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Abstract

We consider the wireless two-way relay channel, in which-tvay data transfer takes place between
the end nodes with the help of a relay. For the Denoise-Angv&ia (DNF) protocol, it was shown by
Koike-Akino et. al. that adaptively changing the networklicy map used at the relay greatly reduces the
impact of Multiple Access interference at the relay. Thenifat effect of the deep channel fade conditions
can be effectively mitigated by proper choice of these netvemding maps at the relay. Alternatively,
in this paper we propose a Distributed Space Time Coding D$theme, which effectively removes
most of the deep fade channel conditions at the transmittodgs itself without any CSIT and without
any need to adaptively change the network coding map useleatetay. It is shown that the deep
fades occur when the channel fade coefficient vector falla iinite number of vector subspaces of
C2, which are referred to as the singular fade subspaces. DSB@ criterion referred to as the
singularity minimization criterionunder which the number of such vector subspaces are mirdniéze
obtained. Also, a criterion to maximize the coding gain & iDSTC is obtained. Explicit low decoding
complexity DSTC designs which satisfy the singularity mirgation criterion and maximize the coding
gain for QAM and PSK signal sets are provided. Simulatioultesshow that at high Signal to Noise
Ratio, the DSTC scheme provides large gains when compare toonventional Exclusive OR network
code and performs slightly better than the adaptive networing scheme proposed by Koike-Akino

et. al.

|. BACKGROUND AND PRELIMINARIES
A. Background

We consider the two-way wireless relaying scenario showrigill. Two-way data transfer takes place

between the nodes A and B with the help of the relay R. It israsslthat all the three nodes operate in
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half-duplex mode, i.e., they cannot transmit and receirianeously in the same frequency band. The
idea of physical layer network coding for the two way relaywchel was first introduced inl[1], where the
multiple access interference occurring at the relay wasoéeg so that the communication between the
end nodes can be done using a two phase protocol. A protolbed denoise-And-Forward (DNF) was
proposed in[[R2], which consists of the following two phases:multiple acces¢MA) phase (Fig[ 1(a)),
during which A and B simultaneously transmit to R and tireadcast(BC) phase (Figl 1(b)) during
which R transmits to A and B. Network coding map, which is alsferred to as the denoising map, is
chosen at R in such a way that A (B) can decode the messagesf)f Bien that A (B) knows its own
messages. During the MA phase, the transmissions from ttienedes were allowed to interfere at R,
but the harmful effect of this interference was mitigatedabgroper choice of the network coding map
used at R. Information theoretic studies for the physicgtianetwork coding scenario were reported in
[3], [4]. A differential modulation scheme with analog netk coding for bi-directional relaying was
proposed in[[b]. The design principles governing the chaitenodulation schemes to be used at the
nodes for uncoded transmission were studied in [6]. An esitenfor the case when the nodes use
convolutional codes was done [ [7]. A multi-level codindneme for the two-way relaying scenario was
proposed in[[B]. Power allocation strategies and latticeedacoding schemes for bi-directional relaying
were proposed in [9].

It was observed in’|6] that the network coding map used at ¢feymeeds to be changed adaptively
according to the channel fade coefficients, in order to mirénthe impact of the Multiple Access Inter-
ference (MAI). A computer search algorithm called @Bsest-Neighbour ClusterinCNC) algorithm
was proposed in_[6] to obtain the adaptive network coding snagsulting in the best distance profile
at R. An adaptive network coding scheme for MIMO two-way yéilg based on the CNC algorithm
was proposed in [10]. An alternative procedure to obtainatlaptive network coding maps, based on
the removal of deep channel fade conditions using Latin Bgpuaas proposed in [11]. A quantization
of the set of all possible channel realizations based on ¢twork code used was obtained analytically
in [12]. An extension of the adaptive network coding scheoreMIMO two-way relaying using Latin
Rectangles was made in [13].

As an alternative to the adaptive network coding scheme®irafd [11]- [12], in this paper, we
propose a Distributed Space Time Coding (DSTC) scheme,hmmitigates the effect of MAI to the
fullest extent possible at the transmitting nodes itsethait any CSIT. For the proposed DSTC scheme
the network coding map used at R need not be changed adg@toaairding to channel conditions which

reduces the complexity at R to a great extent and also eltesnthe need for overhead bits from R to
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A and B to indicate the choice of the network coding map.
A distributed space time coding scheme for a wireless twg-veday network with multiple relay
nodes was proposed i [14], in which the DSTC was construatettie relay nodes. In the proposed

scheme, the DSTC is constructed at the end nodes A and B.

B. Signal Model

Throughout, a quasi-static fading scenario is assumed thigh Channel State Information (CSI)
available only at the receivers. Léty and hp denote the fade coefficients associated with A-R and
B-R links andh/, and?/; denote the fade coefficients associated with R-A and R-Bslitl the fading
coefficients are assumed to follow Rician distribution.

Let S denote the unit energy/ = 2* point constellation used at the end nodes. LetF) — S
denote the mapping from bits to complex symbols used at A and B

1) Denoise-And-Forward (DNF) protocolin the sequel, we briefly describe the adaptive network
coding schemes based on the DNF protocol proposed in [6],{J12]. Throughout the paper, by DNF
protocol, we refer to the schemes proposed in [6] [112}. [1

In the DNF protocol, transmission occurs in two phases: idleltAccess (MA) phase during which
A and B simultaneously transmit to R and Broadcast (BC) pliasig which R transmits to A and B.

MA Phase:Let x4 = u(sa), xp = pu(sp) € S denote the complex symbols transmitted by A and B

respectively, where 4, s € F5. The received signal a& is given by,
Yr = haxa + hpxp + 2R.

The additive noise:y is assumed to bEA(0,0?), whereCA/ (0, 0?) denotes the circularly symmetric
complex Gaussian random variable with mean zero and variahc

BC Phase:Let (i4,%5) € S% denote the Maximum Likelihood (ML) estimate 6f 4,z ) at R based
on the received complex numbgg. Depending on the value df4 andhp, R chooses a many-to-one
map Mhahs - §2 . S’ whereS' is the signal set (of size betweéd and 1/2) used by R during the
BC phase.

In order to ensure that A (B) is able to decode B’s (A's) mess#lge mapM -5 should satisfy the

exclusive law[[6], i.e.,

MPashs (p 4 xp) £ MMahe (o, xp), forza #a'y, Vop €S,

MIate (g 2p) # MPATE (24, 00), for op # 2y, Vaa €S.
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The CNC algorithm proposed ihl[6] obtains the m&p*+"5 which results in the best distance profile
during the MA phase at R. The CNC algorithm is run for all ppschannel realizations and a partition
of the set of all channel realizations is obtained dependimghe chosen network coding map. For a
given channel realization, the choice of the network codirap is indicated to A and B using overhead
bits. During the BC phase R transmitg; = M"+"2(34,25) € S’. The received signals at A and B

during the BC phase are respectively given by,

ya = IR + 24,

yp = hlgzr + 28,

wherez, andzp are independent ar@\V (0, 02). Since the map\"4-"5 satisfies the exclusive law and
A (B) knows its own message, (zp), it can decoderp (x4) by decodingz .

The CNC algorithm optimizes the entire distance profilegadt of maximizing only the minimum
distance. In some cases, this results in the use of signalvadt a larger cardinality during the BC
phase. To solve this problem, an algorithm called the Neadegghbour Clustering (NNC) algorithm
was proposed in[[6] which maximizes the minimum distancen@ldnstead of optimizing the entire
distance profile.

The choice of the network coding map obtained depends onIt;herlatioZ—i and not the individual
values ofhy and hp [6]. In [11], the values ofﬁ—f for which deep channel conditions occur were
identified and network coding maps which remove the harmiffigice of these deep channel conditions
were obtained by the completion of partially filled Latin Sges.

2) The Proposed DSTC Schenter the proposed DSTC scheme, transmission occurs in faasgsh
Two MA phases during which A and B simultaneously transmiRtéollowed by two BC phases during
which R transmits to A and B. Two independent complex symlealsh from A to B and B to A get
exchanged at the end of the four phases and hence the informrate in bits per channel use for the
proposed scheme is same as that of the DNF protocol.

MA Phases:Letz4, = u(sa,), x4, = u(sa,) € S denote two independent complex symbols A wants
to communicate to B. Similarly, B wants to communicate twdependent complex symbols;, =
w(sp,),rp, = u(sp,) € S to A. During thei!” MA phasei € {1,2}, A transmitsf} (z4,,74,) € C, a
function of x4, andz 4,, and similarly B transmits;;(zp,,2z5,) € C, a function ofzp, andzp,. The

received signal at R during the two MA phases can be written as
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f}x(mAmmfb) f

fs(xB,,zB,) f

(x/h s xAz)

PN\

YR = [YR, YRr,| = [ha hB] + [ 2R, %R, } ;

[\

(zB,,7B,)

Sy}

whereyp, denotes the received signal at R during ifeMA phase,zr, and zg, are independent and

CN(0,02). Let xp = [va,74,] andxp = [z, v5,]. The matrix,

Clocn.) — | T ) il e ®
f(xs,, zB,) fB(zB,,7B,)
represents STC codeword matrixNote that in the DSTC codeword matrix,, andx 4, can occur
only in the first row andgp, andzp, can occur only in the second row. In this way the DSTC differs
from space time codes for the conventionall2multiple antenna system with two collocated antennas
at the transmitter in which the complex symbols can occupyeniry in the codeword matrix.
For a complex numbet, let 2% andz! denote the real and imaginary partsaof
Definition 1: A DSTC is said to be linear if the entries of the first row of theleword matrices are
complex linear combinations off , 2/, 2 2/, and the entries of the second row are complex linear
combinations ofcf ,a%, 2t xf, . Any codeword matrixC(xa,xg) of a linear DSTC can be written
as,
C(xa,xB) = Z W%iw}i + Wkixii + ngx% + W}3iwlBi. (2)

i=1,2
The matricesW} , W 'WE and W} are referred to as theeight matricesof the DSTC. Note

that the entries of the second (first) row are zeros in theicestW% and W} (W3 andWg).
Definition 2: A linear DSTC is said to be over the signal geif the entries of the first (second) row
of the codeword matrices are complex linear combinations Qfandz 4, (xp, andzp,), wherez 4, ,

xa,, g, andzp, belong to the signal sef.

xaAM
For a linear DSTC overS, codeword matrixC(xa,xg) is of the form C(xa,xB) = ATTA ,

XBMB
whereM and Mg are2 x 2 complex matrices referred to as tgenerator matricesit node A and B

respectively. Throughout the paper, we consider only lif2aTCs over a signal sei.

BC Phases:Let (34,, 34,,55,,55,) denote the maximum likelihood estimate @fy,,sa4,,s5,,s5,) at
R. The relay R transmitsg, = p(54, ® $p,) andzpr, = u(sa, @ $p,) during the first and second BC
phases respectively, whege denotes the bit-wise XOR operation. The received signatlseaénd nodes

during the two BC phases are given by, = h/yzr, + za, andyp, = hlgzr, + zp,, Wherei € {1,2}.
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Since A (B) knows its own messages and the XOR map satisfieexttiasive law, A (B) can decode
s, (sa,) i € {1,2}, by decodingzp, .

Note that for the proposed DSTC scheme the signal set usétydhe BC phase is of the minimum
cardinality 2* (the cardinality of the signal set should be at lezstto convey\ information bits). In
contrast, for the scheme proposed [in [6], depending on @lazonditions unconventional signal sets
with cardinality greater than the minimum cardinality asguired. Minimum cardinality signal set is
used during the BC phase and throughout the paper the foaus @ptimizing the performance during
the MA phase.

Some of the advantages of the proposed DSTC scheme overhmss proposed inl[6], [11]+ [12]

are summarized below:

« Unlike the schemes proposed in [6], [11]=]12], for the pregd DSTC scheme, the network coding
map used at R need not be changed adaptively according taehzonditions. Any network coding
map satisfying the exclusive law will give the same perfanoeand for simplicity, the conventional
bit-wise Exclusive OR (XOR) map itself can be used. This peduthe complexity at R to a great
extent and also eliminates the need for overhead bits fromm R &nd B to indicate the choice of
the network coding map.

« For the scheme proposed in [6], for certain channel conditithe adaptive network coding map
necessitates the use of unconventional signal sets witlingdity greater than the minimum cardi-
nality required during the BC phase, which results in a déagian in performance. For the proposed
scheme, the relay always uses a conventional signal setmiittmum cardinality.

o The adaptive network coding maps were obtained[in [6], byaastive computer search. For
the proposed scheme no such computer search is requireg, thie same network code is used
irrespective of channel conditions.

The contributions and organization of the paper are asvistlo

o For a classicah; x n, MIMO system with collocated antennas, deep channel fadéditions occur
when the channel fade coefficient vector belongs to a finiteber of vector subspaces @
referred to as the singular fade subspaces. The way in whégtsrit diversity schemes (space
time codes) remove the harmful effect of these singular fadespaces is discussed. The connection
between the dimension of these singular fade subspacesarihhsmit diversity order is explained
(Section 1I).

« The MAC phase of the DNF protocol for the two-way relayingremo can be viewed as a virtual
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2 x 1 MISO system. The singular fade subspaces for the clasaicdl MISO system, are singular
fade subspaces for the two-way relaying scenario as well. cbnnection between dimension of these
singular fade subspaces and the diversity order for thetidapetwork coding schemes proposed
in [6] and [11]- [12] is discussed (Section Il A).

« The singular fade subspaces for the proposed DSTC schenideatdied. The goal of minimizing
the number of singular fade subspaces results in a new designon referred as theingularity
minimization criterionfor DSTCs. It is shown that for a properly chosen DSTC, moghefvector
subspaces which were singular fade subspaces for the DNBcptpare no longer singular fade
subspaces for the DSTC scheme. Also, a criterion to maxirthizecoding gain of the proposed
DSTC scheme is obtained (Section Il B).

« It is shown that for DSTCs which are ove¥, whereS is a square QAM oR*-PSK signal set,
the coding gain is maximized when the generator matrlegks and Mg at nodes A and B are
unitary matrices. Explicit construction of DSTCs over QAMdaPSK signal sets which satisfy the
singularity minimization criterion and maximize the cogligain are provided. It is shown that for
all DSTCs overS with unitary generator matricesI, and Mg, the ML decoding complexity at
R is O(M?) for any arbitrary signal set and 8(M?) for square QAM signal sets. Note that the
brute force ML decoding complexity i©(M*) (Section 1V).

« Simulation results presented in Section V show that at higR,She DSTC scheme provides large
gains when compared to the conventional XOR network codedas the DNF protocol and

performs slightly better than the adaptive network codiclgesne proposed in[6].

Notations: The complex numbey/—1 is denoted byj. The set of integers, Gaussian integers, rational,
real and complex numbers are respectively denotefd,@5;], Q, R and C. All the vector spaces and
vector subspaces considered in this paper are over the ewrniipld C, unless explicity mentioned
otherwise. Throughout, vectors are denoted by bold lowse ¢etters and matrices are denoted by bold
capital letters. LeCN (0, 0%I,,) denote the circularly symmetric complex Gaussian randoatovevith
zero mean and covariance mattiXI,,, whereI,, denotes thex x n identity matrix. Let(cy,cz,...cr)
denote the vector subspace ow&ispanned by the complex vectats, ca, ... cr,. For a matrixA, AT
and A denotes its transpose and conjugate transpose respgdivela vector subspadé of a vector
space)/* denotes the vector subspaje: xTv = 0,Vv € V} and din{V) denotes the dimension &f
The all zero vector of length is denoted byd,,. For a square matrid, let rank(A) denote its rank and

let det(A) denote its determinant. For a complex number:’* andz! denote the real and imaginary
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parts ofz, z* denotes its conjugate and| denotes its absolute value. For a vector|| v || denotes its
Euclidean norm. For a matriA, Row(A) and Col(A) respectively denote the row space and column

space ofA. E(X) denotes the expectation of.

II. THE NOTION OF SINGULAR FADE SUBSPACES FOR THECOLLOCATED MIMQO SYSTEM

In this section, to explain the notion of singular fade swaogs, we digress from the two-way relaying
scenario and focus on the classical MIMO system with cotled@ntennas. Consider the classical MIMO
system withn; transmit antennas at the transmitter Tx andreceive antennas at the receiver Rx, with
H being then, x n; complex fade coefficient matrix. The entries of the malfixare assumed to be

i.i.d. and Rician distributed.

A. Singular Fade Subspaces for the Collocated MIMO systaim Spatial Multiplexing

Consider the spatial multiplexing of independent comphgmlisols at Tx, i.e., the received complex
vector at Rx is given by = Hx + z, wherex is the transmitted message vector of lengthwhose
components independently take values from the signabsatdz is CN(0, 0%1,,).

Let Sg,(H) C C" denote the effective signal set at Rx, i.8z,(H) = {Hx : x € §™}. Let
AS denote the difference constellation of the signal Seti.e., AS = {s — s : 5,5 € S}. The
distances between two points in the effective consteliafig, (H) are of the form|| HAx ||, where
AX # 0y, Ax € AS™.

Definition 3: For ann; x ng MIMO system, the channel fade coefficient matfik is said to be a
deep fade matrixf the minimum distance of the effective constellatiSp, (H) is zero. The row space
of a deep fade matrix is said to bedeep fade space

Let hy, 1 < k < n,, denote thek'" row of H. Since|| HAx ||2>= 3"}~ |hy Ax|?, for the minimum
distance of the effective constellatidi, (H) to be zero, all the vectomE, 1 <k <n,, should fall in
a vector subspace of the fortlAx)+ for someAx € AS™. In other words, forl| HAx || to be zero,
the row space oH should be a subspace of the vector subspac€ofof the form (Ax)* for some
Ax ¢ AS™. The vector subspaces of the forfiAx)" are referred to as thsingular fade subspaces
Formally, a singular fade subspace can be defined as follows:

Definition 4: A vector subspac& of C™ is said to be a singular fade subspace if all the vector
subspaces o are deep fade spaces.

Note that< 0 > is always a singular fade subspace referred to asriial singular fade subspace
0
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Example 1:Consider the2 x 1 MISO system with spatial multiplexing with 4-PSK signal set=
{£1,+j}. The difference constellation of 4 PSK signal set has 9 pakfs= {0, £2,+2j, +1+5}. For
this case, the set of fourteen singular fade subspaceshwnicof the form{ Ax)*, where Ax € AS?

are given by,

CCRD-CED- B LDALD LD AL
1 2 2 U O 2 P 2 )

©))
The fade coefficient matrix (which is a row vector for this ey#e) is a deep fade matrix (vector) if the
row space of the fade coefficient vector is a subspace of oribeske 14 singular fade subspaces, i.e.,
the fade coefficient vector should belong to one of these tioveubspaces. For examp|e, 1+ j]7

belongs to the vector subspaé > and is a deep fade matrix.

Note that the singular fade s%f);p(;ijes depend only on the arunfittiransmit antennas; and the
signal setS. They are independent of the number of receive antennaas illustrated in the following
example.

Example 2: Consider the 2x 2 MIMO system with 4-PSK signal s&® = {£1,+j}. The set of 14
singular fade subspaces for this case is the same as thatkof MISO system given in[{3). For a
fade coefficient matrix to be a deep fade matrix, both the relasuld belong to one of these 14 vector
subspaces. For exampl 2 L+ is a deep fade matrix sinc{a 1 +jr and [1 0.5+ 0.55

1 0.540.5j

T

belong to the vector subspace .
0.5+ 0.55
The dimension of the singular fade subspddex)", and the transmit diversity order of the pair-

wise error even{x — x’), are inherently connected, whefex = x — x’ andx, x’ € §™t. With spatial
multiplexing, the transmit diversity order of the pair-@isrror eventx — x’) is 1 while dim({Ax)*) =
ny — 1. It is the presence of these — 1 dimensional singular fade subspaces that results in antians
diversity order of 1.
The receive diversity ordet, comes due to the fact that for a fade coefficient matrix to beepdade
matrix, all then, rows of the fade coefficient matrix should belong to the samgusar fade subspace.
The use of full diversity space times space time codes gsuthe maximum transmit diversity order

ng. In the next subsection, the connection between the sindadiEr subspaces of space time codes and
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10

transmit diversity order will be established.

B. Singular Fade Subspaces for the Collocated MIMO systaim 8pace Time Coding

Consider the case when Tx uses a space time €aafesizen; x T', whereT > n;. Let C(x) denote
a codeword matrix of the space time code, where S, where K’ denotes the number of independent
complex symbols transmitted. Similar to the spatial midting case, the effective constellation at Rx
which is a subset oE™*T can be defined. It is easy to verify that the minimum distarfdbe effective
constellation at Rx becomes zero whBnw(H) is a subspace of the vector subspétg (C (Ax)),
for some Ax € ASK. Note thatCol* (C (Ax)) denotes the vector subspage : uTv = 0,Vv €
Col (C (Ax))}. The vector subspacé®l* (C (Ax)) are the singular fade subspaces fortheéransmit
antenna system with the space time ccéde

Note 1: Even though the probability thdtow(H) is a subspace of one of the singular fade subspaces is
zero, with a non-zero probabilitiRow(H) falls in the neighbourhood of a subspace of one of the simgula
fade subspaces, which results in low values of the minimwstadtce of the effective constellation.

The dimension of the singular fade subspatd (C (Ax)) is equal ton; — rankC (Ax)), while
the transmit diversity order for the pair-wise error evént— x'),x,x’ € SK equals rankC (Ax))
[15], where Ax = x — x’. With every pair-wise error evertx — x’), we can associate a singular
fade subspac€ol* (C (Ax)). Among all the pair-wise error events, those error eventsafoich the
codeword difference matrix has the least rank determineotherall system transmit diversity order.
Equivalently, among all the pair-wise error events, thoseresvents for which the associated singular
fade subspace has the largest dimension will dominate teealbwerror probability. This is expected
since among all the singular fade subspaces, the prolyathitit Row(H) falls in the neighbourhood of a
subspace of the singular fade subspace, will be the largeshdse singular fade subspaces which have
the largest dimension.

If the space time code is such th@(Ax) is full rank for all Ax # Ok, all the singular fade
subspace€’ol* (C (Ax)) collapse to be the zero-dimensional trivial singular fadbsipace< g >
thereby ensuring a transmit diversity ordermgffor all the pair-wise error events.

Example 3:Consider the2 x 1 MISO system with Alamouti space time code whose design matri

is given by "1 Since the design matrix is full rank for all choices :of and x5, the column

—x5 a7
space of the codeword difference matrix is alw&fsand hence all the singular fade subspaces collapse
. . L 0 . L
to be the zero dimensional trivial singular fade subspé e > Equivalently, all the pair-wise error
0

October 19, 2018 DRAFT



11

events(xi,x2) — (x),x5) have a transmit diversity order 2. The full rank Alamouti spdime code
removed the effect of all the vector subspaces which weretndal singular fade subspaces for the
spatial multiplexing system, thereby increasing the diitgrorder of all the pair-wise error events from
1to 2.

Example 4:For a2 x 2* Generalized Linear Complex Orthogonal Design (GCQD) [1i6, design

matrix Gea (21, 22, ... 24+1) CONstructed iteratively is given by,

Gza—l (wl, Loy .. l’a) l’a+112a—1

H
Goaa (21,22, ..

—y, 1 Iga . Zq)

The codeword difference matrix for the GCOD is full rank faryasignal set. Hence, irrespective of the

signal set, the trivial singular fade subspd6g-) is the only singular fade subspace for the GCOD.

Example 5:Consider thet x 4 Quasi-Orthogonal Design (QOD) [17], whose codeword masrigiven

Ty —xy —T3 T4
To T —xy —x3 , . , -
by . Let Az; = x; — . Irrespective of the signal set used, the minimum rank
x3 —x; T} —x2
T4 X3 x5 T
of the codeword difference matrix for thex 4 QOD is 2. For example, wheAz; = Azy = As;

and Azy, = —Ax3 = Ass, the rank of the codeword difference matrix is 2. Equivalgrithere exists a
non-trivial singular fade subspac(\e[As1 Asy —Asy Aslr, [—As§ Ast  —As? —ASS}T>l.

Note that the 2<2 Alamouti code removes the effect of the harmful non-trigimigular fade subspaces
for any signal set. On the other hand, for the 4 QOD there exists non-trivial singular fade subspaces
for any signal set.

In general, a space time code can offer full transmit ditgfeir some but not all signal sets. In other
words, for some signal set, a space time code might have belyrivial singular fade subspace, while
for some other signal set, the same space time code mightnuav&ivial singular fade subspaces. For a
space time code which does not offer full transmit diver&itya signal set, there would exist non-trivial
singular fade subspaces. These are illustrated in thewfioltpexample.

Example 6:Consider the2 x 2 Co-ordinate Interleaved Orthogonal Design (CIOD)! [18] wl@ode-

ol + jal 0
. 1 T JT . ,
word matrices are of the for , Wherex,zo € {£1,+j}. Let Az; = z; — ).
0 o+ ja!

The codeword difference matrix is not full rank in the follog two cases:

Case 1:Azf = Azl = 0 and at least one out akz! and Az¥ is non-zero. For this case, the singular
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1
fade subspace is given t% > .

Case 2:Az! = Azlt = 0 and at least one out akz¥ and Azl is non-zero. For this case, the singular

) ([} Howeer

fade subspace is given t% > .
1
1

Hence, there exists the following two non-trivial singulade subspaces{:[
when the signal set is’{+1, +j}, whered is not a multiple of%, the 2 x 2 CIOD offers full transmit

o 2o

diversity. Equivalently, there are no singular fade subspadther than the trivial singular fade subspace
for the 2 x 2 CIOD with the signal set/?{+1, +;}, when# is not a multiple ofZ.

Example 7:Consider thel x 4 CIOD [18] whose codeword matrices are of the form

PR e 0 0 |
—af + gzl 2l — jal 0 0

0 0 o+l 2l 4 jad ’
0 0 —xff + jab af — jaf |

where 1, x9, 23,24 € {£1,4j}. For the 4-PSK signal set considered, this STC does not offiér f
transmit diversity and there are pair-wise error eventiviiave a transmit diversity order less than 2.

The determinant of the codeword difference matrix for thigCSs given by,
(182 + 1803 +18af +1Aai]?) (1825 + Az + | Ak + |Ach]) .

Hence the code-word difference matrix is not full rank in fhbowing two cases:
Case L:Azf = Azl = Azl = Azl = 0 and at least one out ahz!, Azl Azl AzE is non-zero.
For this case, the first two columns of the codeword diffeeematrices are zeros. The column span of
the codeword difference matrix é[o 0 1 O]T, [0 0 0 1}T> and hence the corresponding singular
fade subspace is given t<y[1 00 or, 1 0 0}T>.
Case 2: Azl = Azl = Azl = AzF = 0 and at least one out ahz!, Az?, Azl Az9 is non-
zero. Similar toCase 1 it can be shown that the singular fade subspace for this sagiven by
<[0 0 1 0}T7[0 0 0 1]T>.

Hence, for thet x 4 CIOD, with 4-PSK signal set, zo, 23,24 € {£1,47}, there exists two non-
trivial singular singular fade subspaces. Similar to2he2 CIOD, when the signal set is a rotated 4-PSK

signal sete/?{+1,+4}, whered is not a multiple of%, the 4 x 4 CIOD offers full transmit diversity
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and there are no non-trivial singular fade subspaces.

In general, the2 x 2 CIOD given in Examplé16 and thé x 4 CIOD given in Examplél7, offer full
diversity for those signal sets for which the Co-ordinatederct Distance (CPdil is non-zero [[18].
Equivalently, there are non-trivial singular fade subgsaior the2 x 2 and4 x 4 CIOD, for signal sets
whose CPD is non-zero. In fact, this is true for any GenegdliZo-ordinate Interleaved Orthogonal

Design (GCIOD), as illustrated in the next example.

Example 8:Consider the2® x 2% Generalized Co-ordinate Interleaved Orthogonal Desig@I(ID)

: L Goa1(F1,... ,iq 0
[18] whose codeword design matrix is given hy,? 1@ %) . The complex
0 Goa-1(Zat1y--- s T2a)
numberz; = xlt +jx{i+a)2 , where (r), denotesr modulos and Gg.-1(z1,... ,z,) is the codeword

matrix of the GCODI[156] of siz&*~'. The determinant of the codeword difference matrix is givgn b
(i (AP + Az, ), 1P) (i (1Az] > + |Azf ), |*) . The determinant is non-zero for those signal sets
for which the CPD is non-zero and there are no non-triviagsiar fade subspaces. For those signal sets
for which the CPD is zero, the determinant becomes zero uhéefollowing two cases:

Case L:Az! = Amfzﬂ)h =0,Vi € {1,... ,a} and at least one of the elements of the{get, Az{, ., .
1 < i < a} is non-zero. It can be verified that the singular fade sulesgac this case is given by
(e1,€9,... ,e9a-1), Wheree; denotes the? length vector whosé® component is one and all other

components are zeros.

Case2:Azf' = Ax(,,,, =0,Vi€{l,... ,a} and at least one of the elements of the{get!, Axf; ., ,
1 <i<a} is non-zero. For this case, the singular fade subspace & diy (ega-141,... ,€94) .

I1l. SINGULAR FADE SUBSPACES FOR THE TWEOWNAY RELAYING SCENARIO

In the previous subsection, the notion of singular fade gabss was introduced and its connection
to the transmit diversity order of the MIMO system with calited antennas was established. Since the
MA phase of the two-way relaying scenario can be viewed astaali2 x 1 MISO system, there exists
singular fade subspaces for this case as well.

In Subsectiof III=A, the singular fade subspaces for theway relaying scenario are identified. The
reason why the adaptive network coding schemes based onNRepibtocol proposed i [6] and [11]-
[12] mitigate the effect of these harmful singular fade qae®s is discussed. In Subsecfion 1lI-B, it is

The CPD between two complex numbersandy is defined to bdz® — y%||z’ — y'|. The CPD of a signal set is defined
to minimum among all CPDs between pairs of points in the digaa[18].
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shown that minimizing the harmful effect of these singulatid subspaces can also be achieved by a
proper choice of the DSTC, without any need to adaptivelyngeathe network code at R according to

channel conditions.

A. Singular Fade Subspaces for the DNF Protocol

Let Azy = x4 — o'y andAzp = zp — 23 € AS. From the discussion in Sectidd I, it follows that
1

Aza - ! . The ratio

Arp ;ATIBA

‘AA—ZFU; determines all the singular fade subspaces for the DNF g@obtén [11]- [12], the ratio‘AA—xxBA

the singular fade subspaces for the DNF protocol are of tha<3

was called thesingular fade state

el > and the diversity order for the pair-wise error

Az p

event that a paifz,zp) is wrongly decoded at R a&’,,z’;) (denoted agz,25) — (2/4,23))

As mentioned earlier in Sectidn Wjim <[

are inherently connected. The diversity order for the emeent (v4,z5) — (2/4,2’) is equal to

rank([Az 4 Azp]) = 1 while dim (< [ ' ] >> =2 —rank([Aza Azg)) = 1.

—Azx g
Azp

Let Sr(ha,hp) = {haZa + hprp : Za,2p € S} denote the effective constellation at R. Let
dmin(ha, hp) denote the minimum distance 6%(ha, hp). When[ha hg]” falls in one of the singular
fade subspaces,.;, (ha, hp) becomes zero. Even though the probability that the véatokz]” belongs
to a singular fade subspace is zed,;,(ha, hp) is greatly reduced whefh s hp|’ falls close to a
singular fade subspace, a phenomenon referredisgance shorteningFor Az4 # 0 and Axp # 0,

the CNC algorithmELB] avoids the distance shortening oéogrin the neighbourhood of a singular fade

B
the pairs(z 4, zp) and(z/y, 2’3), which are said to be clustered together. In fact, for eveajization of

subspace< Ata > , by ensuring thap4"s (x4, 25) = pt4h= (2!, 2%,), i.e., R does not distinguish

[hahp] (not necessarily in the neighbourhood of singular fade gabss), the CNC algorithm chooses
the network coding map which results in the best distancélgrat R by appropriate clustering of the

signal points. The scheme proposed [in] [11]-][12] avoidsadist¢ shortening in the neighbourhood of
singular fade subspaces by proper choice of clustering ity e singular fade subspaces and not for

every realization of the channel fade coefficients.

L L
Consider the two singular fade subspacé : 0 > = < ! > and< Ara > = < 0 > The
Azrp 0 0 1
distance shortening which occurs in the neighbourhood edefsingular fade subspaces is unavoidable,
since the pairg§z 4, zp) and(z4,2';) (and also the pairéz 4, 25) and («/y, 23)) which result in these
singular fade subspaces cannot be clustered togetheruvittaating the exclusive law. Such singular

fade subspaces are referred asrtbe-removable singular fade subspacBse dimension of these singular
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fade subspaces is one or equivalently, the error eveniszg) — (za,2’3) and (za,zp) — (24, 2B)
always result in diversity order one. The singular fade pabes other than the non-removable singular
fade subspaces are referred asrgmovable singular fade subspaces

The removable singular fade subspaces are of the fér{mjm

Azp

>,AmA £ 0,Azp # 0, which are

dependent on the signal s€tused. The non-removable singular fade subspaceé 1r > and< 0 >
which are independent of the signal set used. Owing to theepe of non-remogable singu]iar fade
subspaces, the overall diversity order of the DNF protoeminot exceed one.

From the discussion above, it is clear that there are twesekasf singular fade subspaces: removable
and non-removable. The non-removable singular fade spaeeseated by the channel and is independent
of the signal set used. Whatever may be the choice of the mleteade, the harmful effects of these
non-removable singular fade subspaces cannot be mitighitedharmful effect of the removable singular
fade subspaces, which are created by the signal set, camowed by a proper choice of the adaptive
network coding map at R, as inl[6] anld [11]—[12].

To sum up, in the DNF protocol, the transmissions from theeisodl and B are allowed to interfere at
R and the effect of MAI is effectively mitigated by adaptiyelhanging the network coding map, thereby

removing the harmful effect of all the removable singuladdfasubspaces.

B. Singular Fade Subspaces for the DSTC Scheme

Let Axa = xa—%/, andAxp = xg—xg € AS%. ThenC(Axa, Axp) = C(xa,xB)—C(xy,xg)
denotes a codeword difference matrix of the DSTC, wh@f&a,xg) is the codeword matrix of the
DSTC defined in[{fl). From the discussion in Secfidn Il, itdwls that the singular fade spaces for the
proposed DSTC scheme are of the foffnl* (C (Axa, AxB)).

Consider the singular fade subspaces of the férni* (C (02, Axg)) and Col* (C (Axa,02)),

where Axa, Axpg # 02. The first row of the matrixC (02, Axg) has both the entries to be zero.
Hence,Col (C (02, Axp)) = < H > and the singular fade subspacel* (C (02, Axg)) = < H >
0

1
If the DSTC codeword matrices are such that (@A xa, Axgp)) = 2, VAxa # 02 andAxp # 02,

By a similar reasoninglol* (C (Axa,02)) =

all the singular fade subspac€®i* (C (Axa, Axg)) collapse to be the trivial singular fade subspace
(02) . Equivalently, all the pair-wise error event(xa,xB) — C(x,,Xg),Xa # X5, XB # Xp, have

diversity order 2. Hence, for a properly chosen DSTC, othantthe trivial singular fade subspace, the
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singular fade subspaces are only the two non-removablallsinfpde subspaces, while for the DNF
protocol, in addition, we had the removable singular fadespaces. In this way, by a proper choice
of DSTC, the occurrence of the removable singular fade aadespis avoided at the transmitting nodes
itself, without any CSIT.

Hence, we have the following design criterion referred asdingularity minimization criteriorfor
DSTCs for two-way relayingThe DSTC codeword difference matric€$Axa, Axg) need to be full
rank for all Axa # 02 and Axg # 02, to minimize the number of singular fade subspaces. DSTCs
satisfying the above criterion are referred as shrggularity minimalDSTCs.

Hence for a DSTC which is singularity minimal, the only erements which result in diversity order 1
are of the formC(xa,xB) — C(xa,xg),xg # xg andC(xa,xB) — C(x/y,xB),x/, # xa. Hence,
the overall coding gain is equal to minimum among all the mere singular values of the codeword
difference matrices which are of the for@(02, Axg) and C(Axa,02) [15]. Note that the matrices
C(02,Axp) and C(Axa,02) are of rank 1 and have only one non-zero singular value. Wes hav
the following coding gain criteria for singularity minim&lSTCs:the minimum among all the non-zero
singular values of the codeword difference matrices whiehodi the formC(02, Axg) and C(Axa, 02)

needs to be maximized

Ay

Example 9:Consider the DST . This DSTC is nothing but the scheme where A and B

0 B,
transmit in separate time slots, making sure that theirstrassions do not interfere at the relay. Even

though this DSTC avoids all the removable singular fade patss, the end-to-end rate in complex

symbols per channel use is less than that of the DNF protocol.

C. A Construction of Singularity Minimal DSTCs for Algelra@ignal Sets

A signal set is said to be algebraic if all the signal pointshaf signal set are algebraic numbers over
Q1. All the commonly used signal sets like QAM and PSK are algebsignal sets. In this subsection,

a class of DSTCs which are singularity minimal for algebrsignal sets is provided. Le . Z be
(&

a full rank complex matrix. Consider the class of DSTCs whosdeword matrices are of the form
a(za, +elza,) blza, +elza,)

C(xa,xB) = , , .
' c(zp, +€’xp,) d(zp, +e’xB,)

Proposition 1: The class of DSTCs whose codeword design matrices are obthediven above are
singularity minimal for all algebraic signal sets.
2A number is said to be algebraic ovér if there exists a polynomial with coefficients frof of which the number is a

root. If there does not exist a polynomial with coefficientsnfi Q@ of which the number is a root, the number is said to be
transcendental [19].
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Proof: The proof is as follows: FoAxa # 02 andAxg # 05, at least one of the two components of
Axp as well asAxg should be non-zero. Heno@\z 4, +e/Ax 4,) # 0 and(Ax g, +e? Az p,) # 0, since
el is transcendentEIwhereasAmAl, Az a,, Azp, andAzp, are algebraic ove@). The codeword differ-

ence matrixC(Axa, Axg) is full rank for all Axa # 0 and Axg # 0, since defC(Axa, Axp)) =

(ad — be)(Aza, + e/ Axa,)(Azp, + el Axpg,) # 0. [
Example 10:Consider the case whe ¢ob [1 0] . Let 4-PSK be the signal set used at A and
c d 0 1
J
B. The DSTC codeword matrix for this case is given byxa, xp) — | 4 T €% 0 A
0 (B, +€'zB,)

and B are made to transmit in two different time slots whicbuits in low decoding complexity at R,
since A's and B’s transmissions can be decoded indepeydéntan be verified that the coding gain for
this DSTC is approximately 0.6877.

Example 11:Consider the case wh n Z] = [ ! 1] . Let 4-PSK be the signal set used at A and B.
c -1 1

J J
The DSTC codeword matrix for this case is given Bxa.xp) = 7 [ (C(cAl e jAz)) E“l +eij2; .
—(zB, +e'xB, rB, +€TB,

The scaling factor o% is to ensure unit average energy per symbol per time sloaritbe verified that
the coding gain for this DSTC is approximately 0.6877, saméhat of the DSTC given in Example]10.
The coding gain of the DSTCs given in Examples$ 10 11 iscqiiately 0.6877, which is less
than the minimum distance of the unit energy 4-PSK signalwsbkich is V/2. In the next section, it is
shown that for DSTCs over square QAM a2tiPSK signal sets, the coding gain is upper bounded by
the minimum distance of the signal set and explicit DSTC toie§ions which achieve this bound with

equality are provided.

IV. SINGULARITY MINIMAL , CODING GAIN MAXIMAL DSTCs oVERQAM AND PSKSIGNAL SETS

In this section, it is shown that the coding gain of the DST@srsquare QAM an@*-PSK signal
sets are upper-bounded by the minimum distance of the sagaln Subsection IV-A, a condition under
which a singularity minimal DSTC over square QAM a2t+PSK signal set meets the upper bound with
equality is obtained and explicit constructions of DSTGs@novided. In Subsectidn IViB, the constructed
DSTC's are shown to be fast ML decodable, i.e., the ML deapdiomplexity of the constructed DSTCs
is shown to be less than the brute-force decoding compleitigh is O(M*).

Note that the generator matrichd, andMpg at A and B should be such that the average energy per

time slot is unity, i.e.E(|| xaMa |?) <2 andE(|| xgMg ||?) < 2.

By Lindemann-Weierstrass theorem [18]¢ is transcendental for alf € Q.
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Lemma 1:For singularity minimal DSTC ove&, whereS is a square QAM or*-PSK signal set,
the coding gain is upper bounded by the minimum distance eftgnal setS.
Proof: See Appendix A. |
In the following subsection, the condition under which thmper-bound given in the previous lemma is

satisfied with equality is identified and explicit constiantof DSTCs are provided.

A. Constructions of Singularity Minimal, Coding Gain MaghDSTCs over QAM and PSK signal sets

The following proposition states that for DSTCs ow&rchoosingM 4 andMg to be unitary matrices

ensures that the upper-bound on the coding gain is satisftadeguality, for QAM and PSK signal sets.

Proposition 2: For singularity minimal DSTCs over square QAM 2t-PSK signal sets, the coding

gain is maximized when the generator matriddg, andMpg at A and B are unitary matrices.

Proof: WhenM andMpg are unitary matriced] AxaMa ||=|| Axa || and also]| AxgMp ||=
A . Hence, i AxaM}p ||= i A = dmin(S) and similarl
| Axa | A AxaMa = win A = din(S) y
Axa#0,
A migs || AxpMB ||= dnin(S), whered,,;,(S) denotes the minimum distance 8f
XBE 2,
AXB#OQ

The coding gain of the DSTC is the minimum among all the nam-s@ngular values of the codeword

difference matrices which are of the for@(02, Axpg) and C(Axa,02), i.e., the coding gain is equal

t0 min min || AxaMa |, min || AxgMs ||, Which is equal tad,,;,(S). [ |
Axp €AS?, Axp€eAS?,
Axp #0o Axp#02

In the following examples, constructions of singularitynmal DSTCs whose generator matrices are

unitary are provided.

Construction 1:Consider the DSTC ove$ for which M, = % “ d_ andMg = % g a_ ,

P lag ad jad ad
where ¢ = %, 6= 1‘2\/5, a=1+j—jopanda =1+ j— jo. The DSTC codeword matrix is of
the form C(xa,xB) = XAMA . The codeword difference matri¢(Axa, Axg) is full rank for all

XB B

Axa # 0 and Axg # 0, when the signal points belong @[j] [20]. Hence the DSTC is singularity
minimal for all signal sets whose signal points belongg]. Also, sinceM andMgpg are unitary, for
square QAM signal set, the DSTC maximizes the coding gain.

Note 2: The DSTC given in Constructionl 1 was constructed[inl [20] talsasatisfying the design
criterion formulated in[[211] for the two-user non-coop@ratMultiple Access Channel (MAC). Iri_[20],

the DSTC given in the above example was shown to be DMT optioratwo-user MAC.
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cos ¢y —sin qbgej 0

Construction 2:Consider the DSTC for whiciMia = I, and Mg = , Where

sin¢,  cos ¢gej9
; = tan~1 /5. The DSTC codeword matri€(xa,xg) is given by,

IAl IL'AZ

Tp, COS Gy + Tpysing, €% (—xp, sin g, + xp, cos dy)

For a complex numbet, let Q(a) denote the smallest field containifyanda. It is shown in Lemma

below that choosing = 7 ensures singularity minimality for signal sets (for exan@QAM) whose
signal points belong td)(j) and choosing) = 7 ensures singularity minimality for signal sets (for
example2*-PSK) whose signal points belong @(ej%). Also, sinceM and Mg are unitary, this
DSTC maximizes the coding gain, for square QAM adPSK signal sets. The advantage of this
construction over Constructidd 1 is that encoding at nodes Aiimple, since it does not involve any
linear combination ofc 4, andz 4,.

Lemma 2:For the DSTC given in constructidd 2, choosifig=  ensures singularity minimality for
signal sets whose points belong@j) and choosing = 5 ensures singularity minimality for signal
sets whose signal points belong@jejg_;).

Proof: The proof is given for the case when the signal points belen@(j). The proof for the
case when the signal points belong@t@ejﬁ_;) is exactly similar and is omitted.
Let Axa, = x4, —2'y andAxp, = xp, — 2z, Wherex 4,2y ,2p,,25 €S C Q(j). andi € {1,2}.

To prove singularity minimality, it needs to be shown thatewhat least one out aAz 4, and Ax 4,

A:L’Bl ALL’Bz
AZBB2 and - AZBBI

belong toQ(;) while tan ¢, = v/5 does not belong t@(j). Hence,Azp, cos ¢, + Axp, sind, # 0

and —Azxp, sin¢, + Axp, cos g, # 0. Sincesin¢p, = 7% and cos ¢, = %, Az, (Azxp, cospg +

Axp,sing,) and Az 4, (—Azp, sin ¢, + Azp, cos ¢,) belong toQ(j, v/5,v/6), where Q(j,v/5,v/6)

denotes the smallest filed containifigy j,v/5 and v/6. The determinant of the codeword difference

(Azp, andAxp,) is non-zero, the codeword difference matrix is full rankeTratios

matrix is given by,

Az, el3 (—Axp, sing, + Axp, cos ¢y) — Az a,(Axp, cos ¢, + Axp, sin dy).

The determinant is non-zero since the raﬁ‘“‘?(m‘?l 005 $y+ AT, Sin ‘z’g)) belongs taQ(j, v/5, v/6), while

Ta, (—Axp, sing,+Axp, cos gy

¢/ does not belong t@)(j, v/5, v6). ]
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B. Decoding Complexity of Singularity Minimal, Maximal Qugl Gain DSTCs ovef

After the two MA phases, R jointly decodes for the two messeggtorsx, andxg of A and B
respectively. In general, the complexity of this joint MLadeling at R isO(M*), where M is the
cardinality of the signal sef. The choice of the generator matricdéa and Mg being unitary not
only maximizes the coding gain for QAM and PSK signal setg,dlsio results in a reduced decoding
complexity at R.

The following proposition states that when conditional Mecdding [22], [238] is employed, the
decoding complexity of the DSTCs constructed in the previsection for which the generator matrices
M and Mg are unitary isO(M?) for any arbitrary signal set and 9(M?) for square QAM signal
set. Note that the brute force decoding complexityig\/4).

Proposition 3: When the generator matrices of the singularity minimal DSWer S are unitary, the
decoding complexity using conditional ML decoding@M/3) when the signal sef is arbitrary and is
O(M?) when the signal sef is square QAM.

Proof: See Appendix B. [ |

Compared with the DNF protocol, the decoding complexity isrenfor singularity minimal coding
gain maximal DSTCs ove$. For the DNF protocol, the decoding complexity(§A/?) for non square
QAM signal sets while it iSD(M) for square QAM signal SQ As indicated by the simulation results in
the next section, the proposed DSTC offers slightly betezfgpmance than the adaptive network coding
scheme and eliminates the need for adaptive switching eforktcoding maps at R. But this comes at

the cost of increased decoding complexity at R.

V. SIMULATION RESULTS

All the simulation results presented are for the case wheetidl nodes use 4-PSK signal set. By ‘DSTC
1’ and ‘DSTC 2’ we refer to the DSTCs given in Constructidn M a@onstruction 2 respectively. As a
reference scheme, we consider the scheme in which XOR Hetaalte is used irrespective of channel
conditions and no DSTC is employed, which is referred as ‘XRRV code’. Assuming unit noise
variances at all the nodes, the average energies of thertisgiens at the nodes, which are assumed to
be equal, is defined to be the Signal to Noise Ratio (SNR). Topgsed DSTC scheme is also compared
with the adaptive network coding schemes proposed|in [6][afH [12]. Since for 4-PSK signal set, the

adaptive network coding scheme based on the Nearest Neigiostering (NNC) algorithm proposed

“For the DNF protocol, with QAM signal set, conditioning am, x5 can be decoded with constant decoding complexity
by rounding off to the nearest integer, which results in aerall decoding complexity 0O (M).
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in [6] and the scheme based on Latin Squares proposed lin [[IA]-turn out to be the same, without
distinguishing them we refer to both as ‘adaptive N/W coéj.[2 shows the SNR vs BER performance
for different schemes for the case when all the fading caeffts are i.i.d. and Rayleigh distributed. In
Fig.[3 and Fig[¥ similar plots are shown for a Rician fadingrerio with Rician facto?E of 0 dB and

5 dB respectively. From Fidll[2-4, it can be seen that the diseorder is one for all the schemes. Also,
it can be seen that at high SNR, both ‘DSTC 1’ as well as ‘DSTOf&r nearly the same performance
and they perform better than the ‘XOR N/W code’ as well as tuaptive N/W code’. For a Rayleigh
fading scenario, at high SNR, the DSTCs offer a gain of 2 dB ®R N/W code’ while the ‘adaptive
N/W code’ offers a gain of about 0.5 dB over the ‘XOR N/W codedr a Rician factor of 0 dB, at high
SNR, the DSTCs offer a gain of 2 dB over ‘XOR N/W code’ while tadaptive N/W code’ offers a gain
of about 1.2 dB over the ‘XOR N/W code’. For a Rician factor ofiB, at high SNR, the DSTCs offer
a gain of 5.5 dB over 'XOR N/W code’ while the ‘adaptive N/W @affers a gain of about 4 dB over
the ‘XOR N/W code’. The reason why the DSTC based scheme mesf@etter than the adaptive N/W
coding scheme is as follows: during the BC phase always art pgjnal set is used for the DSTC based

scheme, while depending on channel conditions 4 point oriBtmignal set is used for the adaptive

network coding scheme][6], [11].

VI. DISCUSSION

A DSTC scheme was proposed for the two-way relaying scentriwas shown that deep channel
fades occur when the channel fade coefficient vector falsfinite number of vector subspaces called the
singular fade subspaces. The connection between the donasfdhese vector subspaces and the transmit
diversity order was established. Design criterion to mimarthe number of singular fade subspaces for
the DSTC scheme and maximize the coding gain were obtaineglicE low decoding complexity
constructions of DSTCs were provided. The problem of caesing singularity minimal DSTCs with
decoding complexity same as that of the DNF protocol, witheacrificing the coding gain, remains
open. Extending the DSTC scheme for two-way relaying withtiple antennas and multi-way relaying

are possible directions for future work.
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APPENDIXA

PROOF OFLEMMA 1

SinceMAME is Hermitian, it is unitarily diagonalizable, i.eMaMY = UsAAUY, whereU, is a
unitary matrix andA 5 is a diagonal matrix with diagonal entries denoted\as and\ 4,. Note thath 4,

. . . .. . .. ailp ai2
and A4, are non-negative smcMAME is positive semi-definite. LeM = . We have,

a1 a2
E(|| xaMa [1?) = a1 PE(|za,[*) + |a12*E(|z 4, |*) + a1 PE(Jz a, [*) + laze [*E(|2 4, [?) = a1 |* +|a12]* + a1 [* +[a22 |,

sinceE(z 4,77},) = E(za,2%,) = 0 for square QAM an@*-PSK signal sets. Sindé(|| xaMa ||?) < 2,
we have|a11|2 + |a12|2 + |a21|2 + |a22|2 = TT‘CLCG(MAMAH) = )\Al + /\A2 < 2.
The coding gain of the DSTC is the minimum among all the nam-a@ngular values of the codeword

difference matrices which are of the for@ (02, Axpg) and C(Axa, 02), i.e., the coding gain is equal

t0 min min _ || AxaMa |, min || AxgMg ||
Axp €AS?, AxgEAS?,
Axp #0g Axp#02

Let d,,;»(S) denote the minimum distance of the signal Set

Consider|| AxaMa [|?= AXxaAMAMATAxpA T = ARAAAARAT = Mg |AG 4, |2 + A4, | AT, %,
where Axa = AxaUp 2 [AZ 4, ATy,

Let ua, = [ua,, ua,,] andua, = [ua,, ua,,] denote the rows olUa. For Axa = [Az4, 0],
| AxaMa [*= Az a, [P(Jua,, PAa, + [ua,*Aa,).

Hence, we haveA migs2 | AxaMa [|°< doin (S)(Juay, P Aa, + |uass [*Aa,). Similarly, we have,
XA € s
Axp #0o

min || AxaMa [< i (S) ([waz, [*Aa, + [uag, [*Aa,). SinceUpy is unitary|ua,, | = [ua,,|* and|ua,,|* =
Axp EAS?,
Axp #0o

lua,, |2. Therefore, we have,

A meiI;SQ H AxaMa H2 < dfm'n(s) min{(|uA11 |2)‘A1 + |uA12 |2’\A2)7 (|uA11 |2’\A2 + |UA12|2)\A1 )} (4)
XA ,
Axp #02

Since Uy is unitary, |ua,, |> = 1 — |ua,,|?>. For a given\s, and \4,, the upper-bound in[{4) is
maximized over allu .. |?> when the two terms insidenin are equal, i.e.|ua.. [?PAa, + |ua,, |4, =
11 11 1 12 2
_ : : : Aay +A
luay, *Aa, + [wa,,[*Aa,, for which [uy,,|? = 3 and this maximum value is equal ﬁnm(S)(Ali;'”).

Since, A4, + A4, < 2, the maximum value of the upper-bound [0 (4) is less than oaktud? ; (S).

min
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Hence, min || AxaMa || < dnin(S). Similarly, it can be shown that min || AxgMp || is

AxpeAS?, AxacAS?,
AXB#OQ AXB7£02

also upper-bounded by,,;,(S). Hence, the coding gain of the DSTC over square QAM2MPSK

signal set is upper-bounded ly,;,,(S). This completes the proof.

APPENDIX B
PROOF OFPROPOSITION3

To prove the proposition, we adopt a procedure similar tooihe used in[[23].

T ¢ _(.R 0 R I R I R I T and5.. — [-R I R I 1T
15 x = [2y, vy, x4, Ty, v ¥, TR, TR ] ANdZr = [25 2p, 2R, 2R,] -

Letyr = (v, YR, Y1, Yi,
The vectorygr can be written a§r = HeqX + Zr, WhereHq is a4 x 8 real matrix whose entries are
functions ofh4 and hp, determined by the DSTC. Usin@R decomposition, the matri¥l., can be
decomposed ab.q = QR, whereQ € R*** is a orthogonal matrix an®k € R**® can be written as
[R1 Rs], with Ry, Re € R**4 R; being an upper-triangular matrix. The joint ML decoding rizeat
R is given by|| #r — HeqX | =] QTR — R% ||=|| vk — RX |, whereyf = QT¥r.

For a singularity minimal DSTC ove$, let the generator matrices dd, = Up and Mg = Ugp,
where U, and Ug are unitary matrices. Letia, and ug, denote thei’” rows of U, and Ug

respectively. Then the weight matrices of the DSTC define@nare given byWR = jwh =

1 1
03

T

03 of

usB; 2

. 0 :
[uA‘] and WE = jW§ = ] We have, W§ Wi ' — [uA1] [juf{l 02} = [‘; o] and sim-

: —j 0
ilarly, Wi Wi — |7/ ol Hence, W WL " 1 Wi WE ™ — 0,, where O, denotes the

2 x 2 null matrix. Also, WiWEzH = O3, sinceus, and up, are orthogonal vectors. Hence,
W§1W§2H + W§2W§1H = O,. Similarly, using the fact thalla and Ug are unitary matrices,
it can be shown that the following pairs of matrices are alsowitz-Radon orthogo I{WRI,WfAz},
(W, WE L {Wh WAL (W, W) (WE, WE ) (WE WE ), (W, Wh ), (W |
Wi, L AWE,, Wg,}, {WE, Wg,}.

Let 7; denote the’ component of the vectat. Thei'* and ;" columns ofH,, are orthogonal and
hence the(i, j)!" entry of R (i < j) is zero for all realizations ofi4 andhp, if and only if the weight
matrices of the DSTC corresponding to the symbglsaind z; are Hurwitz-Radon orthogonal (follows
from Theorem 2,. Hence the matri®R is of the form given below.

5Two matricesM; and M are said to be Hurwitz-Radon orthogonalNf; M5 + MoME = 0.

"Theorem 2 in[[2B] proves only the ‘if’ part. However, followg an approach similar to the proof given in][23], it is easy to
show that the weight matrices of the DSTC corresponding ¢osgfmbolsz; and z; need to be Hurwitz-Radon orthogonal, for
the (4, 7)'" entry of R (i < j) to be zero for all realizations df4 andhp, and hence the ‘only if’ part also holds.
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0
* 0 0 * *x % %
(5)
0

0 =

* ok ok ok

o O O

0 0 * * * x x

Note thatx denotes possible non-zero entries. The claim is that alettiges denoted by are non-
zeros. It is clear that all the diagonal entries are nonsefor the(1,5)!" entry in [3) to be a zero,
0 uAlug1

WE WE B wE wR H = 0, which implies thatua, andug, are orthogonal

H
uB, UA, 0
vectors. Then the vectarg, should belong to the one-dimensional subspace which isgoial tou,, .
Sinceuya, also belongs to this one-dimensional subspace andigihas well asua, are of unit norm,

up, = ¢/’uyu,, for some angle. In that case, the DSTC codeword difference matrix is of thenfo
A:EAluAl + A:EA2uA2

, , Which is not full rank whem\z 4,, Azp, # 0, Az 4, = Azp, = 0 and hence
Azxp, ejequ + Azp,uB,

the singularity minimization criterion is violated. Hende, 5)** entry shown by« in (8) is non-zero. By
a similar argument, it can be shown that the other non-dialgemtries denoted by in (§) are non-zeros.

From the matrixR given in [3), it can be seen that conditioning on the varishlg, andzp,, the
symbolsz 4, andz 4, can be decoded independentlyl[23]. Since the total numbehates forzz, and
rp, is M? and independently decoding,, andz 4, requires2M computations, the decoding involves
2M?3 computations and hence the decoding complexity at R(i&7?).

For square QAM signal sets, the decoding complexity can léhdu reduced, since the real and
imaginary parts independently take values. Fréin (5), it lsarseen that conditioning anz, andzp,,
the real and imaginary parts afy, as well asz4, can be decoded independently. Since decoding the
real and imaginary points of a signal point in QAM signal sebf constant complexity independent of
M (decoding can be done by rounding off to the nearest intéZ@)),[the ML decoding complexity is
O(M?) for square QAM signal sets. This completes the proof.
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Fig. 2. SNR vs BER for different schemes for 4-PSK signal setaf Rayleigh fading scenario.
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Fig. 3. SNR vs BER for different schemes for 4-PSK signal setaf Rician fading scenario with a Rician factor O dB.
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Fig. 4. SNR vs BER for different schemes for 4-PSK signal setaf Rician fading scenario with a Rician factor 5 dB.

October 19, 2018

DRAFT



	I Background and Preliminaries
	I-A Background
	I-B Signal Model
	I-B1 Denoise-And-Forward (DNF) protocol
	I-B2 The Proposed DSTC Scheme


	II The Notion of Singular Fade Subspaces for the Collocated MIMO system
	II-A Singular Fade Subspaces for the Collocated MIMO system with Spatial Multiplexing
	II-B Singular Fade Subspaces for the Collocated MIMO system with Space Time Coding

	III Singular fade subspaces for the two-way relaying scenario
	III-A Singular Fade Subspaces for the DNF Protocol
	III-B Singular Fade Subspaces for the DSTC Scheme
	III-C A Construction of Singularity Minimal DSTCs for Algebraic Signal Sets

	IV Singularity Minimal, Coding Gain Maximal DSTCs over QAM and PSK signal sets
	IV-A Constructions of Singularity Minimal, Coding Gain Maximal DSTCs over QAM and PSK signal sets
	IV-B Decoding Complexity of Singularity Minimal, Maximal Coding Gain DSTCs over S

	V Simulation Results
	VI Discussion
	References
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Proposition 3

