
ar
X

iv
:1

01
2.

41
36

v1
 [

cs
.N

I]
 1

9
D

ec
 2

01
0

Employing Coded Relay in Multi-hop Wireless
Networks

Zhenghao Zhang, Wei Hu, and Jin Xie
Computer Science Department

Florida State University Tallahassee, FL 32306, USA

Abstract—In this paper, we study Coded relay (Crelay) in
multi-hop wireless networks. Crelay exploits both partial packets
and overhearing capabilities of the wireless nodes, and uses
Forward Error Correction code in packet forwarding. When
a node overhears a partial packet from an upstream node, it
informs the upstream node about the number of parity bytes
needed to correct the errors, such that the upstream node
need only send a small amount of parity bytes instead of the
complete packet, hence improving the network efficiency. Our
main contributions include the following. First, we propose an
efficient network protocol that can exploit partial packets and
overhearing. Second, we study the routing problem in networks
with Crelay and propose a greedy algorithm for finding the paths.
Third, we propose an error ratio estimator, called AMPS, that
can estimate the number of byte errors in a received frame with
good accuracy at a low overhead of only 8 bytes per frame, where
the estimator is needed for a node to find the number of needed
parity bytes. Fourth, we implement the proposed protocol and
algorithm within the Click modular router, and our experime nts
show that Crelay can significantly improve the performance of
wireless networks.

I. I NTRODUCTION

Wireless multi-hop networks, e.g., wireless mesh networks,
wireless sensor networks, have attracted much interests inre-
cent years. In this paper, we propose Coded Relay, abbreviated
as Crelay in the following, which exploits two fundamental
properties of transmissions over the wireless medium, namely
the existence of partial packets and the overhearing capability.
That is, partial packets are often received by wireless nodes
that are not completely correct but still contain a significant
amount of correct information. Also, because the medium is
shared, when a node transmits a packet to second node, a third
node may overhear this packet.

The core idea of Crelay is simple and can be explained
as follows. Basically, nodes relaycodedmessages to the next
hop node depending on the amount of information that has
already been overheard, where a coded message is constructed
according to an Forward Error Correction (FEC) code. As a
simple example, suppose a path isvA → vB → vC , while vA
wishes to send a packetP to vC . vA first transmitsP, after
which vB getsP while vC gets a partial packet with some
errors.vC estimates the number of errors using an error ratio
estimator, and asksvB to send just enough number of parity
bytes correct these errors, instead of sending the entire packet.
Thus, fewer bytes are transmitted and a better efficiency is
achieved. By sending FEC-coded messages, Crelay opens up
new possibilities for packet forwarding in multi-hop wireless
networks.

Although the idea is simple, the design of Crelay faces the

following challenges. First, a protocol should be designedfor
control message exchange that facilitates packet forwarding
at low overhead and low delay. The control message should
allow an upstream node to be informed about the receiving
status of a packet to determine whether the packet should
be transmitted and if so, the number of parity bytes needed.
Note that a packet transmission may reach a far node on
the path due to a lucky overhearing, and the bypassed nodes
should be exempted from the duty of forwarding because their
transmissions are pointless at this moment. Also, the upstream
node should be aware of the number of errors in a received
packet such that it can send just enough number of parity
bytes to correct the errors. Avoiding pointless transmission is
the classic challenge facing all opportunistic routing protocols.
Existing approaches include structured forwarder coordination
[6] which may discourage spatial reuse [4], or randomized
network coding [4], [5] which cleverly eliminates the need of
feedback but cannot be used in Crelay because Crelay needs
the feedback to determine the number of parity bytes. To
this end, we give a novel, simple solution, based on two key
observations: (1)packets usually experience queuing delays at
the nodes, specially under high load when throughput should
be optimized; (2)the lucky overhearing usually bypasses a
small number of nodes on the pathsuch that it is possible to
propagate the status of an overheard packet to the upstream in a
timely manner. Therefore, with a good feedback mechanism, a
node can often obtain the receiving status of a packet from
its downstream nodes before starting to serve this packet,
because it has to serve other packets first. We design an
efficient feedback mechanism for Crelay which scavenges all
overheard useful information and adopts two tricks we call the
ACK triggered recordand ACK propagation. The overhead
is low because all feedback information is piggybacked with
data packets whenever possible, not necessarily the packets
belonging to the same flow.

Second, an algorithm is needed to calculate the best path in
Crelay. The routing problem is interesting because a sub-path
of an optimal path may not be optimal, due to partial packets
and overhearing. We study the routing problem and propose a
practical heuristic algorithm for finding the paths.

Third, an estimator is needed to find the number of errors
in a received packet, because the receiving node actually does
not know the number of errors. We propose an error ratio
estimator, referred to asAMPS, which is based on the optimal
maximum a posteriori (MAP) estimation. AMPS adds only 8
bytes per-frame as overhead and computes the estimate with a
constant time table lookup. Our simulations also show that for

http://arxiv.org/abs/1012.4136v1

per-packet level estimation, AMPS is more accurate than EEC
[13], a recently proposed error ratio estimator, at much less
overhead. Our experiments show that AMPS can achieve good
accuracy, e.g., for more than 58% of the time, its estimation
error is no more than 3 bytes among typically 150 transmitted
bytes.

We implement Crelay within the Click modular router [19],
and test its performance in an 11-node testbed. The results
show that Crelay achieves a significantly better performance
than the traditional single path routing scheme as well as More
[4] which the state-of-art opportunistic routing protocolwith-
out physical layer hint. For example, the average throughput
gain of Crelay over More is 36% in our experiments.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the Crelay
protocol. Section IV discusses the problem of finding paths.
Section V describes the AMPS error ratio estimator. Section
VI gives the experimental results. Section VII concludes the
paper.

II. RELATED WORK

Partial packets and overhearing opportunities have been re-
alized and studied extensively in recent years, see, for example,
[11], [7], [6], [4], [5]. Compared to other opportunistic routing
protocols, Crelay operates more like a traditional routing
protocol, in that (1) Crelay forwards packets in a per-packet
basis while ExOR [6], More [4], and MIXIT [5] require a
batch of packets to be assembled before the transmission, (2)
Crelay maintains per-neighbor buffer while ExOR, More, and
MIXIT maintain per-flow buffer hence have higher protocol
complexity. In addition, network-coding-based solutionssuch
as More and MIXIT need to solve linear equations to recover
every packet, which poses high requirements on the computa-
tional capabilities as well as power capabilities. Anothercore
difference between Crelay and MIXIT is that Crelay does not
rely on physical layer hints to handle partial packets, hence
can be used in a wider range of application scenarios because
physical layer hints are not always available [7].

Crelay uses FEC code in a network, however it is differ-
ent from network coding. Wireless network coding combines
multiple packets into a coded packet, usually through a linear
transformation, and broadcast the coded packet [8], [4], [5],
[9], [10]. Crelay does not mix multiple packets and does not
incur the associated computational cost.

Introducing relaying nodes has been proposed for cellular
phone networks. For example, LTE base stations may employ
relaying devices in a cell which can significantly improve the
throughput [3]. The idea of Crelay was actually originated from
corporative relaying, where itself is still an active research area
in the signal processing community [1], [2]. Existing research
on corporative relaying considers forwarding messages in a
two-hop scenario; however, Crelay focuses on multi-hop net-
works, where the routing problem is much more challenging.

Recently, Error Estimation Coding (EEC) [13] was proposed
for estimating the error ratios. EEC focuses on the average
error ratio of a link, while APMS focuses on the individual
error ratio of the packets. EEC, with non-trivial probability,
may output 0 as the estimated number of errors for partial

packets, which is tolerable for link-level estimation after taking
the average; however, it cannot be applied directly to Crelay
which needs accurate, per-packet estimation. We make a more
detailed comparison between EEC and AMPS in Section
V-C, where we show that for per-packet estimation, AMPS
outperforms EEC with lower overhead.

III. T HE CRELAY PROTOCOL

We describe the Crelay protocol in this section.

A. Preliminaries

Crelay is basically a link state protocol where nodes learn
and propagate the quality of the links. A link is measured by
two values, namely theerasure ratioand theerror ratio, where
the former is the fraction of frames that are unaware of by the
receiver and the latter is the fraction of the erroneous bytes
in a received frame. Apath is an ordered list of nodes that
will participate in relaying the packet. All nodes appearing
earlier than a node in the list are theupstream nodes, and
all nodes appear later thedownstream nodes. Nodes determine
the packet forwarding paths based on the link states, and every
node should find the same path for a particular pair of source
and destination. When received a packet from the upper layer,
the source node inject the packet into the network whenever
it gets the opportunity and nodes in the forwarding path will
collaborate in relaying it, bypassing some nodes sometimes,
until it reaches the destination. A node maintains a queue for
each neighbor, and buffers a packet in the queue for neighbor
vA if the next hop of the packet isvA. Packets in the a
queue are first-come-first-served; different queues are served
according to round-robin.

Crelay can work with any error correction code. The current
implementation uses the Reed-Solomon (RS) code, because
of its strong error correction capability and the availability of
software implementations [17]. Using the RS code, if there are
e erroneous bytes in the received data belonging to a codeword,
with any additional2e bytes in the codeword, all errors can
be corrected. A node does not have to receive all bytes in the
codeword; the part that are not transmitted can be treated as
erasures[12].

Errors in the packets may occur in bursts, which is not
desirable because it may result in one codeword handling too
many errors, thus exceeding the decoding capability, while
others handling too few. To cope with this, Crelay adopts
interleaving. Basically, before transmission, bytes in the data
field of a frame are mapped to random locations according
to a random permutation, and at the receiver, the reverse of
the random permutation is applied before handing the packet
for processing. The effect of this is that errors are relocated
to random locations such that they are spread evenly in the
packet.

B. Block, Codeword, Segment, and Record

The four main concepts in Crelay with regarding to packet
forwarding areblock, codeword, segment, andrecord:

• Block: a data packet from the upper layer is divided into
a number of blocks of equal size, padded if necessary.

2

• Codeword: a block is encoded according to the RS
code into a codeword, which is basically the data bytes
followed by the generated parity bytes.

• Segment: a continuous segment of bytes in a codeword,
represented by an interval of integers.

• Record: the received segment(s) in a codeword. The seg-
ment(s) may be scattered in the codeword. They usually
do not overlap; in case of overlap, for the overlapping
part, the one with less errors is used.

In our current implementation, each block is 150 data bytes,
and each codeword is 255 bytes according to the (255, 150)
RS code. When transmitting a packet, for simplicity, a node
transmits the same segment in all codewords. We say a record
is decodableif the original data block can be recovered from
it. If a block has been recovered from the record, we also say
it is decoded. If all blocks in a packet are decoded, we say the
packet is decoded.

C. Basic Operations

1) Receiver: A node always monitors the channel. When
receives a data packet, if it is on the forwarding path of this
packet, found based on the source and destination ID, it checks
whether it is on the downstream of the packet sender. If yes, it
adds the newly received segments to its records of this packet.
It then runs AMPS to estimate the number of errors. As the
number of errors in the transmitted segments may vary, it
estimates the maximum number of errors in a segment among
all segments, and uses it as the estimate for all segments. It
then estimates whether the records are decodable. If no, when
gets access to the medium, it announces the receiving status
of the packet, which includes the start location, end location,
and estimated number of errors of each segment that has been
overheard. After receives another segment, a node may attempt
to decode. If the decoding is successful, it sends an ACK;
otherwise it announces the new receiving status and waits for
the next segment until all records are decoded or a timeout. It
could happen that the decoding fails only at certain records; in
this case the node announces a mask of the decoded records,
and the upstream node will transmit segments only for the
undecoded records.

2) Sender: The sender, when transmitting for a packet,
chooses a minimum size segment such that the next hop node
should be able to decode the records. The receiving status of
nodes further downstream are not considered because they may
be better served by nodes closer to them. Basically, it runs a
linear search at selected locations and estimates the number of
bytes needed if the segment starts at this location, and picks
the one that needs the minimum. The list of locations include
the start and end of each segment that has been overheard, plus
the first byte of the codeword.

D. A Simplified Example

Fig. 1 is a simple example for the illustration of the concepts.
The data packet from the upper layer is assumed to be 16
bytes, and is organized into 2 blocks. Each block is encoded
into a codeword with 4 parity bytes. The first transmission
is segment (0,7), i.e., the data bytes, for both blocks. The
channel corrupted 1 byte in the transmitted segment for block

Original packet:

Original packet into 2 blocks:

Encoded into 2 codewords:

After receiving segment (8, 9):

After receiving segment (0, 7):

Fig. 1. An example of Crelay. Green: data bytes. Blue: paritybytes. Red:
corrupted bytes.

.

.

.

.

.

.

PKT_SRC
PKT_SEQ#
PKT_DST

SEGbgn
SEGend

BLK#

.

.

.

.

.

.

.

.

.

NUMS
ACK_SRC
ACK_SEQ#
ACK_DST

BLK# SEG#
DECODED

MASK

SEG 1

SEG 2

SEGend
GoodB#

SEGbgn

MAC HEADER

FRAME ID

:
:
:

AMPS SAMPLE

CRC

CRC

CRC

STAT_SRC
STAT_SEQ#
STAT_DST

DATA PKT 1

DATA PKT 2

DATA PKT n

CRELAY
HEADER

PKT HEAERS

ACKS,
ANNOUNCE:

ANNOUNCE LEN

PKT RCV STAT,

SENDER ID

CRC
PARITY BYTES

PARITY BYTES
CRC

DATA PKT LEN

ACK#

PKT#
STAT#

Fig. 2. Crelay frame format. The shaded fields are mandatory,others are
optional.

0. The receiving node estimates the maximum number of errors
among the two transmitted segments to be 1, and announces
(0,7,1) as the receiving status. The sending node, seeing that
there is 1 error, transmits segment (8,9), because the 2 parity
bytes should correct the error. The channel actually corrupts
1 byte in the transmitted segment for block 1. The receiving
node estimates that there is no error in the received segments,
which is an incorrect estimation, and believes that it has two
segments in its record: (0,7,1) and (8,9,0). As 2 parity bytes
should correct 1 error, it attempts to decode the records and
luckily decoded both.

E. Frame Format

After the MAC header, a Crelay frame consists of three main
sections, the header, the announcements, and the data packets,
as shown in Fig. 2. The header contains information such as the
frame sequence number, the sender’s ID, AMPS samples, etc,
and is protected by an FEC code. The announcements section
contains ACKs, packet receiving status, and headers of the data
packets in this frame, also protected by an FEC code. The
ACK contains simply the source and destination ID and the
packet sequence number. The packet receiving status contains
the source and destination ID, the packet sequence number, the

3

number of blocks in the packet, the mask of decoded blocks,
and the list of received segments. The data packet header
contains the source and destination ID, the packet sequence
number, the number of blocks, and the transmitted segment.
The data packets section contains the data. A frame may have
multiple data packets, because one may be a fresh packet and
the other may be the parity bytes for another packet.

The overhead of the Crelay protocol is mainly the Crelay
header and the announcement section. The Crelay header is
fixed 28 bytes. The length of the announcement section may
vary depending on the number of ACKs, packet receiving
status, and data packets, and is usually no more than 60 bytes.
Our experiments show that Crelay is able to achieve improved
performance over other protocols at this overhead.

F. Addressing the Protocol Design Challenges

We now discuss how Crelay meets the main design chal-
lenges.

1) ACK Triggered Record:Crelay should first ensure that
a node sends the correct amount of parity bytes to the next
hop node. Denote a node asvA and its next hop asvB. This
requiresvB to get a good estimate of the number of errors,
addressed by AMPS to be discussed later; also,vA should wait
for the receiving status ofvB before sending the packet. Crelay
therefore classifies packets into three states, S0, S1, and S2:
(1) in state S0, some information has been overheard about this
packet, but it still not decodable; (2) in state S1, the packet
has been successfully decoded, but the receiving status of the
packet at the next hop is not known; (3) in state S2, the packet
has been successfully decoded, and the receiving status of the
next hop is known. Only packets in state S2 can be transmitted.

If vB overhears the packet,vB should be able to announce
the receiving status when it gets access to the medium. The
challenge is thatvB may not have overheard it hence never
announces the receiving status, andvA may hold the packet
in state S1 forever. Crelay solves this problem with a simple
trick called “ACK triggered record.” That is, it let nodes create
an empty record of a packet once overheard an ACK for this
packet, even when no data is overheard. The empty record will
promptvB to announce an empty receiving status, which will
allow vA to promote the packet into state S2. The rationale
behinds this is thatvA will send an ACK once it decoded
the packet, and most likely, this ACK can be overheard by
vB because they are neighbors on the path who should share
a relatively good link. As nodes should follow a fair MAC
protocol to access the channel, aftervA sends the ACK,vB is
likely to get the channel and be able to announce the receiving
status. Thus this solution does not increase much of the delay.
In the case thatvB did not overhear the data packet and the
ACK, Crelay relies on timeout and allows a packet to be
promoted to state S2 if it has been in state S1 for longer than
a threshold.

2) ACK Propagation: Crelay should also ensure that the
“good forwarders” forward the packet to reduce pointless trans-
missions. That is, suppose a path isv0 → v1 → ...vn−1 → vn.
After vi gets the packet due to a lucky overhearing,vj should
not transmit ifj < i. To achieve this, Crelay adopts a simple
strategy based on “ACK propagation.” Basically, an ACK will

A

B

D E

C

1

0.5

1
1

1
0.9

Fig. 3. Routing example with Crelay.

be propagated from the downstream to the upstream whenever
needed, helping the upstream nodes to remove packets that no
longer need to be transmitted.

To be more specific, in Crelay, a node sends ACK in
three cases: (1) when it decoded the packet, (2) when it
removed the packet recently because received an ACK from a
downstream node but heard an upstream node sending it again,
and (3) when it overheard an ACK or the data packet from a
downstream node while it has not decoded the packet itself.
Any node who gets an ACK for a packet from a downstream
node will delete the packet. Case (1) is obvious and Case (2)
is because if the upstream node is still sending the packet,
it did not get an ACK from any of its downstream nodes
and the downstream node should send ACK again. Case (3)
guarantees that if a node sends an ACK or sends the packet
itself, both can be regarded as a valid ACK, this ACK will be
propagated and eventually known to the upstream nodes that
are waiting for ACKs. The propagation could take time, and
it might be a concern that a node may make an unnecessary
transmission before the ACK is propagated to it. However, as
discussed earlier, the packet queuing delay usually prevents this
from happening. Also, in most cases, this lucky overhearing
bypasses a small number of links so the propagation delay is
usually small.

IV. ROUTING WITH CRELAY

In this section, we discuss the routing problem in Crelay.
Routing in Crelay is interesting because a sub-path of an
optimal path may no longer be optimal. For example, consider
the simple network shown in Fig. 3. The number besides a
link is the receiving ratio, defined as the number of bytes that
can be decoded if the sender sends one byte. It represents
the quality of the link and is determined by the error ratio
and the FEC code adopted. The best path fromA to D is
clearly A → B → D, but the best path fromA to E is
A→ C → D → E, due to the overhearing link fromC to E.

A. Path Metric

We use theExpected Transmission Byte (ETB)as the metric
of a path, which is the expected of bytes needed to be sent in
total such that the destination can receive one byte of data.It
can be calculated based on the erasure ratio and error ratio of
the links on the path.

To be more specific, denote a path asP = v0 → v1, ...,→
vn. Let L[vi] denote the expected load ofvi, defined as the
expected number of bytesvi should send. The metric of path
P is clearly M [P] =

∑n−1
i=0 L[vi]. L[vi] is determined by

the quality of the link betweenvi and vi+1, as well as the
amount of bytes thatvi+1 has overheard from(v0, v1, ..., vi−1).
The more it has overheard, the lessvi has to send. Let the
erasure ratio and error ratio of linkvi → vj be ei,j and
qi,j , respectively. With the RS code, the receiving ratio is

4

di,j = (1− ei,j)(1− 2qi,j). We maintain the expected number
of bytes that are overheard so far at each node, denoted it as
H [vi] for nodevi, which is initially 0. Assuming transmissions
are independent,L[vi] can be computed iteratively, starting
from v0, shown in Algorithm 1. Note that line 3 calculates

Algorithm 1 Path Metric Calculation
1: SetH [vi]← 0 andL[vi]← 0 for all 0 ≤ i ≤ n.
2: for i = 0 to n− 1 do
3: L[vi]←

1−H[vi+1]
di,i+1di+1,i

4: for j = i+ 2 to n do
5: if H [vj] + L[vi]di,jdj,i > 1 then
6: return INVALID
7: end if
8: H [vj]← H [vj] + L[vi]di,j
9: end for

10: end for
11: return

∑n−1
i=0 L[vi]

the expected number of bytesvi should send tovi+1, where
1−H [vi+1] is the number of bytes still missing atvi+1, and
di,i+1di+1,i is the expected number of bytes thatvi has to
transmit tomake surethatvi+1 receives one byte. The reverse
link quality di+1,i is considered becausevi will be expecting
the ACK from vi+1 and will transmit again if the ACK is
lost. The check in line 5 makes sure that the path is valid,
because if the condition is true, the path does not have to visit
vi+1; otherwise,H [vj] is increased by an amount ofL[vi]di,j
due to overhearing. With two levels of loops, Algorithm 1’s
complexity isO(n2).

B. Routing Algorithm

We adopt a greedy algorithm described in Algorithm 2
which is similar to the Dijkstra’s algorithm. Same as Dijkstra,
a setπ is maintained which keeps the nodes whose paths to the
source node have been determined. In each iteration, a node
not inπ is selected that has the shortest path to the source node
visiting only nodes inπ. Different from Dijkstra, each node has
up tow candidate paths. In each iteration, the candidate paths
will be updated when a new node is added toπ. The algorithm
returns the best candidate path for each node when terminates.
The source node is denoted asv0 and thekth candidate path
from v0 to vi is denoted asPk(vi) where0 ≤ k < w. The
complexity isO(N2w) whereN is the number of nodes in
the network.

V. ERROR ESTIMATION

A key component of Crelay is error estimation. A node must
know the number of error bytes in a partial packet to be able
to ask for the correct number of parity bytes from its upstream
node. Our error estimator is referred to asAMPS, because it
is based on the idea ofAmplified Sampling. A naive sampling
method would be taking samples of the data bytes and use
the ratio of erroneous sampled bytes as an estimate of the
error ratio. However, because the raw byte error ratio is usually
within [0, 0.2] and is often very small, e.g., 0.01, the naive
method may result in high estimation error as it may never

Algorithm 2 A Greedy Routing Algorithm

1: π ← ∅.
2: M [P0(vi)]←

1
d0,idi,0,

for all vi
3: M [Pk(vi)]←∞ for all vi andk wherek 6= 0.
4: while there are nodes not inπ do
5: Let vu be the node not inπ with the best candidate path.
6: π ← π ∪ vu
7: for all vj not in π do
8: for k = 0 to w − 1 do
9: P ← Pk(vu)||vj .

10: Let Pt(vj) be the candidate path with largest met-
ric. ReplacePt(vj) with P if M [Pt(vj)] > M [P].

11: end for
12: end for
13: end while

U number data bytes in a packet
S number of segments in a packet
K number of selected bytes for a sample
T number of samples
X number of error samples
Y number of error bytes in the packet
Z maximum number of error bytes in a segment

TABLE 1
L IST OF NOTATIONS FORAMPS

sample any erroneous byte. AMPS computes asamplewith
multiple bytes which, in effect, amplifies the raw byte error
ratio into a much larger sample error ratio, and achieves better
estimation accuracy.

A. The Estimation Procedure

We first assume a frame contains only one data packet with
U bytes intoS segments of equal size. The sender randomly
samplesK data bytes, allowing repeat, and computes their
parity bit. Each parity bit is a sample. Clearly, the probability
that the sample’s parity is flipped is much larger than the
probability that a byte has errors. For example, if data byte
error ratio is 0.01 andK = 32, the probability that the sample’s
parity is flipped is(1−0.9932)/2 = 0.14, assuming the values
of the errors are random. A total ofT samples are calculated
in this manner, and the samples are transmitted in the Crelay
frame header, protected by error correction code. When the
receiver receives the frame, it calculates samples in exactly
the same way based on the received data bytes. As some bytes
may have been corrupted, the samples it calculates may be
different from the samples in the frame header. We call a
mismatching sample anerror sample, and denote the number
of error samples asX . X carries information about the error
conditions in the frame and is used by AMPS as input to
calculate the estimate. From a high level, AMPS first finds
the maximum a posteriori (MAP) estimation ofY , the number
of error data bytes in the packet. It then finds an estimation
of Z, the maximum number of errors in a segment among all
transmitted segments, such that the probability thatZ is greater
than its estimate is below a threshold. Table 1 lists the main
notations related to AMPS.

The estimation involves three main steps.
Step 1. The conditional probabilityP (X = x|Y = y). Note

5

that after interleaving, the error bytes are randomly distributed
in the packet. Also, we assume the error bytes take random
values. Therefore, the probability that a sample is an error
sample when there arey error bytes, denoted asηy, is

ηy = [1−

(

U − y
K

)

/

(

U
K

)

]/2

For simplicity, we treat the samples as independent. In this
case, the probability that there arex error samples follows the
binomial distribution:

P (X = x|Y = y) =

(

T
x

)

ηy
x(1− ηy)

T−x

Step 2. The MAP estimation ofY . P (Y = y|X = x) can be
calculated according to the Bayesian formula:

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

∑U
y′=0 P (X = x|Y = y′)P (Y = y′)

,

and the MAP estimation̂y is the one that maximizesP (Y =
y|X = x). Note that this requires the prior distribution of
P (Y = y), which will be discussed shortly.
Step 3. The conditional probabilityP (Z = z|Y = y). It can be
calculated iteratively on the number of segments. To be more
specific, we usePi(Z = z|Y = y) to denote the probability
thatZ = z when there arei segments. By definition,P (Z =
z|Y = y) = PS(Z = z|Y = y). First, when there is only one
segment, clearly,

P1(Z = z|Y = y) =

{

1 z = y
0 otherwise

For notational simplicity, we useδy,it to denote the probability
that among they error bytes,t bytes are in one particular
segment when there arei segments. Because the error bytes
are randomly distributed,

δy,it =

(

y
t

)

(
1

i
)t(1−

1

i
)y−t

GivenPi(Z = z|Y = y), Pi+1(Z = z|Y = y) can be found by
conditioning on the number of error bytes in a tagged segment.
That is, we single out one segment, called the tagged segment,
and check the number of error bytes in this segment. The event
thatZ = z occurs when (1) the tagged segment has less than
z errors while the maximum number of errors in a segment
among the remaining segment is exactlyz, or (2) the tagged
segment has exactlyz errors while the maximum number of
errors in a segment among the remaining segments is no more
thanz. Therefore,

Pi+1(Z = z|Y = y) =

z−1
∑

t=0

δy,it Pi(Z = z|Y = y − t)

+ δy,iz

z
∑

z′=0

Pi(Z = z′|Y = y − z)

After gettingP (Z = z|Y = y) as well asŷ, AMPS outputs
ẑ such thatP (Z ≤ ẑ|Y = ŷ) is greater than a threshold,
set to be 0.95 in our implementation. Finally, if there are
multiple data packets in the frame, AMPS first estimates the
total number of errors in the whole frame and divides it into

each packet proportional to the packet sizes, then estimates of
maximum number of errors in a segment for each packet.

B. AMPS In Practice

1) Multiple Resolutions:For the estimation ofY , we intro-
duce AMPS with multiple resolutions, because a particularK
will always be best for one range of error ratios, but may over-
amplify or under-amplify others. We use three types of samples
with K = 128, K = 32, andK = 10, referred to as the type-0,
type-1, and type-2 samples, respectively. The type-0, type-1,
and type-2 samples are responsible for data error ratios in the
range of[0.001, 0.01], [0.01, 0.03], and[0.03, 0.2], respectively.
Assuming the error values are random, they amplify the data
error ratios roughly into sample error ratios of[0.06, 0.36],
[0.14, 0.31], and [0.13, 0.45], respectively, such that every
range is sufficiently amplified to allow enough number of error
samples to be drawn. The number of samples for type-0, type-
1, and type-2 samples are 8, 16, and 40, respectively, which
are determined by considering the required number of outputs
in each range. The number of errors in a typical packet with
error ratio range of[0.001, 0.01], [0.01, 0.03], and [0.03, 0.2]
are below 20 bytes, 60 bytes, and 400 bytes, respectively, and
being able to output respectively 9, 17, and 41 different values
should suffice. We basically let each estimator run in parallel.
In cases when the three estimators give different estimates,
we take a conservative approach and pick the largest estimate.
Note that the total number of samples is 64, or only 8 bytes.

2) Table Lookup Implementation:To reduce the computa-
tion complexity, AMPS obtains the estimation with a constant
time, simple table lookup afterX is computed. Note that
P (Z = z|Y = y) can be precomputed such that the estimation
of Z can be found by a table lookup given the MAP estimation
of Y . BecauseP (X = x|Y = y) can be precomputed,
the MAP estimation ofY can also be obtained by a table
lookup given the value ofX , if the distribution of Y is
fixed. However, in practice, the distribution ofY can vary
depending on the wireless channel condition. We cope with
it by computing tables for 100 representative distributions. As
the size of the frame and the number of segments may vary, we
also choose representative sizes of the frame and segment and
compute corresponding tables. For any received frame under
any channel condition, the table that is closest to its parameters
is chosen. All such tables are computed for each value ofK.
The total size of the tables used by AMPS is about 1.5MB in
the current implementation and can be further reduced after
relaxing the accuracy requirements.

3) AcquiringP (Y = y): AMPS requires the priorP (Y =
y), which should be estimated and selected among the repre-
sentative distributions. We tested the Cisco Aironet 802.11a/b/g
wireless cardbus adapter [18] and found that, interestingly, the
byte error ratio distribution can be fitted very well in many
cases by the truncated Pareto distribution:

P (x) =
αγαx−α−1

1− (γ/ν)α
,

whereγ and ν are the lower limit and the upper limit ofx,
respectively, andα controls the heaviness of the tail [15]. This
may be due to the heavy tailed nature of the error burst in the

6

received packets. Therefore, the distribution can be described
by only one parameterα, asγ and ν are known in practice,
i.e., γ is a very small number andν is a number close to 1.
As 100 distributions are needed, we precompute tables forα
from 0.02 to 2 at a step of 0.02, whileγ = 0.001, ν = 0.999.

To select a distribution,α should be estimated. We imple-
mented the estimation method in [15], where we record the
error ratios of the received frames, denoted asqi for frame i.
Suppose there aren recent samples. According to Equation (4)
in [15], the estimation, denoted as̃α, should satisfy

n

α̃
+

n(γ/ν)α̃ ln γ/ν

1− (γ/ν)α̃
+ n ln γ =

n
∑

i=1

ln qi.

Given the set of error ratio values, we find̃α that results
in a left side of the above equation closest to the measured
∑n

i=1 ln qi on the right side of the equation.

C. Comparing with EEC

The other error ratio estimator we are aware of is EEC [13],
which also uses the parity bit of multiple bits as a sample and
uses multiple levels of samples. We independently arrived at
a similar idea used in AMPS. Besides that, the approaches
of AMPS and EEC profoundly differ. AMPS is designed
according to the standard procedure in estimation theory,
namely the MAP estimation, which is optimal for minimizing
the average estimation error required by our application. EEC
is based on a simple algorithm without using the knowledge
of the prior distribution of error ratios. We note that the prior
distribution can usually be measured at the receiver. Both
AMPS and EEC have low computational overhead. However,
for 1500-byte packets, the overhead of AMPS and EEC are 8
bytes and 36 bytes, respectively.

To compare the per-packet level estimation performance, we
implemented EEC and ran simulations. As AMPS and EEC
estimate byte and bit errors, respectively, we injected random
byte and bit errors into 1500-byte and 1500-bit packet for
them where the error ratio ranged from 0.01 to 0.2 at a step
of 0.01. For each ratio the simulation ran for 10,000 times.
As EEC assumes no prior knowledge, for a fair comparison,
AMPS was also not given the prior, and ran based on the
distribution of error ratio with the heaviest tail in which
case AMPS approximates a maximum likelihood estimator.
The performance is measured by the difference between the
estimated and the real number of injected error bytes/bits.
Fig. 4 suggests the that AMPS outperforms EEC significantly.
We believe the reason is that EEC may discard certain samples
while such samples still carry much information. On the other
hand, without the prior distribution, the maximum likelihood
estimator is the optimal estimator. We show in Section VI the
performance of AMPS in real-life experiments when the prior
knowledge is available.

VI. EXPERIMENTAL RESULTS

We conducted experiments to evaluate the performance of
Crelay. The compared schemes include

• More: the benchmark opportunistic routing protocol,
• Srcr: the benchmark traditional routing protocol, where

nodes use the shortest path according to the ETX metric

0.05 0.1 0.15 0.2
0

100

200

Error Ratio

E
st

im
at

io
n

E
rr

or

AMPS
EEC

Fig. 4. Comparison of estimation error between AMPS and EEC.

to forward packet hop-by-hop without exploiting partial
packets and overhearing.

We used the original implementation at [20] for More and used
our own implementation for Srcr.

A. Implementation

We implemented a prototype of the Crelay protocol in
around 5,000 lines of C++ code within the Click modular
router [19] as a user space daemon. Packets are transmitted in
broadcast frames, same as More [4]. The main addition to the
Crelay protocol discussed in Section III is a simple mechanism
to cope with interference. Basically, we allow a nodevA to
send a polling message to another nodevB, if vA has not
heard any message fromvB for longer than a threshold, while
vA has many packets in stateS1 for vB or has many packets
in stateS2 for vB that have been transmitted but have not been
ACKed. Once heard the polling message,vB transmits while
others backoff for a time. The reason is thatvB ’s transmission
could be lost in collisions due to hidden terminal problems.
This approach is adopted because RTS/CTS is not designed
for broadcast packets in 802.11.

We also made two optimizations. First, we allow nodes
to send parity bytes preemptively, i.e., parity bytes are sent
along with data bytes in the first transmission attempt, if the
link has non-zero error ratio. As a result, many packets with
errors can be decoded at the receiver without requiring the
overhead of feedback. In our current implementation, if the
error ratio isq > 0, a node transmits bytes that can correct
max{0.02,min{0.05, q}} fractions of errors for the bytes it
sends. Second, in AMPS, we set the minimum number of
estimated errors in a segment to be 3, as this does not increase
much overhead but can reduce the underestimation probability.

B. Testbed and Experiment Setup

We employed an 11-node wireless testbed. The wireless
nodes are laptop computers with Cisco Aironet 802.11a/b/g
cardbus adapter. In our experiments, the wireless cards ran
on 802.11b/g channel 3 (2.427GHz) when there was little
traffic (less than 3 beacon packets/sec) during the experiments.
The transmission power was set to be 1dBm; in addition,
aluminum foil was wrapped around the card to reduce the
transmission/reception power to allow the experiments to be
carried out within the confinements. The testbed setup, as well
as two of machines used in the experiments, are shown in
Fig. 5. With this set up, we were able to get 46 links where
we consider a link exists if the erasure ratios of both directions
are lower than 0.8. Among the links, the average RSSI was
6.98dB, the average erasure ratio was 0.271, and the average
error ratio was 2%. We ran the Madwifi [16] driver in the
monitor mode, which allows us to receive raw data frames for

7

Fig. 5. The setup of the testbed.

0 20 40 60 80
0

0.5

1

Throughput (pkt/sec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Crelay

More

Srcr

Fig. 6. The cumulative distribution of flow throughput.

exploiting partial packets. The MTU was set to be 2200 bytes
and the data rate 1Mbps.

We selected 72 pairs of nodes in the network, between which
Crelay found the path to be more than one hop. This selection
was made because we are interested in the performance of
multi-hop paths. Each pair is a flow, and we ran the experiment
when only one flow was active. In each experiment, nodes first
learn the link states by sending Hello packets in the first 9
seconds at random intervals, where a node sends around 50
packets in total. In the next 9 seconds, similar to More [20],
the link state is propagated with the help of a central node
using wired links. At time 18 second, the topology learning
phase ends and nodes begin to send data packets. The source
node generates packets of size 1500 bytes every 10ms and the
experiment runs for another 10 seconds.

C. Performance

We first show in Fig. 6 the cumulative distribution of the
throughput of Crelay, More, and Srcr measured in the number
of received packets by the destination per second. We can see
that Crelay has a significantly higher throughput than both
More and Srcr. Fig. 7 reveals more interesting details, which
shows the scattered plots of Crelay v.s. More and Crelay v.s.
Srcr for each flow. In the scattered plot, a point the 45-degree
line represents a flow in which two compared schemes have the
same throughput. Fig. 7 shows that Crelay outperforms More
in most flows and outperforms Srcr in almost all the flows. As
a quantitative measure, for each flow, we define the throughput
gain of scheme A over scheme B as(µA − µB)/µB, where
µA and µB are the throughput of scheme A and scheme B,
respectively. We found that average throughput gain of Crelay
over More is 36% and the average throughput gain of Crelay
over Srcr is 52%.

One of the gains of Crelay is from exploiting partial packets.
Fig. 8 shows the relation of gain and partial packet ratio for
each flow, where thex axis is the percentage of partial packets

0 20 40 60
0

20

40

60

More Throughput [pkt/s]

C
re

la
y

T
hr

ou
gh

pu
t [

pk
t/s

]

0 20 40 60
0

20

40

60

Srcr Throughput [pkt/s]

C
re

la
y

T
hr

ou
gh

pu
t [

pk
t/s

]

Fig. 7. The scattered plot comparison of the flow throughput.

received by the nodes on the packet forwarding path when
running Crelay, andy axis is the throughput gain of Crelay over
More. We can see that there is a positive correlation between
the gain and the percentage of the partial packets.

Fig. 9 shows the average throughput gain of Crelay over
More for paths of different lengths, where the path length
is based on the path used by Crelay. The number of paths
are 34, 26, 10 and 2 for path lengths of 2, 3, 4, and greater
than 4, respectively. We can see that the gain is usually higher
for longer paths, which may be because such paths usually
have weaker channels and more opportunities to exploit partial
packets.

0 0.05 0.1 0.15
0

0.5

1

1.5

2

Fraction of Partial Pkts

T
hr

ou
gp

ut
 G

ai
n

Fig. 8. The flow throughput gain and the fraction of partial packets.

2 3 4 >4
0

50

100
Gain of Crelay over More

Path Length

G
ai

n
(%

)

Fig. 9. Throughput gain for different path lengths.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

Overestimation Value

F
ra

ct
io

n
of

 P
kt

s

Fig. 10. The p.d.f. of overestimation of AMPS.

The performance of Crelay is largely dependent on AMPS.
With our current choices of parameters, we found that for
23.7% of the times, AMPS underestimates the number of
errors and more parity bytes have to be transmitted. However,
even in such cases, usually most of the blocks are decoded
and only a few blocks need more transmissions, because the
numbers of errors in the records are different. For 3.89%
of the time, AMPS underestimates the number of errors,
but the available parity bytes, sent preemptively, are actually
sufficient for correcting all the errors. For the rest of the cases

8

AMPS overestimates, and Fig.10 shows the probability density
function of the number of overestimation. We can see that
if overestimated, for more than 80.1% of the times, AMPS
overestimates by no more than 3 bytes per codeword. It is
possible to tune the parameters to achieve other underestima-
tion/overestimation tradeoff.

VII. C ONCLUSION

In this paper, we proposed Coded Relay (Crelay) for multi-
hop wireless networks. With Crelay, nodes can exploit partial
packets and overhearing for packet forwarding. One featureof
Crelay is that nodes can often send some parity bytes to the
next hop to recover the packet, which is significantly smaller
than the size of the packet. We proposed and implemented the
Crelay protocol in software. We studied the routing problem
with Crelay and proposed a greedy algorithm for finding paths.
We also designed an error ratio estimator, called AMPS, that
can estimate the number of errors in a packet with good
accuracy at very low overhead. We tested Crelay on an 11-
node testbed, and the results show that Crelay is capable of
achieving significant gain over existing protocols.

REFERENCES

[1] P. Razaghi and W. Yu, “Bilayer low-density parity-checkcodes
for decode-and-forward in relay channels,”IEEE Trans. Inform.
Theory, vol. 53, no. 10, pp. 3723-3739, Oct. 2007.

[2] A. Chakrabarti, A. de Baynast, A. Sabharwal, and B. Aazhang,
“Low density parity check codes for the relay channel,”IEEE J.
Select. Areas Commun., vol. 25, no. 2, pp. 280-291, Feb. 2007.

[3] V. Venkatkumar, T. Wirth, T. Haustein, and E. Schulz, “Relaying
in long term evolution: indoor full frequency reuse,” inProc. of
European Wireless, Aarlborg, Denmark, May 2009.

[4] S. Chachulski, M. Jennings, S. Katti and D. Katabi, “Trading
structure for randomness in wireless opportunistic routing,” In
Proc. of ACM SIGCOMM, 2007.

[5] S. Katti, D. Katabi, H. Balakrishnan and M. Medard, “Symbol-
level network coding for wireless mesh networks,” InProc. of
ACM SIGCOMM, 2008.

[6] S. Biswas and R. Morris, “Opportunistic routing in multi-hop
wireless networks,” inProc. of ACM SIGCOMM, 2005.

[7] K. Lin, N. Kushman, and D. Katabi, “ZipTx: Harnessing partial
packets in 802.11 networks,” inProc. of ACM MOBICOM, 2008.

[8] R. Ahlswede, C. Ning, S.-Y.R. Li, and R.W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204 - 1216, Jul. 2000.

[9] S. Katti, S. Gollakota and D. Katabi, “Embracing wireless inter-
ference: analog network coding,” inProc. of ACM SIGCOMM,
2007.

[10] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard and J.
Crowcroft “XORs in the air: practical wireless network coding,”
in Proc. of ACM SIGCOMM, 2006.

[11] K. Jamieson and H. Balakrishnan, “PPR: partial packet recovery
for wireless networks,” inProc. of ACM SIGCOMM, 2007.

[12] S. B. Wicker,Error Control Coding for Digital Communication
and Storage, Prentice-Hall, NJ, 1995.

[13] B. Chen, Z. Zhou, Y. Zhao, and H Yu, “Efficient error estimating
coding: feasibility and applications,” to appear inProc. of ACM
SIGCOMM, 2010.

[14] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture
and evaluation of an unplanned 802.11b mesh network,” InProc.
of ACM MOBICOM, 2005.

[15] I. B. Aban, M. M. Meerschaert and A. K. Panorska, “Parameter
estimation for the truncated Pareto distribution,”Journal of the
American Statistical Association, vol. 101, no. 473, pp. 270-277,
March 2006.

[16] The MadWifi Project,http://madwifi-project.org/.
[17] http://www.ka9q.net/code/fec/
[18] Cisco Aironet 802.11a/b/g wireless cardbus adapter,

http://www.cisco.com/.
[19] The Click Modular Router,http://read.cs.ucla.edu/click/.
[20] http://people.csail.mit.edu/szym/more/README.html.

9

