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Abstract—As location-based applications become ubiquitous
in emerging wireless networks, Location Verification Systems
(LVS) are of growing importance. In this paper we propose,
for the first time, a rigorous information-theoretic framework
for an LVS. The theoretical framework we develop illustrates
how the threshold used in the detection of a spoofed location
can be optimized in terms of the mutual information between
the input and output data of the LVS. In order to verify
the legitimacy of our analytical framework we have carried
out detailed numerical simulations. Our simulations mimic the
practical scenario where a system deployed using our framework
must make a binary Yes/No “malicious decision” to each snapshot
of the signal strength values obtained by base stations. The
comparison between simulation and analysis shows excellent
agreement. Our optimized LVS framework provides a defence
against location spoofing attacks in emerging wireless networks
such as those envisioned for Intelligent Transport Systems, where
verification of location information is of paramount importance.

I. INTRODUCTION

As Location-Based Services become widely deployed, the
importance of verifying the location information being fed into
the location service is becoming a critical security issue. The
main difference between a Location Verification System (LVS)
and a localization system is that we are confronted by some
a priori information, such as a claimed position in the LVS
[1]–[7]. In the context of a main target application of our
system, namely Intelligent Transport Systems (ITS), the issue
of location verification has attracted a considerable amount of
recent attention [8]–[13]. Normally, in order to infer whether
a network user or node is malicious (attempting to spoof
location) or legitimate (actually at the claimed location), we
have to set a threshold for the LVS. This threshold is set so
as to obtain low false positive rates for legitimate users and
high detection rates for malicious users. As such, the specific
value of the threshold will directly affect the performance of
an LVS.

One traditional approach to set the threshold of an LVS is to
search for a tradeoff between false positive rate and detection
rate according to receiver operating characteristic (ROC) curve
[14]. Another technique is to obtain the false positive and
detection rates through empirical training data and minimize
specific functions of the two rates to set the threshold [2] [4]
[6]. For example, in [4], the sum of false positive and false
negative rates were minimized. However, although successful

in many scenarios, the approaches mentioned above do not
specify in any formal sense what the ‘optimal’ threshold value
of an LVS should be. In addition, in our key target application
of our LVS, namely ITS, it is not practical to collect the
required training data due to the variable circumstances.

The main point of this paper is to develop for the first
time an information theoretic framework that will allow us
to formally set the optimal threshold of an LVS. In order
to do this, we first define a threshold based on the squared
Mahalanobis distance, which utilizes the Fisher Information
Matrix (FIM) associated with the location information metrics
utilized by the LVS. To optimize the threshold, the Intrusion
Detection Capability (IDC) proposed by Gu et al. [14] for an
Intrusion Detection System (IDS) will be utilized. The IDC is
the ratio of the reduction of uncertainty of the IDS input given
the output. As such, the IDC measures the capability of an
IDS to classify the input events correctly. A larger IDC means
that the LVS has an improved capability of classifying users
as malicious or legitimate accurately. From an information
theoretic point of view the optimal threshold is the value that
maximizes the IDC.

The rest of this paper is organized as follows. Section 2
presents the system model, which details the observation
model and the threat model we utilize. In section 3, the
threshold is defined in terms of the FIM associated with the
location metrics. Section 3 also provides the techniques used
to determine the false positive and detection rates, which are
utilized to derive the IDC. Section 4 provides the details
of how the IDC is used in the optimizing the threshold.
Simulation results which validate our new analytical LVS
framework are presented in Section 5. Section 6 concludes
and discusses some future directions.

II. SYSTEM MODEL

A. A Priori Information: Claimed Position

Let us assume a user could obtain its true position, θt =
[xt, yt], from its localization equipment (i.e., GPS), and that
the localization error is zero. Thus, a legitimate user’s claimed
(reported) position, θc = [xc, yc], is exactly the same as
its true position θt. However, a malicious user will falsify
(spoof) its claimed position in an attempt to fool the LVS . We
denote the legitimate and malicious hypothesis as H0 and H1,
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respectively, and the a priori information can be summarized
as {

H0 : θc = θt, (Legitimate)

H1 : θc 6= θt, (Malicious).
(1)

B. Observation Model based on H0

Although the framework we develop can be built on any
location information metric, for purposes of illustration in this
work we will solely investigate the case where the location
information metric is the Received Signal Strength (RSS)
obtained by a Base Station (BS) from a user. The RSS of
the i-th BS from a legitimate user, Pi, is assumed to be given
by

Pi = P0 − 10γ log10

(
dti
d0

)
+ wσ, (2)

where P0 is a reference received power, d0 is the reference
distance, γ is the path loss exponent, wσ is a zero-mean normal
random variable with variance σ2

dB , the Euclidean distance of
the i-th BS to the user’s true position [xt, yt] is

dti =
√

(xt − xiB)2 + (yt − yiB)2, i = 1, 2, . . . , N,

where [xiB , y
i
B ] is the location of the i-th BS, and N is the

number of BSs. For H0 in eq. (1), dti in eq. (2) can be replaced
by dci , where dci is the Euclidean distance of the i-th BS to
the user’s claimed position [xc, yc] and can be expressed as

dci =
√

(xc − xiB)2 + (yc − yiB)2, i = 1, 2, . . . , N.

C. Threat Model (Observation Model based on H1)

Let us assume a malicious user knows the positions of all
BSs and is able to boost its transmit power according to its
claimed positions. The RSS of the i-th BS from a malicious
user, Pi, can be written as

Pi = P0 + Px − 10γ log(
dti
d0

) + wσ, (3)

where Px is the boost power. We assume the malicious user is
equipped with only one omni-antenna, and thus Px is constant
for all the BSs.

In the following, one strategy to set a boost value of
Px for the malicious user will be provided. A malicious
user’s claimed position is determined by its purpose and
LVS parameters. Constrained by the positions of all BSs, the
spoofed observations Pi are not exactly the same as the ideal
observations P̃i calculated according to its claimed position as
follows

P̃i = P0 − 10γ log10

(
dci
d0

)
+ wσ,

However, the malicious user would like to spoof the obser-
vations Pi as similar as possible to the ideal observations P̃i.
Thus, it will set a value of Px to minimize the divergence

between Pi and P̃i. This divergence can be defined by the
Mean Square Error (MSE) as follows

D = E

{
1

N

N∑
i=1

[
Pi − P̃i

]2}

=
1

N

N∑
i=1

[
Px − 10γ log(

dti
d0

) + 10γ log10

(
dci
d0

)]2
,

where E is the expectation with respect to all the observations.
Then, the value of Px can be expressed as P̄x = arg min

Px

D.

Taking the first derivative of D with respect to Px and setting
it to zero, we can obtain P̄x as

P̄x =
1

N

N∑
k=1

10γ log(
dtk
d0

)− 1

N

N∑
k=1

10γ log(
dck
d0

).

In the above we use k instead of i in the equations related to
P̄x to avoid confusion them with the H0 observation model.
Substituting P̄x into eq. (3), the threat model (observation
model based on H1) can be rewritten as

Pi = P0 + P ti −
1

N

N∑
k=1

10γ log(
dck
d0

) + wσ, (4)

where

P ti =
1

N

N∑
k=1

10γ log(
dtk
d0

)− 10γ log(
dti
d0

).

Eq. (4) is the general threat model based on RSS, but it is not
practical since a malicious user’s true position is unknown.
We can approximate the threat model by assuming θt follows
a distribution. Here, due to the limited space, let us assume
a malicious user has an approximate infinite distance away
from all BSs to facilitate the LVS (the more general case is
discussed later). Given this assumption, all the BSs distance’s
from the user converge to one value. That is, the distance of a
malicious user’s true position to every BS is nearly a constant
number dfar, i.e., dti ∼= dfar, d

t
k
∼= dfar, i, k = 1, 2, . . . , N .

Therefore, the term P ti can be rewritten as

P ti
∼=

1

N

N∑
k=1

10γ log(
dfar
d0

)− 10γ log(
dfar
d0

) = 0.

Based on the above analysis, the threat model can be expressed
as

Pi = P0 −
1

N

N∑
k=1

10γ log(
dck
d0

) + wσ. (5)

III. THRESHOLD AND TWO RATES

In this section, we first present our threshold based on
the squared Mahalanobis distance, which utilizes the inverse
FIM. Then, we provide techniques used to determine the false
positive rate α and the detection rate β of our LVS.



A. Threshold

The threshold is defined in terms of the squared Maha-
lanobis distance of an estimated position vector θ̂ = [x̂, ŷ].1

The squared Mahalanobis distance can be expressed as [15]

D̃M = (θ̂ − θ̄)M−1(θ̂ − θ̄)T ,

where θ̄ is the mean of θ̂ and M is the covariance matrix of
θ̂. According to the definition of D̃M , it is a dimensionless
scalar and involves not only the Euclidean distance but also
the geometric information. In an LVS, we are interested in
the ‘distance’ between a user’s estimated position θ̂ and its
claimed position θc. Thus, we will use θc instead of θ̄ to
calculate D̃M . In addition, without any a priori results from
a localization algorithms, we can not obtain any estimate
of the covariance matrix M . Therefore, we will utilize the
inverse FIM, Mc, to approximate M . With this, the squared
Mahalanobis distance in our LVS can be written as

DM = (θ̂ − θc)M−1c (θ̂ − θc)T .

where Mc = F−1 and F is the FIM to be calculated as
given below. In practice, the LVS works on the observation
model based on H0, and the likelihood function of received
powers can be obtained using eq. (2). Let us assume the
observations received by different BSs are independent, then
the log-likelihood function can be expressed as

l(P |θt) = − 1

2σ2
dB

N∑
i=1

[
Pi − P0 + 10γ log(

dti
d0

)

]2
+ log C.

where P is the N -dimension observation vector and the
constant number C is

C =
1

(2πσ2
dB)N/2

.

Then, we can calculate the terms of the FIM through

Fxy = −E
[
∂2l(P |θt)
∂x∂y

]
,

where E represents the expectation operation with respect to
all observations. After some algebra, the FIM can be written
as [16],

F =


b

N∑
i=1

sin2 ϕi
dt2i

b
2

N∑
i=1

sin 2ϕi
dt2i

b
2

N∑
i=1

sin 2ϕi
dt2i

b

N∑
i=1

cos2 ϕi
dt2i

 ,

1Note that an equivalent description of our LVS, which does not introduce
the Mahabalotnis distance, can be described in terms of the Cramer-Rao
Lower Bound σCR. In this alternative description, an error ellipse is derived
directly from the FIM, with the scale of the ellipse being set by σCR and
the orientation being set by the eigenvectors of the inverse FIM. For different
values of the threshold T the ellipse size scales as TσCR, and the detection
algorithm decides the user is malicious if the estimated position returned by
the location MLE lies outside of the ellipse.

where

b =

(
10γ

σdBln10

)2

,

ϕi = arctan
yt − yiB
xt − xiB

.

After setting a threshold parameter T for the squared
Mahalanobis distance, the decision rule of an LVS (i.e. a
malicious user or not) can be expressed as follows{

DM ≤ T,⇒ H0 (Legitimate)

DM > T,⇒ H1 (Malicious).
(6)

Note that, we are able to transform any covariance matrix
into a diagonal matrix by rotating the position vector [17].
Thus, the general form of Mc can be expressed as

Mc =

[
σ2
x 0

0 σ2
y

]
.

Then, the threshold T can be encapsulated within the equation
for an ellipse as follows

(x̂− xc)2

Tσ2
x

+
(ŷ − yc)2

Tσ2
y

= 1.

Therefore, the threshold T can also be understood as an ellipse,
denoted as T, which is determined by extending the error
ellipse provided by the FIM with the threshold parameter T .

Based on the above analysis, the overall process of an LVS
includes four steps
• Collect observations of the RSS received from a user by

each BS;
• Apply a localization algorithm to obtain an estimated

position θ̂;
• Calculate the squared Mahalanobis distance DM of θ̂ to

the user’s claimed position θc;
• Infer if the user is legitimate or malicious according to

the decision rule in eq. (6).
In practice, the above are all the steps of our LVS. However,

to evaluate an LVS, false positive and detection rates, which
are functions of the threshold parameter T and other LVS
parameters, are always investigated in theory. In the following
subsections, we provide techniques used to determine false
positive and detection rates in order to optimize the threshold
parameter T .

B. False Positive Rate

The false positive rate α is the probability by which legiti-
mate users are judged as malicious ones. For a legitimate user,
θc = θt. Then, in the 2-D physical space, the false positive
rate can be expressed as α = e−

T
2 [17].

In fact, the true positive rate (1 − α) is a well known
metric that underlies the performance of unbiased localization
algorithms. For example, in the 2-D physical space, it states
that the probability by which an estimated position lies within
the ellipse with T = 1 is no more than 39.35%.
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Fig. 1. α, β, CIDC for γ = 3, σdB = 5, S = 10,θc = [0, 40].

C. Detection Rate

The detection rate β is the probability that malicious users
are recognized as malicious ones. In order to calculate β, we
have to obtain the posterior probability density function (pdf)
for a location given some RSS observation vector, which can
be expressed as

f(θ|P ) =
f(P |θ)f(θ)

f(P )
,

where θ = [x, y] is a general location, and P =
[P1, P2, . . . , PN ] is the observation vector. Of course, if the
user is malicious the observed signal vector P will be one
that has undergone a boost as described by eq. (5). Let us
denote the average value of this spoofed observation vector as
P̂ . Given this, the likelihood function f(θ|P̂ ) can be derived
from eq. (2). If we take θ to be a uniform variable vector,
then the detection rate β can be calculated as

β = 1−
∫ ∫
[x,y]∈T

f(θ|P̂ )dxdy = 1− 1

A1

∫ ∫
[x,y]∈T

f(P̂ |θ)dxdy,

where A1 is a normalizing constant that can be written as

A1 = f(P̂ ) =

∫ ∫
f(P̂ |θ)f(θ)dxdy,

where

f(θ|P̂ ) =
f(P̂ |θ)f(θ)

f(P̂ )
.

Numerical methods are utilized to solve the above integral
equation for β since there is no closed form solution. Based
on the above analysis, β is also a function of T .

As an aside it is worth mentioning that the false positive
rate α can also be written in a similar form as follows

α = 1− 1

A0

∫ ∫
[x,y]∈T

f(P̃ |θ)dxdy,
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Fig. 2. α, β, CIDC for γ = 3, σdB = 5, S = 10,θc = [0, 40],
N = 4, T0 = 4.75, the malicious user is about 10km away from θc.

where P̃ is the average non-spoofed observation vector and

A0 = f(P̃ ) =

∫ ∫
f(P̃ |θ)f(θ)dxdy,

where

f(θ|P̃ ) =
f(P̃ |θ)f(θ)

f(P̃ )
.

IV. OPTIMIZATION OF THE THRESHOLD

In this section we will optimize the value of the threshold by
maximizing the IDC, which is a function of the false positive
rate α, detection rate β and the base rate B (the a priori
probability of intrusion in the input event data). That is, our
optimization procedure is to find the value of T that maximizes
the IDC. From an information theoretic point of view, the IDC
is a metric that measures the capability of an IDS to classify
the input events correctly and is defined as [14]

CIDC =
I(X;Y )

H(X)
=
H(X)−H(X|Y )

H(X)
, (7)

where H(X) is the entropy of the input data X , I(X;Y ) is
the mutual information of input data X and output data Y ,
and H(X|Y ) is the conditional entropy. Mutual information
I(X,Y ) measures the reduction of uncertainty of the input X
given the output Y . Thus, CIDC is the ratio of the reduction
of uncertainty of the input given the output. Its value range
is [0, 1]. A larger CIDC value means that the IDS has an
improved capability of classifying input events accurately.

Our LVS can be modeled as an IDS whose input data are the
claimed positions, and the output data are the binary decisions.
Then, X = 0 represents an actual claimed position from a
legitimate user, X = 1 represents a spoofed claimed position
from a malicious user, Y = 0 infers the user is legitimate,
and Y = 1 indicates the user is malicious. Accordingly, the
false positive rate α is the probability P(Y = 1|X = 0),
and detection rate β is the probability P(Y = 1|X = 1).
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Fig. 3. CIDC for a range of σdB , for γ = 3, S = 10,θc = [0, 40].

Therefore, the optimal value of T is the one that maximizes
the value of the CIDC of the LVS.

The realizations of input and output data are denoted as zx
and zy , respectively. Given the base rate B, the entropy of the
input data H(X) can be written as [18]

H(X) = −
∑
zx

p(zx) log p(zx)

= −B logB − (1−B) log(1−B).

The conditional entropy H(X|Y ) can be expressed as

H(X|Y ) = −
∑
zx

∑
zy

p(zx, zy) log p(zx|zy)

= −
∑
zx

∑
zy

p(zx)p(zy|zx) log
p(zx)p(zy|zx)

p(zy)

= −Bβ log
Bβ

Bβ + (1−B)α

−B(1− β) log
B(1− β)

B(1− β) + (1−B)(1− α)

−(1−B)(1− α) log
(1−B)(1− α)

(1−B)(1− α) +B(1− β)

−(1−B)α log
(1−B)α

(1−B)α+Bβ
.

Numerical methods are applied in order to search for the
optimal value of T since there is no closed form for β. In the
following we refer to this optimal value as T0.

V. SIMULATION RESULT

Adopting a Maximum Likelihood Estimator (MLE) in our
location estimation algorithm we now verify, via detailed sim-
ulations, our previous analysis. The theoretical and simulated
α, β and CIDC , all of which are dependent on T , are utilized
in order to find the value T0 that maximizes CIDC .
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Fig. 4. CIDC for a range of σdB , for γ = 3, S = 10,θc = [0, 40],
N = 4, T0 = 4.75, the malicious user is about 10km away from θc.

A. Simulation Set-up

The simulation settings are as follows:
• N BSs are deployed in a 200m× 200m square field and

the legitimate and honest users can communicate with all
BSs;

• The claimed positions of honest and malicious users are
the same, denoted θc;

• S observations are collected from each base station;
• The BSs are set at fixed positions (we investigate a range

of fixed locations);
• The results shown are averaged over 1,000 Monte Carlo

realizations of the estimated position, and where the base
rate B = 50% for all the simulations.

B. α, β, CIDC with Different Values of T

As shown in Fig.1, the solid lines are the theoretical α,
β and CIDC while the symbols are the simulated α, β and
CIDC . The simulated values of α and β are calculated directly
according to the realizations of estimated positions, and then
the simulated CIDC is obtained from eq. (7). The simulation
parameters are shown in the figure caption and the theoretical
optimal value T0 can be seen to be 4.75 (note that in all the
figures explicitly shown in this paper the four BSs are fixed at
the corners of a 200m x 200m grid). The comparison between
simulation and analysis shows excellent agreement. Beyond
the simulations explicitly shown in Fig.1, we have investigated
a range of other fixed BSs positions (up to 10 BSs whose
positions are randomly selected), and these simulation also
show excellent agreement with simulations. Collectively, these
simulation results verify the analysis we have provided earlier.

The simulation results with a malicious user having a certain
distance to all BSs are shown in Fig.2. The true position of
the malicious user in the simulations is set at 10km away from
the claimed position. Although the simulation and theoretical
values of α, β and CIDC do not match with each other exactly
(the theoretical analysis approximates the user as being at
infinity), the simulation and theoretical optimal values T0 are



effectively the same. We find this result holds down to distance
where the malicious user is a few km away from the claimed
position. This shows that our framework is tenable when the
assumption that malicious user is infinitely far away is relaxed
down to the few km range.

In order to verify the CIDC with the optimal value T0 is
correct, we also simulated CIDC for a range of σ2

dB . Fig. 3
shows such results for the case where the user malicious user
if effectively at infinity. Here the optimal value T0 is derived
from the proposed theoretical analysis, but in the simulations
the threshold is set to the other values of T shown (2T0 and
0.5T0). From the results shown we can see that these other
values do provide simulated false positive and detection rates
which result in lower values of CIDC (and therefore sub-
optimal performance), which once again verifies the robustness
of our analytical framework. Fig. 4 shows the same results
except that the malicious user is again set at 10km away from
the claimed position. Again we see a validation of our analysis.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel and rigorous
information theoretic framework for an LVS. The theoretical
framework we have developed shows how the value of the
threshold used in the detection of a spoofed location can be
optimized in terms of the mutual information between the
input and output data. In order to verify the legitimacy of our
framework we have carried out detailed numerical simulations
of our framework under the assumption of an idealized threat
model in which the malicious user is far enough from the
claimed location such that his boosted signal strength results
in all BSs receiving the same RSS (modulo noise). Our
numerical simulations mimic the practical scenario where a
system deployed using our framework must make a binary
Yes/No “malicious decision” to each snapshot of RSS values
obtained by the BSs. The comparison between simulation and
analysis shows excellent agreement. Other simulations where
we modify the approximation of constant RSS at BSs also
showed very good agreement with analysis.

The work described in this paper formalises the performance
of an optimal LVS system under the simplest (and perhaps
most likely scenario), where a single malicious user attempts
to spoof his location to a wider wireless network. The practical
scenario we had in mind whilst carrying out our simulations
was in an ITS where another vehicle is attempting to provide
falsified location information the wider vehicular network.
Future work related our new framework will include the
formal inclusion of more sophisticated threat models, where
the malicious user is both closer to the claimed location and
has the use of colluding adversaries. It is well known that
no LVS can be made foolproof under the colluding adversary
scenario,2 however, we will investigate in a formal information

2Note that location verification in the context of quantum communications
systems have previously been considered e.g. [19], [20], [21], and it has been
argued that such systems are able to securely verify a location under all
known threat models [22] - although see [23] who argue otherwise. It is
undisputed that classical communications alone cannot achieve secure location
verification under all known threat models.

theoretic sense the detailed nature of the vulnerability of an
LVS under such different threat models.
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