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Abstract

In this paper, a novel joint bit and power loading algorithm is proposed for orthogonal frequency

division multiplexing (OFDM) systems operating in fading environments. The algorithm jointly maxi-

mizes the throughput and minimizes the transmitted power, while guaranteeing a target average bit error

rate (BER) and meeting a constraint on the total transmit power. Simulation results are described that

illustrate the performance of the proposed scheme and demonstrate its superiority when compared to

the algorithm in [1].

Index Terms
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I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) modulation represents a robust and

efficient transmission technique being adopted by several wireless communication standards [2],

[3]. The OFDM system performance can be significantly improved by dynamically adapting the

transmission parameters, such as power, constellation size, symbol rate, and coding rate/scheme,

according to the channel conditions and the wireless standard specifications [1], [4]–[10].

http://arxiv.org/abs/1801.07568v2
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Bit and power loading algorithms can be generally categorized into two main classes, i.e.,

algorithms whose objective is to maximize the achievable system margin, margin maximization

(MM), [4], [5] and algorithms whose objective is to maximize the achievable data rate, rate

maximization (RM), [1], [6]. Most of the techniques proposed in the literature focused on

maximizing either the RM or the MM problem separately. In [4], Chow et al. proposed a practical

iterative bit loading algorithm to maximize the margin. The algorithm computes the initial bit

allocation based on a channel capacity approximation assuming uniform power loading. Then, it

iteratively changes the allocated bits to achieve the optimal margin and the target data rate. Liu

and Tang [5] proposed a low complexity power loading algorithm with uniform bit loading that

aims to minimize the transmit power while guaranteeing a target BER. On the other hand, Leke

and Cioffi [6] proposed a finite granularity algorithm that maximizes the data rate for a given

margin. Subcarriers with signal-to-noise ratio (SNR) below a predefinied threshold are nulled,

then remaining subcarriers are identified and the available power is distributed either optimally

using a water-filling approach or suboptimally by assuming equal power to maximize the data

rate. In [1], Wyglinski et al. proposed an incremental optimal bit loading algorithm with uniform

power in order to maximize the throughput, while guaranteeing a target BER. Song et al. [7]

proposed an iterative joint bit and power loading algorithm based on statistical channel condi-

tions to meet a target BER. This algorithm attains a marginal performance improvement when

compared to the conventional OFDM systems. The authors conclude that their algorithm is not

meant to compete with its counterparts that adapt according the instantaneous channel conditions.

In [10], the authors proposed a non-iterative low complexity optimal allocation algorithm that

jointly maximizes the throughput and minimizes the transmit power, while guaranteeing a target

BER per subcarrier.

Emerging wireless communication systems operate under diverse conditions, with different

requirements. For example, when operating in interference-prone shared spectrum environments

or in proximity to other frequency-adjacent users, power minimization is crucial. On the other

hand, if sufficient guard bands exist to separate users, more emphasis can be given to maxi-

mizing the throughput. This motivates us to jointly consider the rate and margin maximization

problems. The importance of the competing throughput and power objectives is reflected through

a weighting factor.

A novel optimal bit and power loading algorithm is proposed in this paper, which maximizes

the throughput and minimizes the total transmit power, subject to average BER and transmit
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power constraints. Limiting the total transmit power reduces the interference to existing users,

which is crucial in various wireless networks, including cognitive radio environments. Moreover,

by including the sum of subcarrier powers in the objective function, the transmit power is

minimized even when the power constraint is ineffective, which occurs at smaller signal-to-

noise ratios (SNR). Simulation results show that the proposed algorithm outperforms Wyglinski’s

algorithm [1].

The remainder of the paper is organized as follows. Section II introduces the proposed optimal

loading algorithm. Simulation results are presented in Section III, while conclusions are drawn

in Section IV.

Throughout this paper we use bold-faced upper case letters to denote matrices, e.g., X, bold-

faced lower case letters for vectors, e.g., x, and light-faced letters for scalar quantities, e.g., x.

I represents the identity matrix, [.]T denotes the transpose operation, ∇ represents the gradient,

and ⌊x⌋ is the largest integer not greater than x.

II. PROPOSED ALGORITHM

A. Optimization Problem Formulation

An OFDM system decomposes the signal bandwidth into a set of N orthogonal narrowband

subcarriers of equal bandwidth. Each subcarrier i transmits bi bits using power Pi, i = 1, ..., N .

A delay- and error-free feedback channel is assumed to exist between the transmitter and receiver

for reporting channel state information.

In order to minimize the total transmit power and maximize the throughput subject to an

average BER and a total power constraint, the optimization problem is formulated as

Minimize
Pi

PT =
N
∑

i=1

Pi and Maximize
bi

bT =
N
∑

i=1

bi,

subject to BERav =

∑N

i=1
bi BERi

∑N

i=1
bi

≤ BERth,

N
∑

i=1

Pi ≤ Pth, (1)

where PT and bT are the total transmit power and throughput, respectively, Pth is the threshold

value of the total transmit power, and BERav, BERth, and BERi are the average BER, threshold
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value of BER, and the BER per subcarrier i, i = 1, ..., N , respectively. An approximate expression

for the BER per subcarrier i in the case of M-ary QAM is given by1 [5], [8]

BERi ≈ 0.2 exp

(

−1.6
Pi

2bi − 1

|Hi|
2

σ2
n

)

, (2)

where Hi is the channel gain of subcarrier i and σ2
n is the variance of the additive white Gaussian

noise (AWGN).

The multi-objective optimization function in (1) can be rewritten as a linear combination of

multiple objective functions as follows

Minimize
Pi,bi

F(p,b) =

{

α

N
∑

i=1

Pi − (1− α)
N
∑

i=1

bi

}

,

subject to gj(p,b) ≤ 0, j = 1, 2, (3)

where α (0 < α < 1) is a constant whose value indicates the relative importance of one objective

function relative to the other, p = [P1, ...,PN ]
T and b = [b1, ..., bN ]

T are the N-dimensional

power and bit distribution vectors, respectively, and gj(p,b) is the set of constraints given by

gj(p,b) =























0.2
∑N

i=1
bi exp

(

−1.6 CiPi

2bi−1

)

− BERth

∑N

i=1
bi

≤ 0, j = 1

∑N

i=1
Pi −Pth ≤ 0, j = 2

(4)

where Ci =
|Hi|

2

σ2
n

is the channel-to-noise ratio for subcarrier i.

B. Optimization Problem Analysis and Solution

The problem in (3) can be solved by applying the method of Lagrange multipliers. Accordingly,

the inequality constraints in (4) are transformed to equality constraints by adding non-negative

slack variable, Y2
j , j = 1, 2 [11], [12]. Hence, the constraints are rewritten as

Gj(p,b, y) = gj(p,b) + Y2

j = 0, j = 1, 2, (5)

1This expression is tight within 1 dB for BER ≤ 10−3 [8].
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where y = [Y2
j ]

T , j = 1, 2, is the vector of slack variables. The Lagrange function L is then

expressed as

L(p,b, y,λ) = α

N
∑

i=1

Pi − (1− α)
N
∑

i=1

bi

+ λ1






0.2

N
∑

i=1

bi exp

(

−1.6 CiPi

2bi − 1

)

− BERth

N
∑

i=1

bi + Y2

1







+ λ2







N
∑

i=1

Pi − Pth + Y2

2






, (6)

where λ = [λj ]
T , j = 1, 2, is the vector of Lagrange multipliers. A stationary point can be found

when ∇L(p,b, y,λ) = 0, which yields

∂L

∂Pi

= α− 0.2× 1.6 λ1

bi Ci
2bi − 1

exp

(

−1.6 CiPi

2bi − 1

)

+λ2 = 0, (7)

∂L

∂bi
= −(1 − α) + λ1






0.2 exp

(

−1.6 CiPi

2bi − 1

)



1 + 1.6× ln(2)
CiPibi2

bi

(2bi − 1)2



− BERth






= 0, (8)

∂L

∂λ1

= 0.2
N
∑

i=1

bi exp

(

−1.6 CiPi

2bi − 1

)

− BERth

N
∑

i=1

bi

+Y2

1 = 0, (9)

∂L

∂λ2

=

N
∑

i=1

Pi −Pth + Y2

2 = 0, (10)

∂L

∂Y1

= 2λ1Y1 = 0, (11)

∂L

∂Y2

= 2λ2Y2 = 0. (12)
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It can be seen that (7) to (12) represent 2N +4 equations in the 2N +4 unknowns p,b, y, and

λ. Equation (11) implies that either λ1 = 0 or Y1 = 0, while (12) implies that either λ2 = 0 or

Y2 = 0. Accordingly, four possible solutions exist, as follows:

— Solutions I & II: Choosing λ1 = 0 and λ2 or Y2 = 0, results in an underdetermined system

of 2 equations in 2N+2 unknowns; hence no unique solution can be reached.

— Solutions III & IV: Choosing Y1 = 0 and λ2 = 0 (the total power constraint is inactive) or

Y2 = 0 (the total power constraint is active), we obtain a system S(x) of 2N + 2 equations in

the 2N +2 unknowns x, where x = [p,b, λ1,Y2], that cannot be solved analytically. Hence, we

resort to solve this system numerically. Various numerical methods are available in the literature,

e.g., the steepest descent, the Gauss-Newton, and the Levenberg-Marquardt (LM) methods [12],

[13]. The steepest descent method is efficient when x is far from the optimal solution xop. On the

other hand, the Gauss-Newton method converges fast when x is close to xop. The LM method

takes advantage of both methods by introducing a positive damping factor µk to control the step

size at every iteration k depending on the closeness to xop.

The LM algorithm is briefly discussed here for completeness of the presentation; however,

further details can be found in [12], [13]. We start from an initial point x0 and initial step d0,

then a series of points x1, x2, .... is obtained that converges towards the solution xop; hence, at

iteration k one can write xk+1 = xk + dk, where dk is the LM step given by [12], [13]

dk=−
[

J(xk)
T J(xk) + µkI

]−1

J(xk)
TS(xk), (13)

where I is the identity matrix and J(xk) is the Jacobian matrix of the system S(xk), defined

earlier, both at point xk. The damping parameter µk has several advantages. First, for all µk > 0,

the matrix J(xk)
T J(xk) + µkI is positive definite, which insures that dk has a descent direction

and that the system S(x) has a unique solution. Second, if µk is large, the step value is given

by dk ≃ − 1

µk

J(xk)
TS(xk) representing a short step in the steepest descent direction, and is

preferred if the current iteration is far from xop. On the other hand, if µk is very small, then dk

equals the Gauss-Newton step which is suitable in the final stages of the iterations, i.e., when xk

is close to xop. Third, it prevents the step dk from being too large when J(xk)
T J(xk) is nearly

singular. Furthermore, it guarantees that the step is defined when J(xk)
T J(xk) is singular, in

contrast to the Gauss-Newton method where the step is undefined.
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C. Description of the Proposed Algorithm

To solve the problem defined in (3), we propose the following algorithm. Given an initial point

x0, the value of S(x0) is calculated, and the initial step d0 is determined according to (13), then

we set x1 = x0 + d0, and the process repeats. At each iteration k, if µk is large, i.e., small dk

step, then µk+1 is decreased to approximate the Gauss-Newton step and converges faster to xop;

otherwise µk+1 is increased to approximate a steepest descent step. The algorithm converges to

the optimal solution xop at iteration k if both S(xk) and dk are less than the tolerance errors ǫ

and ε, respectively2. To avoid an infinite loop, we set the maximum allowed number of iterations

to kmax (if the number of iterations reach kmax, this means that the algorithm could not converge

to the optimal solution xop). Once xop is reached, pop and bop are obtained and the final bit

and power distributions are calculated by rounding down the non-integer bop, while keeping the

power distribution the same, i.e., bfinal = ⌊bop⌋ and Pfinal = Pop. The proposed algorithm can

be formally stated as follows.

III. NUMERICAL RESULTS

This section investigates the performance of the proposed algorithm in terms of the achieved

average throughput and average transmit power, and compares its performance with the algorithm

in [1].

A. Simulation Setup

An OFDM system with a total of N = 128 subcarriers is considered. The channel impulse

response h(n) of length Nch is modeled as independent complex Gaussian random variables

with zero mean and exponential power delay profile [14]

E{|h(n)|2} = σ2

h e
−nΞ, n = 0, 1, ..., Nch − 1, (14)

where σ2
h is a constant chosen such that the average energy per subcarrier is normalized to unity,

i.e., E{|Hi|
2} = 1, and Ξ represents the decay factor. Representative results are presented in this

section and were obtained by repeating Monte Carlo trials for 103 channel realizations with a

channel length Nch = 5 taps, decay factor Ξ = 1

5
, BERth = 10−4. The LM algorithm parameters

are as follows: µ0 = 105, ν1 = 0.5, ν2 = 2, ε = ǫ = 10−6, and kmax = 104.

2If either S(x0) < ǫ or d0 < ε, the algorithm stops without converging.

3For more details on the choice of µth we refer the reader to [12], [13].
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Proposed Algorithm

1: INPUT The AWGN variance σ2
n, channel gain per subcarrier i (Hi), threshold value of

average BER (BERth), threshold value of the total transmit power Pth, weighting factor α,

ν1 (0 < ν1 < 1), ν2 (ν2 > 1), and tolerance errors ε, and ǫ.
2: Set the iteration number k to 0.

3: Pick an initial solution x0 and initial damping parameter µ0.

4: while S(xk) > ǫ and dk > ε and k < kmax do

5: k = k + 1
6: dk = −

[

J(xk)
T J(xk) + µkI

]−1
J(xk)

TS(xk)
7: xop = xk + dk

8: if µk > µth
3 then

9: xk+1 = xop

10: µk+1 = ν1 µk

11: else

12: µk+1 = ν2 µk

13: end if

14: end while

15: Given x = [p,b, λ], find the values of pop and bop corresponding to xop.

16: for i = 1, ..., N do

17: if bi,op ≥ 2 then

18: bi,final = ⌊bi,op⌋ and Pi,final = Pi,op

19: else

20: bi,final and Pi,final = 0

21: end if

22: end for

23: OUTPUT bi,final and Pi,final, i = 1, ..., N .

B. Performance of the Proposed Algorithm

Fig. 1 depicts the average throughput and average transmit power as a function of the average

SNR4 at α = 0.5, with and without considering the total power constraint. Without considering

the total power constraint and for an average SNR ≤ 21 dB, one finds that both the average

throughput and the average transmit power increase as the SNR increases, whereas for an average

SNR ≥ 21 dB, the transmit power saturates, and the throughput continues to increase. This

observation can be explained as follows. For lower values of the average SNR, many subcarriers

are nulled. By increasing the average SNR, the number of used subcarriers increases, resulting

in a noticeable increase in the throughput and power. Apparently, for average SNR ≥ 21 dB,

all subcarriers are used, and our proposed algorithm essentially minimizes the average transmit

4The average SNR is calculated by averaging the instantaneous SNR values per subcarrier over the total number of subcarriers

and the total number of channel realizations, respectively.
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Fig. 1: Average throughput and average transmit power as a function of average SNR, with and without power

constraint, at α = 0.5.

power by keeping it constant, while increasing the average throughput. When a power constraint

Pth = 0.1 mW is considered, at lower SNR values the total transmit power is below this threshold

and both the allocated power and throughput levels are similar to the no constraint case. However,

at higher SNR values, when the total transmit power exceeds the threshold, a small reduction

in the average throughput is noticed, which emphasizes that the proposed algorithm meets the

power constraint while maximizing the throughput, i.e., the throughput does not degrade much

when compared to the case of no power constraint.

In Fig. 2, the average throughput and average transmit power are plotted as a function of the

weighting factor α at σ2
n = 10−3 µW, with and without considering the total power constraint.

Without considering the total power constraint, one can notice that an increase of the weighting

factor α yields a decrease of both the average throughput and average transmit power. This can be

explained as follows. By increasing α, more weight is given to the transmit power minimization

(the minimum transmit power is further reduced), whereas less weight is given to the throughput

maximization (the maximum throughput is reduced), according to the problem formulation. By

considering a total power constraint, Pth = 0.1 mW , the same average throughput and power

are obtained if the total transmit power is less than Pth, while the average throughput and power

saturate if the total transmit power exceeds Pth. Note that this is different from Fig. 1, where

the average throughput increases while the transmit power is kept constant, which is due the

increase of the average SNR value. Fig. 2 illustrates the benefit of introducing such a weighting

factor in our problem formulation to tune the average throughput and transmit power levels as

needed by the wireless communication system.
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Fig. 2: Average throughput and average transmit power as a function of weighting factor α, with and without power

constraint, at σ2

n
= 10

−3 µW .
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Fig. 3: Average throughput and average transmit power as a function of the power constraint Pth, at α = 0.5 and

σ2

n = 10
−3 µW .

In Fig. 3, the average throughput and average transmit power are plotted as a function of

the power threshold Pth, at α = 0.5 and σ2
n = 10−3 µW . It can be noticed that the average

throughput increases as Pth increases, and saturates for higher values of Pth; moreover, the

average transmit power increases linearly with Pth, while it saturates for higher values of Pth.

This can be explained, as for lower values of Pth, the total transmit power is restricted by this

threshold value, while increasing this threshold value results in a corresponding increase in both

the average throughput and total transmit power. For higher values of Pth, the total transmit

power is always less than the threshold value, and, thus, it is as if the constraint on the total

transmit power is actually relaxed. In this case, the proposed algorithm essentially minimizes the

transmit power by keeping it constant; consequently, the average throughput remains constant

for the same noise variance as in Fig. 2.
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Fig. 4: Average throughput as a function of average SNR for the proposed algorithm and Wyglinski’s algorithm

[1].

C. Performance Comparison with the Algorithm in [1]

In Fig. 4, the throughput achieved by the proposed algorithm is compared to that obtained

by Wyglinski’s algorithm [1] for the same operating conditions. To make a fair comparison, the

uniform power loading used by the loading scheme in [1] is computed by dividing the average

transmit power allocated by our algorithm by the total number of subcarriers. As can be seen in

Fig. 4, the proposed algorithm provides a significantly higher throughput than the scheme in [1]

for low average SNR values. This result demonstrates that optimal loading of transmit power is

crucial for low power budgets.

IV. CONCLUSION

In this paper, we proposed a novel algorithm that jointly maximizes the throughput and

minimizes the transmit power with constraints on the average BER and the total transmit power,

for OFDM systems. Simulation results demonstrated the good performance of the proposed algo-

rithm, which also outperforms the loading algorithm in [1] under the same operating conditions.
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