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Abstract—The integration of wireless communication and
control systems revealed wireless networked control systems
(WNCSs). One fundamental problem in WNCSs is to have a wide
coverage area. For the first time in the literature, we address
this problem and we obtain the maximum coverage area by
solving an optimization problem. In this paper, we consider a
WNCS where the output sensor measurements are transmitted
over separate multi-hop wireless ad-hoc subnetworks. The system
state is estimated using the Kalman filter. We present the critical
arrival probability for a sensor measurement packet such that if
the packet arrival probability is larger than the critical value, it
is guaranteed that the expected state estimation error covariance
is bounded, and hence the WNCS is stable. We find the optimum
hop-diameter of a multi-hop wireless ad-hoc subnetwork under
the constraints of both the stability of the WNCS and the
cost-efficiency of the multi-hop wireless network. Furthermore,
under these constraints, we derive the maximum total coverage
area of the wireless subnetworks. The numerical analyses show
that the maximum total coverage area can be increased by
appropriately adjusting the number of sensors, the successful
packet transmission probability between relay nodes, and the
eigenvalues of the system matrix.

I. INTRODUCTION

Recent developments on micro sensor integrated systems
have enabled combination of communication and control
systems. This integration revealed networked control systems
(NCSs) where the communication system enables the sensor
observation delivery [1], [2]. The control system components
such as sensors, actuators and plants with wireless commu-
nication capabilities constitute a wireless networked control
system (WNCS). The observations of the sensors deployed
over a wide area are fed to the WNCS through a wireless
network. The WNCSs have a wide application area such as
smart grid, automatic management and navigation systems [3].

For the WNCS applications requiring large coverage areas,
e.g., space and terrestrial exploration, navigation systems,
the maximum achievable area of the wireless network which
ensures the stability of the WNCS is crucial. To the best of
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our knowledge, no attempt has yet been made to find the
maximum coverage area of the wireless network under the
stability of the WNCS constraint. For the first time in the
literature, we address this problem and obtain the solution
by solving an optimization problem. Although in [4], [5],
the authors investigate the maximum coverage area problem
for wireless networks, they do not consider the stability of a
WNCS which utilizes these wireless networks. In this paper,
we find the maximum coverage area of a wireless network
by considering both the stability of the WNCS and the cost
efficiency of the wireless network.

In our scenario, wireless sensor nodes are employed to
observe the system behavior. We consider that the sensor
measurements are transmitted to the controller over a multi-
hop wireless ad-hoc network. However, measurement packets
may be lost due to the unreliable wireless channel character-
istics caused by the noise, collision, and congestion. Since the
WNCSs rely on the observations of the sensors to estimate
the state of the system, any loss of the sensor measurements
degrades the stability of the WNCS.

We use the Kalman filter for the state estimation of the
system. The Kalman filtering is a well investigated technique
in control theory [6], [7]. In the classical sense, the Kalman
filter uses all the observation data provided by the sensors
for the state estimation. However, for the WNCSs, the ob-
servations may be lost due to wireless channel conditions as
stated above. In [6], the Kalman filter is studied when the
observations are intermittent; nevertheless, the authors do not
consider statistical convergence behavior. In [7], the authors
investigate the state estimation process, in which the sensor
measurements are received or lost completely in a stochastic
manner, and they show that if the probability of arrival of
an observation is above a threshold, the expectation of the
state estimation error covariance is bounded. In [8], the authors
consider two sensors, and the measurement of each sensor is
independently received or lost by the Kalman filter.

We present the general case of the system presented in [8].
The observation process is divided into N parts and each part
is independently and randomly received or lost by the Kalman
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filter. Thus, we consider N separate multi-hop wireless ad-hoc
subnetworks for our scenario and each subnetwork includes a
sensor node. Based on the derivations presented in [8], we
derive the critical arrival probability for the measurement of
each sensor such that if the arrival probability of a sensor
measurement is larger than the critical value, it is guaranteed
that the expectation of the state estimation covariance is
bounded and the system is stable; otherwise it is not stable.

The packet arrival probability decreases as the number of
hops during the packet transmission increases. The maximum
hop number of the shortest paths between any two node pairs
in the network is the hop-diameter of the network. We show
that there exists a critical hop-diameter of a subnetwork such
that if the hop-diameter of the subnetwork is less than the
critical hop-diameter, the WNCS is stable. Another significant
parameter for the WNCS is the cost-efficiency of the multi-hop
wireless network. Based on the solution of an optimization
problem, we find both the optimum hop-diameter and the
maximum coverage area of the multi-hop wireless ad-hoc
networks under the constraints of both the stability of the
WNCS and cost-efficiency of the networks.

The paper is organized as follows. In Section II, we describe
the Kalman filtering with partial observation losses. In Section
III, we present the multi-hop wireless ad-hoc network model
and investigate the connectivity of the network. In Section
IV, we derive the maximum coverage area of the multi-hop
wireless ad-hoc network under the constraints of the stability
and cost-efficiency of the WNCS. In Section V, we present the
numerical analysis. The paper is concluded in Section VI.

II. KALMAN FILTERING WITH PARTIAL OBSERVATION
LOSSES

In a WNCS, the Kalman filter gathers sensor measurements
from distinct sensors and each sensor node encodes its own
observation into a single packet. However, some of the packets
might be lost during the wireless data transmission. In [8], the
authors present a state estimation process with partial observa-
tion losses considering that the observation process is divided
into two parts which are transmitted over different wireless
channels by two different sensor nodes. In this section, we
present a general state estimation process, i.e., the observation
process is divided into N parts, with partial observation losses
using the Kalman filter. In other words, the Kalman filter uses
the output observations of N independent sensors.

We consider a general multiple-input multiple-output
(MIMO) discrete time linear time-invariant system which is
described by the following system equations
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where xt 2 Rn is the system state vector, wt 2 Rn is
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Fig. 1. The block diagram of the WCSN.

sensor measurement output vectors, v
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. . . , vN,t 2 RmN are the measurement noise vectors, and
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⇥n, . . . , CN 2 RmN⇥n are the
output matrices. The subscript t indicates the time index.
Also note that the boldface symbols in this paper represent
vectors. We define yt = [y

1,t; y

2,t; . . . ; yN,t], vt =
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mean and their covariance matrices are Q � 0 and R > 0,
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Rij = E[vi,tv
0
j,t]. Furthermore, we assume that the system

(A,C) is observable; hence, the Kalman filter converges
without sensor measurement losses.

The sensor measurement packets y

1,t,y2,t, . . . ,yN,t are
encoded independently and transmitted over different multi-
hop wireless ad-hoc subnetworks. We use random variable
�i,t which indicates whether the measurement packet of ith

sensor, yi,t, is correctly received during a given sample
period. We assume �i,t for i = 1, 2, . . . , N are independent
Bernoulli random variables with Pr{�i,t = 1} = �i and
Pr{�i,t = 0} = 1 � �i. That is, if �i,t = 1, then the
measurement packet yi,t is correctly received; otherwise, the
packet is lost during the wireless data transmission. The block
diagram of the WNCS for our scenario is shown in Fig. 1. Note
that the observation process is stochastic due to the random
measurement losses during the packet transmission process.

Since we assume that �i,t and �j,t0 for i 6= j are independent
for every t and t0, the sensor measurement packets yi,t for i =
1, 2, . . . , N can be independently lost or received. Therefore,
the loss of a measurement packet is equivalent to the reception
of a measurement having an infinite noise variance. Then, for
the measurement noise vectors vi,t, we define the following
conditional probability distribution function

fv|�(vi,t|�i,t) ⇠
(
N (0, Rii), if �i,t = 1

N (0,�2

i I), if �i,t = 0.
(2)

Then, we take the limit as �2

i ! 1 to derive the Kalman filter
equations in the case of random partial losses.

Let us define the vectors �t , [�
1,t; . . . ; �N,t], �t

0

,
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For the Kalman filter, the time update and the obser-
vation processes are independent. Hence, for our scenario,
the time update process of the Kalman filter is formulated
based on the classical Kalman filter as ˆ

xt+1|t = Aˆ

xt|t
and Pt+1|t = APt|tA

0
+ Q. However, since the observation

process is stochastic, the classical Kalman filter equations
cannot be directly used for the measurement update process.
Based on the results presented in [8], the state estimation
error covariance Pt+1|t can be expressed in terms of Pt|t�1

as Pt+1|t = g(Pt|t) where g(X) is defined in (4) at the
bottom of this page, where Di,j,...,k = [Ci;Cj ; . . . ;Ck],
Fi,j,...,k = Cov[vi,t;vj,t; . . . ;vk,t]. Because of the stochastic
nature of the Kalman filter updates, a unique deterministic
state estimation error covariance cannot be obtained in the
steady state. Therefore, we consider the statistical properties
of the state estimation error covariance of the Kalman filter.

In [7], the authors investigate the state estimation process, in
which the sensor measurement packet is received or lost com-
pletely, and they show the existence of a critical packet arrival
probability �c such that E[Pt+1|t] is bounded if � > �c and
E[Pt+1|t] becomes infinite as t ! 1 if � < �c. In addition, in
[8], it is shown that for a state estimation process with random
packet losses considering two measurement sensors, there is
a critical packet arrival probability �c

1

of the measurement of
the first sensor given the packet arrival probability �

2

of the
second sensor. For the general case, based on the derivations
and results given in [8], if (A,Q) is controllable and (A,C) is
observable, for a fixed set of (�

1

,�
2

, . . . ,�i�1

,�i+1

, . . .�N ),
if �i � �c

i , we can obtain positive semidefinite matrices S � 0

and V � 0 such that 0  S  limt!1 E[Pt+1|t]  V ,
8E[P

0

] � 0 where S = (1 � �
1

) . . . (1 � �N�1

)ASA0
+ Q

and V = E[g(V )]. Therefore, the WNCS stable, if the state
estimation error covariance is bounded. Furthermore, we know
that Pt+1|t is bounded if and only if E[Pt+1|t] is bounded.
Thus, for a fixed set of (�

1

,�
2

, . . . ,�i�1

,�i+1

, . . .�N ), the
WNCS is stable if and only if �i � �c

i .
If the output matrices C

1

, C
2

, . . . , CN are square and invert-
ible A has a single unstable eigenvalue, the upper and lower
bounds for limt!1 E[Pt+1|t] coincide and the critical packet

arrival probability of the measurement packet of the ith sensor
becomes

�c
i = max

⇢
0, 1� 1

↵2

(�
1

,�
2

, . . . ,�i�1

,�i+1

, . . .�N )

�
(5)

where ↵ = maxi |�i| and �i is the ith eigenvalue of A [8]. We
discuss the appropriate selection of the set of (�

1

,�
2

, . . . ,�N )

in Section IV for a cost-efficient WNCS with the maximum
coverage area under stability constraint.

III. MULTI-HOP WIRELESS AD-HOC NETWORK MODEL
AND CONNECTIVITY

For the WNCS, we consider a multi-hop wireless ad-hoc
network. The first advantage of multi-hop wireless ad-hoc
networks is that they can be employed in a fast and easy way,
which is the reason why they are named “ad-hoc networks”
[9]. The second advantage of this network model is that very
large areas can be covered by means of the multi-hop property.
However, since the wireless channels are unreliable, as the
number of hops increases during the packet transmission, the
packet arrival probability decreases.

For our scenario, we assume that there are N sensor nodes
and each sensor transmits its measurement packet to the
Kalman filter over a multi-hop wireless ad-hoc subnetwork.
In addition, it is assumed that the nodes in each subnetwork
are independently distributed according to a two dimensional
Poisson point process. Each subnetwork is considered as
separate from each other. In Fig. 2, the multi-hop wireless
ad-hoc network model used in this paper is shown where Gi

denotes the ith subnetwork including the ith sensor node.
We consider that the transmission ranges of all sensor and

relay nodes are the same and denoted by r
0

. That is, if the
distance between two nodes, r, satisfies r  r

0

condition,
they are able to communicate directly via a wireless link.
Furthermore, the successful packet transmission probability
between two nodes, which are within the transmission range
of each other, is assumed to be constant and the same for
each transmission process in the network and it is denoted by
�. Therefore, the probability that the ith sensor measurement
is correctly received by the Kalman filter, i.e., �i, can be
expressed as

�i = �Mi , for i = 1, 2, . . . , N (6)

where Mi is the number of hops taken by the packet trans-
mitted by the ith sensor until it reaches the Kalman filter.

g(X) = AXA0
+Q

� �
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Fig. 2. The model of the multi-hop wireless ad-hoc subnetworks.

Mi depends on the routing protocol, network topology, and
number of nodes in the network.

A very fundamental and significant property of multi-hop
wireless ad-hoc networks is the connectivity. To establish a
fully connected ad-hoc network, a wireless multi-hop path
from each node to each other node must exist. According
to the results in [9], assuming that the nodes in the network
are distributed according to a two dimensional Poisson point
process, the probability that a multi-hop wireless ad-hoc
network is k-connected is given by

Pk =

0

@
1�

k�1X

j=0

(⇢⇡r2
0

)

j

j!
e�⇢⇡r2

0

1

A
mi

(7)

for i = 1, 2, . . . , N , where Pk = Pr{Gi is k�connected}, mi

is the total number of nodes in the subnetwork Gi, ⇢ is the
node density defined by ⇢ = m/Si where Si is the coverage
area of Gi, and r

0

is the transmission range of a node. A
network is said to be k�connected (k = 1, 2, 3, . . . ) if for
each pair of nodes, there exist at least k mutually independent
links that connect them.

IV. MAXIMUM COVERAGE AREA UNDER STABILITY AND
COST-EFFICIENCY CONSTRAINTS

In a multi-hop network, we can increase the coverage area
by increasing the number of nodes in the network. However,
if the coverage is enlarged with an increase in the number
of nodes, the number of hops during the packet transmission
between two distant nodes rises. Because of the unreliable
wireless channels, an increase in the number of hops during the
packet transmission decreases the packet arrival probability,
and the WNCS might become unstable as discussed in Section
II. Therefore, for a stable WNCS, the hop-diameter of the
network becomes a critical parameter. In the paper, the hop-
diameter of the subnetwork Gi is denoted by di.

Let the critical packet arrival probability of the ith sensor
measurement be �c

i . Based on the definition of the hop-
diameter of a network, the maximum number of hop taken
by a measurement packet until it reaches the Kalman filter
is less than or equal to the hop-diameter of the subnetwork.
Then, using (6), the critical-hop diameter of ith subnetwork is

dci = bln(�c
i )/ ln(�)c . (8)

That is, if the hop-diameter of the subnetwork Gi satisfies
di  dci condition, it is guaranteed that the arrival probability
of the packet transmitted by ith sensor is larger than the critical
arrival probability; hence, the WNCS is stable. However, if
di > dci , the stability of the system is not guaranteed. Since
the hop-diameter depends on several factors such as topology,
network size, node locations, sensor communication range,
and node density, it is difficult to find a upper bound for
the maximum number of nodes which ensures a given hop-
diameter. Therefore, to guarantee the stability of the control
system, one can use lower bound for the maximum number
of nodes in a subnetwork given as mi(�c

i ) = dci + 1 where
mi(�c

i ) denotes the number of nodes which guarantees that
the packet arrival probability is less than the critical value and
the proof is straightforward.

If we consider only the stability criterion, for a given set of
(�

1

,�
2

, . . . ,�i�1

,�i+1

, . . .�N ), as �c
i ! 0, mi(�c

i ) ! 1,
and hence the total coverage area of the ith subnetwork
becomes infinite. Indeed, it is irrational and cost-inefficient to
place infinitely many nodes in a subnetwork including a sensor
node whose critical packet arrival probability is 0. That is, a
decrease in �c

i decreases the the importance of the subnetwork
Gi, and when �c

i = 0, the measurements of the ith sensor in Gi

become unnecessary for the WNCS. Thus, for the maximum
coverage area of the multi-hop wireless network, it is not
enough to consider only the stability of the WNCS. The cost-
efficiency of the multi-hop wireless network should also be
considered. In other words, a multi-hop wireless network for
a stable WNCS might have infinite coverage area. However,
such a multi-hop wireless network is cost-inefficient. As a
result, the selection of a set of packet arrival probabilities
of the sensor measurements, i.e., (�

1

,�
2

, . . . ,�N ), affects the
cost-efficiency of the multi-hop wireless ad-hoc network.

Since when �i ! 0, mi(�c
i ) ! 1 and �imi(�i) ! 0,

we can use �imi(�i) as the efficiency of the ith subnetwork.
Therefore, to find a cost-efficient multi-hop wireless ad-hoc
network, we define a cost-efficiency function as follows

f(�
1

, . . . ,�N ) = �
1

m
1

(�
1

) + · · ·+ �NmN (�N ) (9)

where mi(�i) is the number of nodes in the subnetwork Gi

which guarantees that the packet arrival probability is bounded
above by �i and it is given by mi(�i) = bln(�i)/ ln(�)c+1.
Note that the cost-efficiency function is the weighted sum of
the number of nodes in the subnetworks. Using (5), the set of
(�

1

,�
2

, . . . ,�N ) which both maximizes f(�
1

, . . . ,�N ) and
ensures the stability of the WNCS can be found by solving
the optimization problem in (10) at the top of the next page.
The solution of (10) is given by

�opt

i = max{e� ln(�)�1, 1� ↵�2/N} (11)

for i = 1, 2, . . . , N , where (�opt

1

,�opt

2

, . . . ,�opt

N ) denotes the
optimum stable set having the maximum cost-efficiency. The
solution given in (11) satisfies the constraints of both the cost-
efficiency and the stability. Then, using the optimum set of
packet arrival probabilities given in (11), the optimum hop-
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maximize
�
1

,...,�N

f(�
1

, . . . ,�N ) = �
1

m
1

(�
1

) + �
2

m
2

(�
2

) + · · ·+ �NmN (�N )

subject to �i < max

⇢
0, 1� 1

↵2

(1� �
1

) . . . (1� �i�1

)(1� �i+1

) . . . (1� �N�1

)

�
for i = 1, 2, . . . , N

(10)

diameter of the ith subnetwork having the maximum cost-
efficiency is given by

dopti =

�
ln(max{e� ln(�)�1, 1� ↵�2/N})

ln(�)

⌫
. (12)

Furthermore, to guarantee the stability of the WNCS, we use
the lower bound for the maximum number of nodes in Gi,
denoted by mi(�

opt

i ), and it is

mi(�
opt

i ) =

$
ln

�
max{e� ln(�)�1, 1� ↵�2/N}

�

ln(�)

%
+ 1 (13)

for i = 1, 2, . . . , N .
Now, we derive the number of nodes in each subnetwork

under the stability and cost-efficiency constraints. To find the
maximum coverage area of the subnetworks for the number
of nodes given in (13), we consider the connectivity of the
subnetworks. In (7), the probability that a multi-hop wireless
ad-hoc network is k-connected is given. For a fixed number of
nodes, we can say that 1�connected network has the maxi-
mum coverage area from (7). Thus, to have the maximum cov-
erage area for a given number of nodes, we set k = 1. Then,
using (7), for a stable WNCS, the maximum coverage area of
the subnetwork Gi, which is 1�connected and cost-efficient,
is given by Si = [�mi(�

opt

i )⇡r2
0

]/[ln(1�P
1/mi(�

opt

i )

1

)] where
P
1

is the probability that Gi is 1�connected. Since the number
of nodes found in (13) is the same for each subnetwork, the
maximum total coverage area of the subnetworks is

ST

=

�Nmi(�
opt

i )⇡r2
0

ln(1� P
1/mi(�

opt

i )

1

)

. (14)

Note that from (7), for a given number of nodes, to make the
connectivity probability equal to 1, the node density of the
network must be infinite which is not realistic. However, if we
set the probability that Gi is 1�connected as P

1

= 0.99, it
can be said that the Gi subnetwork is almost surely connected.

V. NUMERICAL ANALYSIS

In this section, we present the numerical analysis of both
the optimum hop-diameter dopti of a subnetwork and the max-
imum total coverage area ST of the subnetworks with respect
to several parameters of the system and multi-hop wireless
subnetworks. For the numerical analysis, we consider that the
subnetwork Gi is 1�connected with probability P

1

= 0.99.
Moreover, the output matrices C

1

, C
2

, . . . , CN are assumed to
be square and invertible.
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Fig. 3. dopti (a) with respect to N for different � values and (b) with respect
to ↵ for different N values.

A. Optimum Hop-Diameter
In this part of the numerical analysis, we present the

variation of the optimum hop-diameter, dopti , given in (12)
with respect to the number sensor nodes, N , the successful
packet transmission probability between two nodes, �, and
the eigenvalue of A having the maximum magnitude, ↵. For
this part, we set the transmission range of the sensor and relay
nodes in the multi-hop wireless subnetworks as r

0

= 50m.
In Fig. 3(a), dopti with respect to the number of sensor

nodes N employed for the WNCS with different � values
is shown. dopti increases with an increase in � which is an
expected result. Note that 0  �  1 and as � ! 1,
ln(�) ! �1, also the numerator in (12) is negative; hence,
an increase in � causes an increase in dopti . As seen in Fig.
3(a), dopti increases up to N = 5, then it becomes constant. If
N > �2 ln(↵)/ ln(1� e� ln(�)�1

), then max{e� ln(�)�1, 1�
↵�2/N} = e� ln(�)�1, and hence dopti depends only on �.
On the other hand, if N < �2 ln(↵)/ ln(1� e� ln(�)�1

), then
max{e� ln(�)�1, 1�↵�2/N} = 1�↵�2/N ; thus, dopti depends
on ↵ and N , i.e., dopti = ln(1 � ↵�2/N

)/ ln(�). Obviously,
dopti decreases with an increase in ↵. For a fixed � = 0.9,
the results seen in Fig. 3(b) show that dopti decreases with an
increase in ↵, which supports our inferences. It is also seen
that dopti can be increased with an increase in N .

B. Maximum Total Coverage Area
In this section of the numerical analysis, we present the

effect of N , �, ↵ on the maximum total coverage area of the
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Fig. 4. ST with respect to (a) r
0

for different � values, (b) N for different � values, and (c) ↵ for different N values.

subnetworks, ST, given in (14). In Fig. 4(a), for constant N =

15 and ↵ = 4.0, the variation of the maximum total coverage
area ST with respect to r

0

is illustrated for different � values.
ST is proportional with r2

0

as seen in (14) and the quadratic
dependence on r

0

can be seen in Fig. 4(a). In addition, the
results show that an increase in � enlarges the total coverage
area of the subnetworks. From Section V-A, we know that
dopti increases with an increase in �, and mi(�

opt

i ) = dopti +1.
Thus, from (14), it is obvious that ST becomes larger with an
increase in dopti .

In Fig. 4(b), for fixed r
0

= 50m and ↵ = 4.0, the variation
of ST with respect to the number of sensor nodes used for
the WNCS for varying � values is demonstrated. According
to the results, an increase in � enlarges the total coverage area
of the subnetworks because of the same reasons discussed
above. Furthermore, ST becomes larger with an increase in
the number of sensors N as shown in Fig. 4(b), which is
an expected result because ST

= NSi. Note also that, for
each � value, ST increases in a quadratic trend up to N =

5; afterwards, it increases linearly with N . In Fig. 3(a), it is
shown that up to N = 5, dopti rises with an increase in N ,
which causes an increase in the maximum coverage area of
a single subnetwork Si and we know that ST

= NSi. As a
result, up to N = 5, ST increases quadratically. For N > 5,
since dopti becomes constant, Si also becomes constant. Thus,
for N > 5, ST increases linearly with N as seen in Fig. 4(b).

The effect of ↵, i.e., the eigenvalue of the system matrix
A having the maximum magnitude, on the maximum total
coverage area of the multi-hop wireless subnetworks ST is
shown in Fig. 4(c) for different N values. Here, we set r

0

=

50m and � = 0.9. According to the results, an increase in ↵,
causes a reduction in the maximum total coverage area ST.
As we state previously, if N > �2 ln(↵)/ ln(1� e� ln(�)�1

),
then dopti = ln(1�↵�2/N

)/ ln(�). That is, for a given N , an
increase in ↵ decreases the optimum hop-diameter. Therefore,
since mi(�

opt

i ) = dopti + 1, an increase in ↵ also decreases
ST, which can be seen in (14). Moreover, as illustrated in the
figure, ST increases with an increase in N , which is discussed
in detail above.

VI. CONCLUSION

In this paper, we investigate the multi-hop wireless ad-hoc
network for a WNCS with multiple sensors. We present the

critical arrival probability for the measurement packet of a
sensor such that if the probability of arrival of the packet
is larger than the critical value, the state estimation error
covariance is bounded and the system is stable. We derive the
expressions for both the optimum hop-diameter and the max-
imum coverage area of the multi-hop wireless subnetworks
under the constraints of the stability and cost-efficiency. For
the WNCS applications requiring wide coverage areas, e.g.,
space and terrestrial exploration and navigation systems, the
maximum coverage area expression can be used to construct
a cost-efficient multi-hop network which ensures the stability
of the control system.

The numerical analyses show that both the optimum hop-
diameter and the total coverage area of the subnetworks can
be increased with an increase in the successful packet trans-
mission probability between two nodes. Furthermore, for the
WNCS, increasing the number of sensors rises the optimum
hop-diameter and the maximum coverage area. According to
the results, an decrease in the eigenvalue of the system matrix
with maximum magnitude increases both the optimum hop-
diameter and the total coverage area of the subnetworks.
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