposed in [10]. An alternative procedure to obtain theadaptive network coding maps, based on

the removal of deep channel fade conditions using Latin Squares was proposed in [11]. A quantization

of the set of all possible channel realizations based on the network code used was obtained analytically

in [12]. An extension of the adaptive network coding scheme for MIMO two-way relaying using Latin

Rectangles was made in [13].

As an alternative to the adaptive network coding schemes in [6] and [11]– [12], in this paper, we

propose a Distributed Space Time Coding (DSTC) scheme, which mitigates the effect of MAI to the

fullest extent possible at the transmitting nodes itself without any CSIT. For the proposed DSTC scheme

the network coding map used at R need not be changed adaptively according to channel conditions which

reduces the complexity at R to a great extent and also eliminates the need for overhead bits from R to
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A and B to indicate the choice of the network coding map.

A distributed space time coding scheme for a wireless two-way relay network with multiple relay

nodes was proposed in [14], in which the DSTC was constructedat the relay nodes. In the proposed

scheme, the DSTC is constructed at the end nodes A and B.

B. Signal Model

Throughout, a quasi-static fading scenario is assumed withthe Channel State Information (CSI)

available only at the receivers. LethA and hB denote the fade coefficients associated with A-R and

B-R links andh′A andh′B denote the fade coefficients associated with R-A and R-B links. All the fading

coefficients are assumed to follow Rician distribution.

Let S denote the unit energyM = 2λ point constellation used at the end nodes. Letµ : Fλ
2 → S

denote the mapping from bits to complex symbols used at A and B.

1) Denoise-And-Forward (DNF) protocol:In the sequel, we briefly describe the adaptive network

coding schemes based on the DNF protocol proposed in [6], [11] – [12]. Throughout the paper, by DNF

protocol, we refer to the schemes proposed in [6] and [11]– [12].

In the DNF protocol, transmission occurs in two phases: Multiple Access (MA) phase during which

A and B simultaneously transmit to R and Broadcast (BC) phaseduring which R transmits to A and B.

MA Phase:Let xA = µ(sA), xB = µ(sB) ∈ S denote the complex symbols transmitted by A and B

respectively, wheresA, sB ∈ Fλ
2 . The received signal atR is given by,

yR = hAxA + hBxB + zR.

The additive noisezR is assumed to beCN (0, σ2), whereCN (0, σ2) denotes the circularly symmetric

complex Gaussian random variable with mean zero and variance σ2.

BC Phase:Let (x̂A, x̂B) ∈ S2 denote the Maximum Likelihood (ML) estimate of(xA, xB) at R based

on the received complex numberyR. Depending on the value ofhA andhB , R chooses a many-to-one

mapMhA,hB : S2 → S ′, whereS ′ is the signal set (of size betweenM andM2) used by R during the

BC phase.

In order to ensure that A (B) is able to decode B’s (A’s) message, the mapMhA,hB should satisfy the

exclusive law [6], i.e.,

MhA,hB(xA, xB) 6= MhA,hB(x′A, xB), for xA 6= x′A, ∀ xB ∈ S,
MhA,hB(xA, xB) 6= MhA,hB(xA, x

′
B), for xB 6= x′B , ∀ xA ∈ S.






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The CNC algorithm proposed in [6] obtains the mapMhA,hB which results in the best distance profile

during the MA phase at R. The CNC algorithm is run for all possible channel realizations and a partition

of the set of all channel realizations is obtained dependingon the chosen network coding map. For a

given channel realization, the choice of the network codingmap is indicated to A and B using overhead

bits. During the BC phase R transmitsxR = MhA,hB(x̂A, x̂B) ∈ S ′. The received signals at A and B

during the BC phase are respectively given by,

yA = h′AxR + zA,

yB = h′BxR + zB ,

wherezA andzB are independent andCN (0, σ2). Since the mapMhA,hB satisfies the exclusive law and

A (B) knows its own messagexA (xB), it can decodexB (xA) by decodingxR.

The CNC algorithm optimizes the entire distance profile instead of maximizing only the minimum

distance. In some cases, this results in the use of signal sets with a larger cardinality during the BC

phase. To solve this problem, an algorithm called the Nearest Neighbour Clustering (NNC) algorithm

was proposed in [6] which maximizes the minimum distance alone, instead of optimizing the entire

distance profile.

The choice of the network coding map obtained depends only onthe ratio hB

hA
and not the individual

values ofhA and hB [6]. In [11], the values ofhB

hA
for which deep channel conditions occur were

identified and network coding maps which remove the harmful effect of these deep channel conditions

were obtained by the completion of partially filled Latin Squares.

2) The Proposed DSTC Scheme:For the proposed DSTC scheme, transmission occurs in four phases:

Two MA phases during which A and B simultaneously transmit toR followed by two BC phases during

which R transmits to A and B. Two independent complex symbolseach from A to B and B to A get

exchanged at the end of the four phases and hence the information rate in bits per channel use for the

proposed scheme is same as that of the DNF protocol.

MA Phases:Let xA1
= µ(sA1

), xA2
= µ(sA2

) ∈ S denote two independent complex symbols A wants

to communicate to B. Similarly, B wants to communicate two independent complex symbolsxB1
=

µ(sB1
), xB2

= µ(sB2
) ∈ S to A. During theith MA phasei ∈ {1, 2}, A transmitsf i

A(xA1
, xA2

) ∈ C, a

function of xA1
andxA2

, and similarly B transmitsf i
B(xB1

, xB2
) ∈ C, a function ofxB1

andxB2
. The

received signal at R during the two MA phases can be written as,

October 19, 2018 DRAFT
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yR = [yR1
yR2

] = [hA hB ]





f1
A(xA1

, xA2
) f2

A(xA1
, xA2

)

f1
B(xB1

, xB2
) f2

B(xB1
, xB2

)



+
[

zR1
zR2

]

,

whereyRi
denotes the received signal at R during theith MA phase,zR1

andzR2
are independent and

CN (0, σ2). Let xA = [xA1
xA2

] andxB = [xB1
xB2

]. The matrix,

C(xA,xB) =





f1
A(xA1

, xA2
) f2

A(xA1
, xA2

)

f1
B(xB1

, xB2
) f2

B(xB1
, xB2

)



 (1)

represents aDSTC codeword matrix. Note that in the DSTC codeword matrix,xA1
andxA2

can occur

only in the first row and,xB1
andxB2

can occur only in the second row. In this way the DSTC differs

from space time codes for the conventional 2×1 multiple antenna system with two collocated antennas

at the transmitter in which the complex symbols can occupy any entry in the codeword matrix.

For a complex numberx, let xR andxI denote the real and imaginary parts ofx.

Definition 1: A DSTC is said to be linear if the entries of the first row of the codeword matrices are

complex linear combinations ofxRA1
, xIA1

, xRA2
, xIA2

and the entries of the second row are complex linear

combinations ofxRB1
, xIB1

, xRB2
, xIB2

. Any codeword matrixC(xA,xB) of a linear DSTC can be written

as,

C(xA,xB) =
∑

i=1,2

WR
Ai
xRAi

+WI
Ai
xIAi

+WR
Bi
xRBi

+WI
Bi
xIBi

. (2)

The matricesWR
Ai
,WI

Ai
,WR

Bi
andWI

Bi
are referred to as theweight matricesof the DSTC. Note

that the entries of the second (first) row are zeros in the matricesWR
Ai

andWI
Ai

(WR
Bi

andWI
Bi

).

Definition 2: A linear DSTC is said to be over the signal setS if the entries of the first (second) row

of the codeword matrices are complex linear combinations ofxA1
andxA2

(xB1
andxB2

), wherexA1
,

xA2
, xB1

andxB2
belong to the signal setS.

For a linear DSTC overS, codeword matrixC(xA,xB) is of the form C(xA,xB) =





xAMA

xBMB



 ,

whereMA andMB are2× 2 complex matrices referred to as thegenerator matricesat node A and B

respectively. Throughout the paper, we consider only linear DSTCs over a signal setS.
BC Phases:Let (ŝA1

, ŝA2
, ŝB1

, ŝB2
) denote the maximum likelihood estimate of(sA1

, sA2
, sB1

, sB2
) at

R. The relay R transmitsxR1
= µ(ŝA1

⊕ ŝB1
) andxR2

= µ(ŝA2
⊕ ŝB2

) during the first and second BC

phases respectively, where⊕ denotes the bit-wise XOR operation. The received signals atthe end nodes

during the two BC phases are given by,yAi
= h′AxRi

+ zAi
andyBi

= h′BxRi
+ zBi

, wherei ∈ {1, 2}.
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Since A (B) knows its own messages and the XOR map satisfies theexclusive law, A (B) can decode

sBi
(sAi

) i ∈ {1, 2}, by decodingxRi
.

Note that for the proposed DSTC scheme the signal set used during the BC phase is of the minimum

cardinality 2λ (the cardinality of the signal set should be at least2λ to conveyλ information bits). In

contrast, for the scheme proposed in [6], depending on channel conditions unconventional signal sets

with cardinality greater than the minimum cardinality are required. Minimum cardinality signal set is

used during the BC phase and throughout the paper the focus ison optimizing the performance during

the MA phase.

Some of the advantages of the proposed DSTC scheme over the schemes proposed in [6], [11]– [12]

are summarized below:

• Unlike the schemes proposed in [6], [11]– [12], for the proposed DSTC scheme, the network coding

map used at R need not be changed adaptively according to channel conditions. Any network coding

map satisfying the exclusive law will give the same performance and for simplicity, the conventional

bit-wise Exclusive OR (XOR) map itself can be used. This reduces the complexity at R to a great

extent and also eliminates the need for overhead bits from R to A and B to indicate the choice of

the network coding map.

• For the scheme proposed in [6], for certain channel conditions the adaptive network coding map

necessitates the use of unconventional signal sets with cardinality greater than the minimum cardi-

nality required during the BC phase, which results in a degradation in performance. For the proposed

scheme, the relay always uses a conventional signal set withminimum cardinality.

• The adaptive network coding maps were obtained in [6], by exhaustive computer search. For

the proposed scheme no such computer search is required, since the same network code is used

irrespective of channel conditions.

The contributions and organization of the paper are as follows:

• For a classicalnt×nr MIMO system with collocated antennas, deep channel fade conditions occur

when the channel fade coefficient vector belongs to a finite number of vector subspaces ofCnt

referred to as the singular fade subspaces. The way in which transmit diversity schemes (space

time codes) remove the harmful effect of these singular fadesubspaces is discussed. The connection

between the dimension of these singular fade subspaces and the transmit diversity order is explained

(Section II).

• The MAC phase of the DNF protocol for the two-way relaying scenario can be viewed as a virtual

October 19, 2018 DRAFT
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2× 1 MISO system. The singular fade subspaces for the classical2× 1 MISO system, are singular

fade subspaces for the two-way relaying scenario as well. The connection between dimension of these

singular fade subspaces and the diversity order for the adaptive network coding schemes proposed

in [6] and [11]- [12] is discussed (Section III A).

• The singular fade subspaces for the proposed DSTC scheme areidentified. The goal of minimizing

the number of singular fade subspaces results in a new designcriterion referred as thesingularity

minimization criterionfor DSTCs. It is shown that for a properly chosen DSTC, most ofthe vector

subspaces which were singular fade subspaces for the DNF protocol, are no longer singular fade

subspaces for the DSTC scheme. Also, a criterion to maximizethe coding gain of the proposed

DSTC scheme is obtained (Section III B).

• It is shown that for DSTCs which are overS, whereS is a square QAM or2λ-PSK signal set,

the coding gain is maximized when the generator matricesMA and MB at nodes A and B are

unitary matrices. Explicit construction of DSTCs over QAM and PSK signal sets which satisfy the

singularity minimization criterion and maximize the coding gain are provided. It is shown that for

all DSTCs overS with unitary generator matricesMA andMB, the ML decoding complexity at

R is O(M3) for any arbitrary signal set and isO(M2) for square QAM signal sets. Note that the

brute force ML decoding complexity isO(M4) (Section IV).

• Simulation results presented in Section V show that at high SNR, the DSTC scheme provides large

gains when compared to the conventional XOR network code based on the DNF protocol and

performs slightly better than the adaptive network coding scheme proposed in [6].

Notations: The complex number
√
−1 is denoted byj. The set of integers, Gaussian integers, rational,

real and complex numbers are respectively denoted asZ,Z[j],Q,R andC. All the vector spaces and

vector subspaces considered in this paper are over the complex field C, unless explicitly mentioned

otherwise. Throughout, vectors are denoted by bold lower case letters and matrices are denoted by bold

capital letters. LetCN (0, σ2In) denote the circularly symmetric complex Gaussian random vector with

zero mean and covariance matrixσ2In, whereIn denotes then× n identity matrix. Let〈c1, c2, . . . cL〉
denote the vector subspace overC spanned by the complex vectorsc1, c2, . . . cL. For a matrixA, AT

andAH denotes its transpose and conjugate transpose respectively. For a vector subspaceV of a vector

space,V ⊥ denotes the vector subspace{x : xTv = 0,∀v ∈ V } and dim(V ) denotes the dimension ofV.

The all zero vector of lengthn is denoted by0n. For a square matrixA, let rank(A) denote its rank and

let det(A) denote its determinant. For a complex numberx, xR andxI denote the real and imaginary
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parts ofx, x∗ denotes its conjugate and|x| denotes its absolute value. For a vectorv, ‖ v ‖ denotes its

Euclidean norm. For a matrixA, Row(A) andCol(A) respectively denote the row space and column

space ofA. E(X) denotes the expectation ofX.

II. T HE NOTION OF SINGULAR FADE SUBSPACES FOR THECOLLOCATED MIMO SYSTEM

In this section, to explain the notion of singular fade subspaces, we digress from the two-way relaying

scenario and focus on the classical MIMO system with collocated antennas. Consider the classical MIMO

system withnt transmit antennas at the transmitter Tx andnr receive antennas at the receiver Rx, with

H being thenr × nt complex fade coefficient matrix. The entries of the matrixH are assumed to be

i.i.d. and Rician distributed.

A. Singular Fade Subspaces for the Collocated MIMO system with Spatial Multiplexing

Consider the spatial multiplexing of independent complex symbols at Tx, i.e., the received complex

vector at Rx is given byy = Hx + z, wherex is the transmitted message vector of lengthnt whose

components independently take values from the signal setS andz is CN (0, σ2Int
).

Let SRx(H) ⊂ Cnr denote the effective signal set at Rx, i.e.,SRx(H) = {Hx : x ∈ Snt}. Let

∆S denote the difference constellation of the signal setS, i.e., ∆S = {s − s′ : s, s′ ∈ S}. The

distances between two points in the effective constellation SRx(H) are of the form‖ H∆x ‖, where

∆x 6= 0nt
,∆x ∈ ∆Snt .

Definition 3: For annt × nR MIMO system, the channel fade coefficient matrixH is said to be a

deep fade matrixif the minimum distance of the effective constellationSRx(H) is zero. The row space

of a deep fade matrix is said to be adeep fade space.

Let hk, 1 ≤ k ≤ nr, denote thekth row of H. Since‖ H∆x ‖2= ∑nr

k=1 |hk∆x|2, for the minimum

distance of the effective constellationSRx(H) to be zero, all the vectorshT
k , 1 ≤ k ≤ nr, should fall in

a vector subspace of the form〈∆x〉⊥ for some∆x ∈ ∆Snt . In other words, for‖ H∆x ‖ to be zero,

the row space ofH should be a subspace of the vector subspace ofCnt of the form 〈∆x〉⊥ for some

∆x ∈ ∆Snt . The vector subspaces of the form〈∆x〉⊥ are referred to as thesingular fade subspaces.

Formally, a singular fade subspace can be defined as follows:

Definition 4: A vector subspaceV of Cnt is said to be a singular fade subspace if all the vector

subspaces ofV are deep fade spaces.

Note that

〈





0

0





〉

is always a singular fade subspace referred to as thetrivial singular fade subspace.
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Example 1:Consider the2 × 1 MISO system with spatial multiplexing with 4-PSK signal setS =

{±1,±j}. The difference constellation of 4 PSK signal set has 9 points∆S = {0,±2,±2j,±1± j}. For

this case, the set of fourteen singular fade subspaces, which are of the form〈∆x〉⊥, where∆x ∈ ∆S2

are given by,







〈





0

1





〉

,

〈





1

0





〉

,

〈





1

1





〉

,

〈





1

−1





〉

,

〈





1

j





〉

,

〈





1

−j





〉

,

〈





1

1 + j





〉

,

〈





1

−1 + j





〉

,

〈





1

1− j





〉

,

〈





1

−1− j





〉

,

〈





1

0.5 + 0.5j





〉

,

〈





1

−0.5 + 0.5j





〉

,

〈





1

0.5− 0.5j





〉

,

〈





1

−0.5− 0.5j





〉







.

(3)

The fade coefficient matrix (which is a row vector for this example) is a deep fade matrix (vector) if the

row space of the fade coefficient vector is a subspace of one ofthese 14 singular fade subspaces, i.e.,

the fade coefficient vector should belong to one of these 14 vector subspaces. For example,[2 1 + j]T

belongs to the vector subspace
〈





1

0.5 + 0.5j





〉

and is a deep fade matrix.

Note that the singular fade subspaces depend only on the number of transmit antennasnt and the

signal setS. They are independent of the number of receive antennasnr, as illustrated in the following

example.

Example 2:Consider the 2× 2 MIMO system with 4-PSK signal setS = {±1,±j}. The set of 14

singular fade subspaces for this case is the same as that of2 × 1 MISO system given in (3). For a

fade coefficient matrix to be a deep fade matrix, both the rowsshould belong to one of these 14 vector

subspaces. For example,





2 1 + j

1 0.5 + 0.5j



 is a deep fade matrix since
[

2 1 + j

]T

and
[

1 0.5 + 0.5j
]T

belong to the vector subspace

〈





1

0.5 + 0.5j





〉

.

The dimension of the singular fade subspace〈∆x〉⊥, and the transmit diversity order of the pair-

wise error event(x → x′), are inherently connected, where∆x = x− x′ andx,x′ ∈ Snt . With spatial

multiplexing, the transmit diversity order of the pair-wise error event(x → x′) is 1 whiledim(〈∆x〉⊥) =
nt − 1. It is the presence of thesent − 1 dimensional singular fade subspaces that results in a transmit

diversity order of 1.

The receive diversity ordernr comes due to the fact that for a fade coefficient matrix to be a deep fade

matrix, all thenr rows of the fade coefficient matrix should belong to the same singular fade subspace.

The use of full diversity space times space time codes results in the maximum transmit diversity order

nt. In the next subsection, the connection between the singularfade subspaces of space time codes and
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transmit diversity order will be established.

B. Singular Fade Subspaces for the Collocated MIMO system with Space Time Coding

Consider the case when Tx uses a space time codeC of sizent × T, whereT ≥ nt. Let C(x) denote

a codeword matrix of the space time code, wherex ∈ SK , whereK denotes the number of independent

complex symbols transmitted. Similar to the spatial multiplexing case, the effective constellation at Rx

which is a subset ofCnr×T can be defined. It is easy to verify that the minimum distance of the effective

constellation at Rx becomes zero whenRow(H) is a subspace of the vector subspaceCol⊥ (C (∆x)) ,

for some∆x ∈ ∆SK . Note thatCol⊥ (C (∆x)) denotes the vector subspace{u : uTv = 0,∀v ∈
Col (C (∆x))}. The vector subspacesCol⊥ (C (∆x)) are the singular fade subspaces for thent transmit

antenna system with the space time codeC.
Note 1: Even though the probability thatRow(H) is a subspace of one of the singular fade subspaces is

zero, with a non-zero probabilityRow(H) falls in the neighbourhood of a subspace of one of the singular

fade subspaces, which results in low values of the minimum distance of the effective constellation.

The dimension of the singular fade subspaceCol⊥ (C (∆x)) is equal tont − rank(C (∆x)), while

the transmit diversity order for the pair-wise error event(x → x′),x,x′ ∈ SK equals rank(C (∆x))

[15], where∆x = x − x′. With every pair-wise error event(x → x′), we can associate a singular

fade subspaceCol⊥ (C (∆x)) . Among all the pair-wise error events, those error events forwhich the

codeword difference matrix has the least rank determine theoverall system transmit diversity order.

Equivalently, among all the pair-wise error events, those error events for which the associated singular

fade subspace has the largest dimension will dominate the overall error probability. This is expected

since among all the singular fade subspaces, the probability thatRow(H) falls in the neighbourhood of a

subspace of the singular fade subspace, will be the largest for those singular fade subspaces which have

the largest dimension.

If the space time code is such thatC (∆x) is full rank for all ∆x 6= 0K, all the singular fade

subspacesCol⊥ (C (∆x)) collapse to be the zero-dimensional trivial singular fade subspace

〈





0

0





〉

,

thereby ensuring a transmit diversity order ofnt for all the pair-wise error events.

Example 3:Consider the2 × 1 MISO system with Alamouti space time code whose design matrix

is given by





x1 x2

−x∗
2 x∗

1



 . Since the design matrix is full rank for all choices ofx1 and x2, the column

space of the codeword difference matrix is alwaysC2 and hence all the singular fade subspaces collapse

to be the zero dimensional trivial singular fade subspace
〈





0

0





〉

. Equivalently, all the pair-wise error

October 19, 2018 DRAFT



11

events(x1,x2) → (x′
1,x

′
2) have a transmit diversity order 2. The full rank Alamouti space-time code

removed the effect of all the vector subspaces which were non-trivial singular fade subspaces for the

spatial multiplexing system, thereby increasing the diversity order of all the pair-wise error events from

1 to 2.

Example 4:For a2a × 2a Generalized Linear Complex Orthogonal Design (GCOD) [16],the design

matrix G2a(x1, x2, . . . xa+1) constructed iteratively is given by,




G2a−1(x1, x2, . . . xa) xa+1I2a−1

−x∗a+1I2a−1 GH
2a−1(x1, x2, . . . xa)



 .

The codeword difference matrix for the GCOD is full rank for any signal set. Hence, irrespective of the

signal set, the trivial singular fade subspace〈02a〉 is the only singular fade subspace for the GCOD.

Example 5:Consider the4×4 Quasi-Orthogonal Design (QOD) [17], whose codeword matrixis given

by

















x1 −x∗2 −x∗3 x4

x2 x∗1 −x∗4 −x3

x3 −x∗4 x∗1 −x2

x4 x∗3 x∗2 x1

















. Let ∆xi = xi − x′i. Irrespective of the signal set used, the minimum rank

of the codeword difference matrix for the4 × 4 QOD is 2. For example, when∆x1 = ∆x4 = ∆s1

and∆x2 = −∆x3 = ∆s2, the rank of the codeword difference matrix is 2. Equivalently, there exists a

non-trivial singular fade subspace,
〈

[

∆s1 ∆s2 −∆s2 ∆s1

]T

,
[

−∆s∗2 ∆s∗1 −∆s∗1 −∆s∗2

]T
〉⊥

.

Note that the 2×2 Alamouti code removes the effect of the harmful non-trivialsingular fade subspaces

for any signal set. On the other hand, for the4× 4 QOD there exists non-trivial singular fade subspaces

for any signal set.

In general, a space time code can offer full transmit diversity for some but not all signal sets. In other

words, for some signal set, a space time code might have only the trivial singular fade subspace, while

for some other signal set, the same space time code might havenon-trivial singular fade subspaces. For a

space time code which does not offer full transmit diversityfor a signal set, there would exist non-trivial

singular fade subspaces. These are illustrated in the following example.

Example 6:Consider the2× 2 Co-ordinate Interleaved Orthogonal Design (CIOD) [18] whose code-

word matrices are of the form





xR1 + jxI2 0

0 xR2 + jxI1



 , wherex1, x2 ∈ {±1,±j}. Let ∆xi = xi − x′i.

The codeword difference matrix is not full rank in the following two cases:

Case 1:∆xR1 = ∆xI2 = 0 and at least one out of∆xI1 and∆xR2 is non-zero. For this case, the singular
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fade subspace is given by

〈





1

0





〉

.

Case 2:∆xI1 = ∆xR2 = 0 and at least one out of∆xR1 and∆xI2 is non-zero. For this case, the singular

fade subspace is given by

〈





0

1





〉

.

Hence, there exists the following two non-trivial singularfade subspaces:
〈





0

1





〉

and

〈





1

0





〉

. However,

when the signal set isejθ{±1,±j}, whereθ is not a multiple ofπ4 , the 2× 2 CIOD offers full transmit

diversity. Equivalently, there are no singular fade subspaces other than the trivial singular fade subspace

for the 2× 2 CIOD with the signal setejθ{±1,±j}, whenθ is not a multiple ofπ4 .

Example 7:Consider the4× 4 CIOD [18] whose codeword matrices are of the form
















xR1 + jxI3 xR2 + jxI4 0 0

−xR2 + jxI4 xR1 − jxI3 0 0

0 0 xR3 + jxI1 xR2 + jxI4

0 0 −xR4 + jxI2 xR3 − jxI1

















,

where x1, x2, x3, x4 ∈ {±1,±j}. For the 4-PSK signal set considered, this STC does not offer full

transmit diversity and there are pair-wise error events which have a transmit diversity order less than 2.

The determinant of the codeword difference matrix for this STC is given by,

(

|∆x
R
1 |

2 + |∆x
I
3|

2 + |∆x
R
2 |

2 + |∆x
I
4|

2
)(

|∆x
R
3 |

2 + |∆x
I
1|

2 + |∆x
R
4 |

2 + |∆x
I
2|

2
)

.

Hence the code-word difference matrix is not full rank in thefollowing two cases:

Case 1:∆xR1 = ∆xI3 = ∆xR2 = ∆xI4 = 0 and at least one out of∆xI1,∆xR3 ,∆xI2,∆xR4 is non-zero.

For this case, the first two columns of the codeword difference matrices are zeros. The column span of

the codeword difference matrix is
〈

[

0 0 1 0
]T

,
[

0 0 0 1
]T

〉

and hence the corresponding singular

fade subspace is given by
〈

[

1 0 0 0
]T

,
[

0 1 0 0
]T

〉

.

Case 2:∆xI1 = ∆xR3 = ∆xI2 = ∆xR4 = 0 and at least one out of∆xI1,∆x
Q
3 ,∆xI2,∆x

Q
4 is non-

zero. Similar toCase 1, it can be shown that the singular fade subspace for this caseis given by
〈

[

0 0 1 0
]T

,
[

0 0 0 1
]T

〉

.

Hence, for the4 × 4 CIOD, with 4-PSK signal setx1, x2, x3, x4 ∈ {±1,±j}, there exists two non-

trivial singular singular fade subspaces. Similar to the2×2 CIOD, when the signal set is a rotated 4-PSK

signal set,ejθ{±1,±j}, whereθ is not a multiple ofπ4 , the 4 × 4 CIOD offers full transmit diversity
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and there are no non-trivial singular fade subspaces.

In general, the2 × 2 CIOD given in Example 6 and the4 × 4 CIOD given in Example 7, offer full

diversity for those signal sets for which the Co-ordinate Product Distance (CPD)1 is non-zero [18].

Equivalently, there are non-trivial singular fade subspaces for the2× 2 and4× 4 CIOD, for signal sets

whose CPD is non-zero. In fact, this is true for any Generalized Co-ordinate Interleaved Orthogonal

Design (GCIOD), as illustrated in the next example.

Example 8:Consider the2a × 2a Generalized Co-ordinate Interleaved Orthogonal Design (GCIOD)

[18] whose codeword design matrix is given by,





G2a−1 (x̃1, . . . , x̃a) 0

0 G2a−1 (x̃a+1, . . . , x̃2a)



 . The complex

numberx̃i = xRi + jxI(i+a)2a
, where (r)s denotesr modulo s andG2a−1(x1, . . . , xa) is the codeword

matrix of the GCOD [16] of size2a−1. The determinant of the codeword difference matrix is given by
(
∑a

i=1(|∆xR
i |

2 + |∆xI
(a+i)2a

|2
) (

∑a

i=1(|∆xI
i |

2 + |∆xR
(a+i)2a

|2
)

. The determinant is non-zero for those signal sets

for which the CPD is non-zero and there are no non-trivial singular fade subspaces. For those signal sets

for which the CPD is zero, the determinant becomes zero underthe following two cases:

Case 1:∆xIi = ∆xR(a+i)2a
= 0,∀i ∈ {1, . . . , a} and at least one of the elements of the set{∆xR

i ,∆xI
(a+i)2a

,

1 ≤ i ≤ a} is non-zero. It can be verified that the singular fade subspace for this case is given by

〈e1, e2, . . . , e2a−1〉 , where ei denotes the2a length vector whoseith component is one and all other

components are zeros.

Case2:∆xRi = ∆xI(a+i)2a
= 0,∀i ∈ {1, . . . , a} and at least one of the elements of the set{∆xI

i ,∆xR
(a+i)2a

,

1 ≤ i ≤ a} is non-zero. For this case, the singular fade subspace is given by 〈e2a−1+1, . . . , e2a〉 .

III. S INGULAR FADE SUBSPACES FOR THE TWO-WAY RELAYING SCENARIO

In the previous subsection, the notion of singular fade subspaces was introduced and its connection

to the transmit diversity order of the MIMO system with collocated antennas was established. Since the

MA phase of the two-way relaying scenario can be viewed as a virtual 2× 1 MISO system, there exists

singular fade subspaces for this case as well.

In Subsection III-A, the singular fade subspaces for the two-way relaying scenario are identified. The

reason why the adaptive network coding schemes based on the DNF protocol proposed in [6] and [11]-

[12] mitigate the effect of these harmful singular fade subspaces is discussed. In Subsection III-B, it is

1The CPD between two complex numbersx andy is defined to be|xR − yR||xI − yI |. The CPD of a signal set is defined
to minimum among all CPDs between pairs of points in the signal set [18].
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shown that minimizing the harmful effect of these singular fade subspaces can also be achieved by a

proper choice of the DSTC, without any need to adaptively change the network code at R according to

channel conditions.

A. Singular Fade Subspaces for the DNF Protocol

Let ∆xA = xA − x′A and∆xB = xB − x′B ∈ ∆S. From the discussion in Section II, it follows that

the singular fade subspaces for the DNF protocol are of the form

〈





∆xA

∆xB





〉
⊥

=

〈





1

−∆xA

∆xB





〉

. The ratio

−∆xA

∆xB
determines all the singular fade subspaces for the DNF protocol. In [11]- [12], the ratio−∆xA

∆xB

was called thesingular fade state.

As mentioned earlier in Section II,dim





〈





1

−∆xA

∆xB





〉



 and the diversity order for the pair-wise error

event that a pair(xA, xB) is wrongly decoded at R as(x′A, x
′
B) (denoted as(xA, xB) → (x′A, x

′
B))

are inherently connected. The diversity order for the errorevent (xA, xB) → (x′A, x
′
B) is equal to

rank([∆xA ∆xB]) = 1 while dim





〈





1

−∆xA

∆xB





〉



 = 2− rank([∆xA ∆xB]) = 1.

Let SR(hA, hB) = {hAx̃A + hB x̃B : x̃A, x̃B ∈ S} denote the effective constellation at R. Let

dmin(hA, hB) denote the minimum distance ofSR(hA, hB). When [hA hB ]
T falls in one of the singular

fade subspaces,dmin(hA, hB) becomes zero. Even though the probability that the vector[hAhB ]
T belongs

to a singular fade subspace is zero,dmin(hA, hB) is greatly reduced when[hA hB ]
T falls close to a

singular fade subspace, a phenomenon referred asdistance shortening. For ∆xA 6= 0 and∆xB 6= 0,

the CNC algorithm [6] avoids the distance shortening occurring in the neighbourhood of a singular fade

subspace

〈





∆xA

∆xB





〉
⊥

, by ensuring thatµhA,hB(xA, xB) = µhA,hB(x′A, x
′
B), i.e., R does not distinguish

the pairs(xA, xB) and(x′A, x
′
B), which are said to be clustered together. In fact, for every realization of

[hAhB ] (not necessarily in the neighbourhood of singular fade subspaces), the CNC algorithm chooses

the network coding map which results in the best distance profile at R by appropriate clustering of the

signal points. The scheme proposed in [11]- [12] avoids distance shortening in the neighbourhood of

singular fade subspaces by proper choice of clustering for only the singular fade subspaces and not for

every realization of the channel fade coefficients.

Consider the two singular fade subspaces:

〈





0

∆xB





〉
⊥

=

〈





1

0





〉

and

〈





∆xA

0





〉
⊥

=

〈





0

1





〉

. The

distance shortening which occurs in the neighbourhood of these singular fade subspaces is unavoidable,

since the pairs(xA, xB) and (xA, x′B) (and also the pairs(xA, xB) and (x′A, xB)) which result in these

singular fade subspaces cannot be clustered together without violating the exclusive law. Such singular

fade subspaces are referred as thenon-removable singular fade subspaces. The dimension of these singular
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fade subspaces is one or equivalently, the error events(xA, xB) → (xA, x
′
B) and (xA, xB) → (x′A, xB)

always result in diversity order one. The singular fade subspaces other than the non-removable singular

fade subspaces are referred as theremovable singular fade subspaces.

The removable singular fade subspaces are of the form

〈





1

−∆xA

∆xB





〉

,∆xA 6= 0,∆xB 6= 0, which are

dependent on the signal setS used. The non-removable singular fade subspaces are

〈





1

0





〉

and

〈





0

1





〉

,

which are independent of the signal set used. Owing to the presence of non-removable singular fade

subspaces, the overall diversity order of the DNF protocol cannot exceed one.

From the discussion above, it is clear that there are two classes of singular fade subspaces: removable

and non-removable. The non-removable singular fade spacesare created by the channel and is independent

of the signal set used. Whatever may be the choice of the network code, the harmful effects of these

non-removable singular fade subspaces cannot be mitigated. The harmful effect of the removable singular

fade subspaces, which are created by the signal set, can be removed by a proper choice of the adaptive

network coding map at R, as in [6] and [11]– [12].

To sum up, in the DNF protocol, the transmissions from the nodes A and B are allowed to interfere at

R and the effect of MAI is effectively mitigated by adaptively changing the network coding map, thereby

removing the harmful effect of all the removable singular fade subspaces.

B. Singular Fade Subspaces for the DSTC Scheme

Let∆xA = xA−x′
A and∆xB = xB−x′

B ∈ ∆S2. ThenC(∆xA,∆xB) = C(xA,xB)−C(x′
A,x

′
B)

denotes a codeword difference matrix of the DSTC, whereC(xA,xB) is the codeword matrix of the

DSTC defined in (1). From the discussion in Section II, it follows that the singular fade spaces for the

proposed DSTC scheme are of the formCol⊥ (C (∆xA,∆xB)) .

Consider the singular fade subspaces of the formCol⊥ (C (02,∆xB)) and Col⊥ (C (∆xA,02)) ,

where ∆xA,∆xB 6= 02. The first row of the matrixC (02,∆xB) has both the entries to be zero.

Hence,Col (C (02,∆xB)) =

〈[

0

1

]〉

and the singular fade subspaceCol⊥ (C (02,∆xB)) =

〈[

1

0

]〉

.

By a similar reasoning,Col⊥ (C (∆xA,02)) =

〈[

0

1

]〉

.

If the DSTC codeword matrices are such that rank(C(∆xA,∆xB)) = 2, ∀∆xA 6= 02 and∆xB 6= 02,

all the singular fade subspacesCol⊥ (C (∆xA,∆xB)) collapse to be the trivial singular fade subspace

〈02〉 . Equivalently, all the pair-wise error eventsC(xA,xB) → C(x′
A,x′

B),xA 6= x′
A,xB 6= x′

B, have

diversity order 2. Hence, for a properly chosen DSTC, other than the trivial singular fade subspace, the
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singular fade subspaces are only the two non-removable singular fade subspaces, while for the DNF

protocol, in addition, we had the removable singular fade subspaces. In this way, by a proper choice

of DSTC, the occurrence of the removable singular fade subspaces is avoided at the transmitting nodes

itself, without any CSIT.

Hence, we have the following design criterion referred as the singularity minimization criterionfor

DSTCs for two-way relaying:The DSTC codeword difference matricesC(∆xA,∆xB) need to be full

rank for all ∆xA 6= 02 and ∆xB 6= 02, to minimize the number of singular fade subspaces. DSTCs

satisfying the above criterion are referred as thesingularity minimalDSTCs.

Hence for a DSTC which is singularity minimal, the only errorevents which result in diversity order 1

are of the formC(xA,xB) → C(xA,x
′
B),x

′
B 6= xB andC(xA,xB) → C(x′

A,xB),x
′
A 6= xA. Hence,

the overall coding gain is equal to minimum among all the non-zero singular values of the codeword

difference matrices which are of the formC(02,∆xB) andC(∆xA,02) [15]. Note that the matrices

C(02,∆xB) and C(∆xA,02) are of rank 1 and have only one non-zero singular value. We have

the following coding gain criteria for singularity minimalDSTCs:the minimum among all the non-zero

singular values of the codeword difference matrices which are of the formC(02,∆xB) andC(∆xA,02)

needs to be maximized.

Example 9:Consider the DSTC





xA1
0

0 xB1



 . This DSTC is nothing but the scheme where A and B

transmit in separate time slots, making sure that their transmissions do not interfere at the relay. Even

though this DSTC avoids all the removable singular fade subspaces, the end-to-end rate in complex

symbols per channel use is less than that of the DNF protocol.

C. A Construction of Singularity Minimal DSTCs for Algebraic Signal Sets

A signal set is said to be algebraic if all the signal points ofthe signal set are algebraic numbers over

Q 2. All the commonly used signal sets like QAM and PSK are algebraic signal sets. In this subsection,

a class of DSTCs which are singularity minimal for algebraicsignal sets is provided. Let





a b

c d



 be

a full rank complex matrix. Consider the class of DSTCs whosecodeword matrices are of the form

C(xA,xB) =

[

a(xA1
+ ejxA2

) b(xA1
+ ejxA2

)

c(xB1
+ ejxB2

) d(xB1
+ ejxB2

)

]

.

Proposition 1: The class of DSTCs whose codeword design matrices are of the form given above are

singularity minimal for all algebraic signal sets.

2A number is said to be algebraic overQ if there exists a polynomial with coefficients fromQ of which the number is a
root. If there does not exist a polynomial with coefficients from Q of which the number is a root, the number is said to be
transcendental [19].
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Proof: The proof is as follows: For∆xA 6= 02 and∆xB 6= 02, at least one of the two components of

∆xA as well as∆xB should be non-zero. Hence,(∆xA1
+ej∆xA2

) 6= 0 and(∆xB1
+ej∆xB2

) 6= 0, since

ej is transcendental3 whereas∆xA1
,∆xA2

,∆xB1
and∆xB2

are algebraic overQ. The codeword differ-

ence matrixC(∆xA,∆xB) is full rank for all ∆xA 6= 0 and∆xB 6= 0, since det(C(∆xA,∆xB)) =

(ad− bc)(∆xA1
+ ej∆xA2

)(∆xB1
+ ej∆xB2

) 6= 0.

Example 10:Consider the case when





a b

c d



 =





1 0

0 1



 . Let 4-PSK be the signal set used at A and

B. The DSTC codeword matrix for this case is given by,C(xA,xB) =





(xA1
+ ejxA2

) 0

0 (xB1
+ ejxB2

)



 . A

and B are made to transmit in two different time slots which results in low decoding complexity at R,

since A’s and B’s transmissions can be decoded independently. It can be verified that the coding gain for

this DSTC is approximately 0.6877.

Example 11:Consider the case when





a b

c d



 =





1 1

−1 1



 . Let 4-PSK be the signal set used at A and B.

The DSTC codeword matrix for this case is given by,C(xA,xB) =
1√
2

[

(xA1
+ ejxA2

) (xA1
+ ejxA2

)

−(xB1
+ ejxB2

) (xB1
+ ejxB2

)

]

.

The scaling factor of1√
2

is to ensure unit average energy per symbol per time slot. It can be verified that

the coding gain for this DSTC is approximately 0.6877, same as that of the DSTC given in Example 10.

The coding gain of the DSTCs given in Examples 10 and 11 is approximately 0.6877, which is less

than the minimum distance of the unit energy 4-PSK signal set, which is
√
2. In the next section, it is

shown that for DSTCs over square QAM and2λ-PSK signal sets, the coding gain is upper bounded by

the minimum distance of the signal set and explicit DSTC constructions which achieve this bound with

equality are provided.

IV. SINGULARITY M INIMAL , CODING GAIN MAXIMAL DSTCS OVER QAM AND PSK SIGNAL SETS

In this section, it is shown that the coding gain of the DSTCs over square QAM and2λ-PSK signal

sets are upper-bounded by the minimum distance of the signalset. In Subsection IV-A, a condition under

which a singularity minimal DSTC over square QAM and2λ-PSK signal set meets the upper bound with

equality is obtained and explicit constructions of DSTCs are provided. In Subsection IV-B, the constructed

DSTC’s are shown to be fast ML decodable, i.e., the ML decoding complexity of the constructed DSTCs

is shown to be less than the brute-force decoding complexitywhich isO(M4).

Note that the generator matricesMA andMB at A and B should be such that the average energy per

time slot is unity, i.e.,E(‖ xAMA ‖2) ≤ 2 andE(‖ xBMB ‖2) ≤ 2.

3By Lindemann-Weierstrass theorem [19],ejq is transcendental for allq ∈ Q.
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Lemma 1:For singularity minimal DSTC overS, whereS is a square QAM or2λ-PSK signal set,

the coding gain is upper bounded by the minimum distance of the signal setS.
Proof: See Appendix A.

In the following subsection, the condition under which the upper-bound given in the previous lemma is

satisfied with equality is identified and explicit construction of DSTCs are provided.

A. Constructions of Singularity Minimal, Coding Gain Maximal DSTCs over QAM and PSK signal sets

The following proposition states that for DSTCs overS, choosingMA andMB to be unitary matrices

ensures that the upper-bound on the coding gain is satisfied with equality, for QAM and PSK signal sets.

Proposition 2: For singularity minimal DSTCs over square QAM or2λ-PSK signal sets, the coding

gain is maximized when the generator matricesMA andMB at A and B are unitary matrices.

Proof: WhenMA andMB are unitary matrices,‖ ∆xAMA ‖=‖ ∆xA ‖ and also‖ ∆xBMB ‖=
‖ ∆xB ‖ . Hence, min

∆xA∈∆S2,
∆xA 6=02

‖ ∆xAMA ‖= min
∆xA1

∈∆S,∆xA1
6=0

|∆xA1
| = dmin(S) and similarly

min
∆xB∈∆S2,
∆xB 6=02

‖ ∆xBMB ‖= dmin(S), wheredmin(S) denotes the minimum distance ofS.

The coding gain of the DSTC is the minimum among all the non-zero singular values of the codeword

difference matrices which are of the formC(02,∆xB) andC(∆xA,02), i.e., the coding gain is equal

to min











min
∆xA∈∆S2,
∆xA 6=02

‖ ∆xAMA ‖, min
∆xB∈∆S2,
∆xB 6=02

‖ ∆xBMB ‖











, which is equal todmin(S).

In the following examples, constructions of singularity minimal DSTCs whose generator matrices are

unitary are provided.

Construction 1:Consider the DSTC overS for which MA = 1√
5





α ᾱ

αφ ᾱφ̄



 andMB = 1√
5





jα ᾱ

jαφ ᾱφ̄



 ,

whereφ = 1+
√
5

2 , φ̄ = 1−
√
5

2 , α = 1 + j − jφ and ᾱ = 1 + j − jφ̄. The DSTC codeword matrix is of

the formC(xA,xB) =

[

xAMA

xBMB

]

. The codeword difference matrixC(∆xA,∆xB) is full rank for all

∆xA 6= 0 and∆xB 6= 0, when the signal points belong toZ[j] [20]. Hence the DSTC is singularity

minimal for all signal sets whose signal points belong toZ[j]. Also, sinceMA andMB are unitary, for

square QAM signal set, the DSTC maximizes the coding gain.

Note 2: The DSTC given in Construction 1 was constructed in [20] towards satisfying the design

criterion formulated in [21] for the two-user non-cooperative Multiple Access Channel (MAC). In [20],

the DSTC given in the above example was shown to be DMT optimalfor two-user MAC.
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Construction 2:Consider the DSTC for whichMA = I2 andMB =





cosφg − sinφge
jθ

sinφg cosφge
jθ



 , where

φg = tan−1
√
5. The DSTC codeword matrixC(xA,xB) is given by,





xA1
xA2

xB1
cosφg + xB2

sinφg ejθ(−xB1
sinφg + xB2

cosφg)



 .

For a complex numbera, let Q(a) denote the smallest field containingQ anda. It is shown in Lemma

2 below that choosingθ = π
4 ensures singularity minimality for signal sets (for example QAM) whose

signal points belong toQ(j) and choosingθ = π
2λ ensures singularity minimality for signal sets (for

example2λ-PSK) whose signal points belong toQ(ej
2π

2λ ). Also, sinceMA and MB are unitary, this

DSTC maximizes the coding gain, for square QAM and2λ-PSK signal sets. The advantage of this

construction over Construction 1 is that encoding at node A is simple, since it does not involve any

linear combination ofxA1
andxA2

.

Lemma 2:For the DSTC given in construction 2, choosingθ = π
4 ensures singularity minimality for

signal sets whose points belong toQ(j) and choosingθ = π
2λ ensures singularity minimality for signal

sets whose signal points belong toQ(ej
2π

2λ ).

Proof: The proof is given for the case when the signal points belong to Q(j). The proof for the

case when the signal points belong toQ(ej
2π

2λ ) is exactly similar and is omitted.

Let ∆xAi
= xAi

− x′Ai
and∆xBi

= xBi
− x′Bi

, wherexAi
, x′Ai

, xBi
, x′Bi

∈ S ⊂ Q(j). and i ∈ {1, 2}.
To prove singularity minimality, it needs to be shown that when at least one out of∆xA1

and∆xA2

(∆xB1
and∆xB2

) is non-zero, the codeword difference matrix is full rank. The ratios∆xB1

∆xB2

and−∆xB2

∆xB1

belong toQ(j) while tanφg =
√
5 does not belong toQ(j). Hence,∆xB1

cosφg + ∆xB2
sinφg 6= 0

and −∆xB1
sinφg + ∆xB2

cosφg 6= 0. Since sinφg =
√
5√
6

and cosφg = 1√
6
, ∆xA2

(∆xB1
cosφg +

∆xB2
sinφg) and ∆xA1

(−∆xB1
sinφg + ∆xB2

cosφg) belong toQ(j,
√
5,
√
6), whereQ(j,

√
5,
√
6)

denotes the smallest filed containingQ, j,
√
5 and

√
6. The determinant of the codeword difference

matrix is given by,

∆xA1
ej

π

4 (−∆xB1
sinφg +∆xB2

cosφg)−∆xA2
(∆xB1

cosφg +∆xB2
sinφg).

The determinant is non-zero since the ratio∆xA2
(∆xB1

cos φg+∆xB2
sinφg)

∆xA1
(−∆xB1

sinφg+∆xB2
cosφg)

belongs toQ(j,
√
5,
√
6), while

ej
π

4 does not belong toQ(j,
√
5,
√
6).
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B. Decoding Complexity of Singularity Minimal, Maximal Coding Gain DSTCs overS

After the two MA phases, R jointly decodes for the two messagevectorsxA and xB of A and B

respectively. In general, the complexity of this joint ML decoding at R isO(M4), whereM is the

cardinality of the signal setS. The choice of the generator matricesMA and MB being unitary not

only maximizes the coding gain for QAM and PSK signal sets, but also results in a reduced decoding

complexity at R.

The following proposition states that when conditional ML decoding [22], [23] is employed, the

decoding complexity of the DSTCs constructed in the previous section for which the generator matrices

MA andMB are unitary isO(M3) for any arbitrary signal set and isO(M2) for square QAM signal

set. Note that the brute force decoding complexity isO(M4).

Proposition 3: When the generator matrices of the singularity minimal DSTCoverS are unitary, the

decoding complexity using conditional ML decoding isO(M3) when the signal setS is arbitrary and is

O(M2) when the signal setS is square QAM.

Proof: See Appendix B.

Compared with the DNF protocol, the decoding complexity is more for singularity minimal coding

gain maximal DSTCs overS. For the DNF protocol, the decoding complexity isO(M2) for non square

QAM signal sets while it isO(M) for square QAM signal set4. As indicated by the simulation results in

the next section, the proposed DSTC offers slightly better performance than the adaptive network coding

scheme and eliminates the need for adaptive switching of network coding maps at R. But this comes at

the cost of increased decoding complexity at R.

V. SIMULATION RESULTS

All the simulation results presented are for the case when the end nodes use 4-PSK signal set. By ‘DSTC

1’ and ‘DSTC 2’ we refer to the DSTCs given in Construction 1 and Construction 2 respectively. As a

reference scheme, we consider the scheme in which XOR network code is used irrespective of channel

conditions and no DSTC is employed, which is referred as ‘XORN/W code’. Assuming unit noise

variances at all the nodes, the average energies of the transmissions at the nodes, which are assumed to

be equal, is defined to be the Signal to Noise Ratio (SNR). The proposed DSTC scheme is also compared

with the adaptive network coding schemes proposed in [6] and[11]- [12]. Since for 4-PSK signal set, the

adaptive network coding scheme based on the Nearest Neighbour Clustering (NNC) algorithm proposed

4For the DNF protocol, with QAM signal set, conditioning onxA, xB can be decoded with constant decoding complexity
by rounding off to the nearest integer, which results in an overall decoding complexity ofO(M).
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in [6] and the scheme based on Latin Squares proposed in [11]-[12] turn out to be the same, without

distinguishing them we refer to both as ‘adaptive N/W code’.Fig. 2 shows the SNR vs BER performance

for different schemes for the case when all the fading coefficients are i.i.d. and Rayleigh distributed. In

Fig. 3 and Fig. 4 similar plots are shown for a Rician fading scenario with Rician factors5 of 0 dB and

5 dB respectively. From Fig. 2-4, it can be seen that the diversity order is one for all the schemes. Also,

it can be seen that at high SNR, both ‘DSTC 1’ as well as ‘DSTC 2’offer nearly the same performance

and they perform better than the ‘XOR N/W code’ as well as the ‘adaptive N/W code’. For a Rayleigh

fading scenario, at high SNR, the DSTCs offer a gain of 2 dB over ‘XOR N/W code’ while the ‘adaptive

N/W code’ offers a gain of about 0.5 dB over the ‘XOR N/W code’.For a Rician factor of 0 dB, at high

SNR, the DSTCs offer a gain of 2 dB over ‘XOR N/W code’ while the‘adaptive N/W code’ offers a gain

of about 1.2 dB over the ‘XOR N/W code’. For a Rician factor of 5dB, at high SNR, the DSTCs offer

a gain of 5.5 dB over ’XOR N/W code’ while the ‘adaptive N/W code’ offers a gain of about 4 dB over

the ‘XOR N/W code’. The reason why the DSTC based scheme performs better than the adaptive N/W

coding scheme is as follows: during the BC phase always a 4 point signal set is used for the DSTC based

scheme, while depending on channel conditions 4 point or 5 point signal set is used for the adaptive

network coding scheme [6], [11].

VI. D ISCUSSION

A DSTC scheme was proposed for the two-way relaying scenario. It was shown that deep channel

fades occur when the channel fade coefficient vector falls ina finite number of vector subspaces called the

singular fade subspaces. The connection between the dimension of these vector subspaces and the transmit

diversity order was established. Design criterion to minimize the number of singular fade subspaces for

the DSTC scheme and maximize the coding gain were obtained. Explicit low decoding complexity

constructions of DSTCs were provided. The problem of constructing singularity minimal DSTCs with

decoding complexity same as that of the DNF protocol, without sacrificing the coding gain, remains

open. Extending the DSTC scheme for two-way relaying with multiple antennas and multi-way relaying

are possible directions for future work.
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APPENDIX A

PROOF OFLEMMA 1

SinceMAMH
A is Hermitian, it is unitarily diagonalizable, i.e.,MAMH

A
= UAΛAUH

A
, whereUA is a

unitary matrix andΛA is a diagonal matrix with diagonal entries denoted asλA1
andλA2

. Note thatλA1

andλA2
are non-negative sinceMAMH

A is positive semi-definite. LetMA =





a11 a12

a21 a22



 . We have,

E(‖ xAMA ‖2) = |a11|
2E(|xA1

|2)+ |a12|
2E(|xA2

|2)+ |a21|
2E(|xA1

|2)+ |a22|
2E(|xA2

|2) = |a11|
2+ |a12|

2+ |a21|
2+ |a22|

2,

sinceE(xA1
x∗A2

) = E(xA2
x∗A1

) = 0 for square QAM and2λ-PSK signal sets. SinceE(‖ xAMA ‖2) ≤ 2,

we have|a11|2 + |a12|2 + |a21|2 + |a22|2 = Trace(MAMA
H) = λA1

+ λA2
≤ 2.

The coding gain of the DSTC is the minimum among all the non-zero singular values of the codeword

difference matrices which are of the formC(02,∆xB) andC(∆xA,02), i.e., the coding gain is equal

to min











min
∆xA∈∆S2,
∆xA 6=02

‖ ∆xAMA ‖, min
∆xB∈∆S2,
∆xB 6=02

‖ ∆xBMB ‖











.

Let dmin(S) denote the minimum distance of the signal setS.
Consider‖ ∆xAMA ‖2= ∆xAMAMA

H∆xA
H = ∆x̃AΛA∆x̃A

H = λA1
|∆x̃A1

|2 + λA2
|∆x̃A2

|2,
where∆x̃A = ∆xAUA , [∆x̃A1

∆x̃A2
].

Let uA1
= [uA11

uA12
] and uA2

= [uA21
uA22

] denote the rows ofUA. For ∆xA = [∆xA1
0],

‖ ∆xAMA ‖2= |∆xA1
|2(|uA11

|2λA1
+ |uA12

|2λA2
).

Hence, we have, min
∆xA∈∆S2,
∆xA 6=02

‖ ∆xAMA ‖2≤ d
2
min(S)(|uA11

|2λA1
+ |uA12

|2λA2
). Similarly, we have,

min
∆xA∈∆S2,
∆xA 6=02

‖ ∆xAMA ‖2≤ d
2
min(S)(|uA21

|2λA1
+ |uA22

|2λA2
). SinceUA is unitary|uA11

|2 = |uA22
|2 and|uA12

|2 =

|uA21
|2. Therefore, we have,

min
∆xA∈∆S2,
∆xA 6=02

‖ ∆xAMA ‖2 ≤ d
2
min(S)min{(|uA11

|2λA1
+ |uA12

|2λA2
), (|uA11

|2λA2
+ |uA12

|2λA1
)}. (4)

SinceUA is unitary, |uA11
|2 = 1 − |uA12

|2. For a givenλA1
and λA2

, the upper-bound in (4) is

maximized over all|uA11
|2 when the two terms insidemin are equal, i.e.,|uA11

|2λA1
+ |uA12

|2λA2
=

|uA11
|2λA2

+ |uA12
|2λA1

, for which |uA11
|2 = 1

2 and this maximum value is equal tod2min(S)
(λA1

+λA2
)

2 .

Since,λA1
+ λA2

≤ 2, the maximum value of the upper-bound in (4) is less than or equal to d2min(S).
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Hence, min
∆xB∈∆S2,
∆xB 6=02

‖ ∆xAMA ‖ ≤ dmin(S). Similarly, it can be shown that min
∆xA∈∆S2,
∆xB 6=02

‖ ∆xBMB ‖ is

also upper-bounded bydmin(S). Hence, the coding gain of the DSTC over square QAM or2λ-PSK

signal set is upper-bounded bydmin(S). This completes the proof.

APPENDIX B

PROOF OFPROPOSITION3

To prove the proposition, we adopt a procedure similar to theone used in [23].

Let ỹR = [yRR1
yIR1

yRR2
yIR2

]T , x̃ = [xRA1
xIA1

xRA2
xIA2

xRB1
xIB1

xRB2
xIB2

]T andz̃R = [zRR1
zIR1

zRR2
zIR2

]T .

The vector̃yR can be written as̃yR = Heqx̃+ z̃R, whereHeq is a 4× 8 real matrix whose entries are

functions ofhA andhB , determined by the DSTC. UsingQR decomposition, the matrixHeq can be

decomposed asHeq = QR, whereQ ∈ R4×4 is a orthogonal matrix andR ∈ R4×8 can be written as

[R1 R2], with R1,R2 ∈ R4×4, R1 being an upper-triangular matrix. The joint ML decoding metric at

R is given by‖ ỹR −Heqx̃ ‖=‖ QTỹR −Rx̃ ‖=‖ y′
R −Rx̃ ‖, wherey′

R = QTỹR.

For a singularity minimal DSTC overS, let the generator matrices beMA = UA andMB = UB,

where UA and UB are unitary matrices. LetuAi
and uBi

denote theith rows of UA and UB

respectively. Then the weight matrices of the DSTC defined in(2) are given by,WR
Ai

= jWI
Ai

=
[

uAi

0T2

]

andWR
Bi

= jWI
Bi

=

[

0T2

uBi

]

. We have,WR
A1

WI
A1

H
=

[

uA1

0T2

]

[

juH

A1
02

]

=

[

j 0

0 0

]

and sim-

ilarly, WI
A1

WR
A1

H
=

[

−j 0

0 0

]

. Hence,WR
A1

WI
A1

H
+ WI

A1
WR

A1

H
= O2, whereO2 denotes the

2 × 2 null matrix. Also, WR
A1

WR
A2

H
= O2, since uA1

and uA2
are orthogonal vectors. Hence,

WR
A1

WR
A2

H
+ WR

A2
WR

A1

H
= O2. Similarly, using the fact thatUA and UB are unitary matrices,

it can be shown that the following pairs of matrices are also Hurwitz-Radon orthogonal6: {WR
A1

,WI
A2

},
{WI

A1
, WR

A2
}, {WI

A1
,WI

A2
}, {WR

A2
,WI

A2
}, {WR

B1
, WI

B1
}, {WR

B1
, WR

B2
}, {WR

B1
, WI

B2
}, {WI

B1
,

WR
B2

}, {WI
B1

,WI
B2

}, {WR
B2

,WI
B2

}.
Let x̃i denote theith component of the vector̃x. The ith andjth columns ofHeq are orthogonal and

hence the(i, j)th entry ofR (i ≤ j) is zero for all realizations ofhA andhB , if and only if the weight

matrices of the DSTC corresponding to the symbolsx̃i and x̃j are Hurwitz-Radon orthogonal (follows

from Theorem 2, [23])7. Hence the matrixR is of the form given below.

6Two matricesM1 andM2 are said to be Hurwitz-Radon orthogonal ifM1M
H

2 +M2M
H

1 = 0.

7Theorem 2 in [23] proves only the ‘if’ part. However, following an approach similar to the proof given in [23], it is easy to
show that the weight matrices of the DSTC corresponding to the symbolsx̃i and x̃j need to be Hurwitz-Radon orthogonal, for
the (i, j)th entry ofR (i ≤ j) to be zero for all realizations ofhA andhB , and hence the ‘only if’ part also holds.
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R =















∗ 0 0 0 ∗ ∗ ∗ ∗

0 ∗ 0 0 ∗ ∗ ∗ ∗

0 0 ∗ 0 ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗ ∗ ∗















(5)

Note that∗ denotes possible non-zero entries. The claim is that all theentries denoted by∗ are non-

zeros. It is clear that all the diagonal entries are non-zeros. For the(1, 5)th entry in (5) to be a zero,

WR
A1

WR
B1

H
+WR

B1
WR

A1

H
=

[

0 uA1
u
H

B1

uB1
u
H

A1
0

]

= 0, which implies thatuA1
anduB1

are orthogonal

vectors. Then the vectoruB1
should belong to the one-dimensional subspace which is orthogonal touA1

.

SinceuA2
also belongs to this one-dimensional subspace and bothuB1

as well asuA2
are of unit norm,

uB1
= ejθuA2

, for some angleθ. In that case, the DSTC codeword difference matrix is of the form
[

∆xA1
uA1

+∆xA2
uA2

∆xB1
ejθuA2

+∆xB2
uB2

]

, which is not full rank when∆xA2
,∆xB1

6= 0, ∆xA1
= ∆xB2

= 0 and hence

the singularity minimization criterion is violated. Hence, (1, 5)th entry shown by∗ in (5) is non-zero. By

a similar argument, it can be shown that the other non-diagonal entries denoted by∗ in (5) are non-zeros.

From the matrixR given in (5), it can be seen that conditioning on the variables xB1
andxB2

, the

symbolsxA1
andxA2

can be decoded independently [23]. Since the total number ofchoices forxB1
and

xB2
is M2 and independently decodingxA1

andxA2
requires2M computations, the decoding involves

2M3 computations and hence the decoding complexity at R isO(M3).

For square QAM signal sets, the decoding complexity can be further reduced, since the real and

imaginary parts independently take values. From (5), it canbe seen that conditioning onxB1
andxB2

,

the real and imaginary parts ofxA1
as well asxA2

can be decoded independently. Since decoding the

real and imaginary points of a signal point in QAM signal set is of constant complexity independent of

M (decoding can be done by rounding off to the nearest integer [23]), the ML decoding complexity is

O(M2) for square QAM signal sets. This completes the proof.
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(a) MA Phase (b) BC Phase

Fig. 1. Wireless two-way relaying
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Fig. 2. SNR vs BER for different schemes for 4-PSK signal set for a Rayleigh fading scenario.
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Fig. 3. SNR vs BER for different schemes for 4-PSK signal set for a Rician fading scenario with a Rician factor 0 dB.
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Fig. 4. SNR vs BER for different schemes for 4-PSK signal set for a Rician fading scenario with a Rician factor 5 dB.
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