
Optimizing Communication Energy Consumption in
Perpetual Wireless Nanosensor Networks

Shahram Mohrehkesh and Michele C. Weigle
Department of Computer Science

Old Dominion University
{smohrehk, mweigle}@cs.odu.edu

Abstract—This paper investigates the effect of various param-
eters of energy consumption for communication in pulse-based
wireless nanosensor networks that exploit energy harvesting to
supply energy. Finding the optimum combination of parameters
to minimize energy consumption while satisfying the QoS require-
ments (e.g. delay and reliability) of communication is a challeng-
ing task. We model this problem as a multiobjective function
problem. We evaluate the effect of packet size, repetition and code
weight on this optimization problem. Through simulation, the
effect of network parameters, i.e. topology and energy for pulse
transmission/reception, on the optimization problem is studied as
well. The model enables optimum energy consumption design in
wireless nanosensor networks.

I. INTRODUCTION

Wireless nanosensor networks (WNSNs) [1] are a new gen-
eration of sensor networks at nano scale, which are envisioned
to be produced in the coming years. Each nanonode is in
the range of micro to nano meters in size. The nanoscale
property of nanonodes opens exciting new applications in
the sensing domain. For example, nanosensors could detect
chemical compounds at the molecular level or the presence
of different infectious agents, such as viruses or harmful
bacteria [1]. Similar to sensor networks, they can be used
in many fields, such as biology, medicine, chemistry, and in
environmental, military, industrial, and consumer goods [1].
For example, nanosensors could be used to develop new touch
surfaces or be added to standard office products (pens, papers,
etc.), making the idea of a smart office a reality.

Nanosensors will collect useful information that must be
sent outside of their sensing environment for storage and
additional processing. In other words, they will need to com-
municate between themselves as well as with nodes in the
micro and macro domain. Among all possible communication
methods among nanonodes, studies [2] show that electromag-
netic communication in the 0.1-10.0 terahertz (THz) frequency
band is a promising approach for communication in WNSNs.
Operating in the THz band can help nanosensors consume
low energy while providing connectivity at the nano scale.
A graphene-based nano-antenna has been studied [3] as the
nano scale transceiver to transmit and receive pulses in the
THz band.

Power has been a major challenge in wireless networks, as
the lack of energy makes communication impossible. In WN-
SNs, with a nano battery, the problem is even more significant.
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It is not possible to provide nanoscale batteries that can last
even for a month. Thus, energy harvesting through vibrations
has been proposed [1], [4] as the method for providing power.

An initial model for the energy harvesting and consumption
processes in WNSNs has been proposed by Jornet and Akyildiz
[4]. However, their model does not evaluate the effect of
various parameters to find the optimal performance. To be
specific, several parameters are introduced in the modeling of
energy harvesting and consumption that can affect the optimum
energy utilization of a nanonode. Finding the optimum values
for code weight, repetition (defined in Section II) and packet
size, is an open question. Jornet and Akyildiz [4] argue that
using code weight can save energy in transmission since the
lower the code weight, the lower the energy for transmission.
However, a deeper look shows that it depends on the energy
ratio of reception to transmission of pulses as well as topology
(i.e. number of neighbors). Moreover, the optimum packet size
is dependent on code weight. Finally, the effect of code weight
and repetition on communication reliability in combination
with energy consumption needs to be considered. This paper
attempts to find the optimum combination of these variables
through solving an optimization problem.

Our optimization model for minimizing energy consump-
tion is different from previous works in several major as-
pects. First, while previous work focused on methods such
as minimizing the energy consumption through adapting the
modulation [5], efficient routing protocols [6], or adaptive
duty cycle of MAC [7], our method focuses on packet size
and code weight for optimization. Since most previous work
was developed based on carrier based transmission, code
weight optimization as well as pulse-based communication
optimization has not been investigated before. Second, our
model introduces the concept of optimizing several communi-
cation objective functions simultaneously, while previous work
mainly focus on one or two objective functions. Even models
with several objective functions use methods such as weighted
sum which are not efficient or accurate methods as comparison
to the GA method that we use here. Finally, our model takes
into account the communication energy consumption for both
transmitter and receiver, where transmitter traffic interactions
with several neighbors as receivers is considered.

The rest of paper is organized as follows. In the next
section, we introduce the background for the communication
model in WNSNs. In Section III we introduce our optimization
problem. Simulation results are presented in Section IV, and
the paper is concluded in Section V.



II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the communication
model and energy consumption for communication in the THz
pulse-based communication for nanosensors, mainly developed
by Jornet and Akyildiz [1], [4].

A. Communication Model

Studies [2] have shown that molecular communication and
electromagnetic (EM) communication in the 0.1-10.0 terahertz
(THz) band are potential approaches for communication in
WNSNs. Since EM communication provides a higher data
rate [2] than molecular communication, in this work, we
develop our communication model for EM communication
only. Operating in the THz frequency allows nanosensors to
consume low energy while providing connectivity in the nano
to milli meter communication range. The nodes use pulse-
based communication and Rate Division Time Spread On-Off
Keying (RD TS-OOK) [8] as the modulation mechanism. A
logical 1 is transmitted as a femto-second long pulse, and a
logical 0 is transmitted as silence. The duration of each pulse
is Tp and the time between two symbols, called inter-symbol
time, is Ts. The probability of collision between symbols is
extremely low due to the fact that there can be no collisions
for 0 symbols (silences) and that the length of Ts is much
longer than Tp (typically 1000 times larger).

Even though collisions are not much of an issue, there
may be packet loss due to pulse absorption. To mitigate the
effects of absorption, symbol repetition has been proposed
[9]. Repetition is a simple mechanism for error detection and
correction. With this method, the sender simply repeats each
symbol several, typically 1 to 9, times.

As 0 symbols take no energy to transmit (because they are
silences), it would be most energy-efficient to send as many
0s as possible. Applying a code weight to a packet can result
in reducing the number of expensive 1s that are transmitted.
The code weight is defined as the proportion of 1s to the total
number of 1s and 0s in the packets [9]. A code weight of
0.5 means that, on average, there are an equal number of 1s
and 0s in the packets. A lower weight, such as 0.4, means
that there are fewer 1s. However, it also means that more bits
should be used to send the same amount of information. For
example, Table I shows how the number of 1s for sending two
bits of information could be reduced by using three bits.

TABLE I. CODE WEIGHT EXAMPLE

value 2 bits 3 bits
(weight = 0.5) (weight = 0.25)

0 00 000
1 01 001
2 10 010
3 11 100

For a more realistic example, for sending n = 64 bits of
information with a code weight of 0.4, at least a = 6 more bits
will be added to each packet. In this case, the total number of
encoded bits would be m = 70 and the number of 1s, u, is
less than or equal to 28.

To make sure that for a target code weight, there are at
most u 1s independent of the original bit values, for n-bits
of information, the m!

(m−u)!u! ≥ 2n condition must be satisfied

with the minimum a additional bits, where the total number
of bits m = n+ a.

Note that sending fewer 1s consumes less energy in the
sender while it consumes more energy in the receiver. Energy
is consumed when receiving any bit, 0s or 1s. Decreasing the
code weight necessarily increases the packet size, increasing
the cost to the receiver. Depending on the ratio of energy
required for reception to that transmission of a pulse, named
as α = Epulse−rx

Epulse−tx
, and packet length, the code weight may or

may not save energy in total. Here, the assumption is that α
is small; therefore, the aim is to find the optimum values for
packet length and code weight, which we address in Section III.

B. Communication Energy Consumption Model

Considering the code weight and energy for pulses, the
energy required for transmission and reception of a packet can
be computed. For a packet of size N , the energy consumed
when transmitting or receiving a packet are given by

Epacket−tx = N ·W · Epulse−tx (1)

Epacket−rx = N · Epulse−rx (2)

where W represents code weight. Note that we assume that
the energy for listening or idle mode of the wireless module
of nanonode is not significant. Also, we do not include energy
for other modules of the nanonode such as nano-processor,
nano-memory, etc.

We assume that there is a grid of nanonodes, where each
node has G neighbors. Each node senses its environment,
creates a packet and broadcasts it. All neighbor nodes will
receive the packet and, based on policies such as a random
process, relative location, or the signal strength of received
packet [10] and [11], one or several of neighbors will forward
the packet. This step is repeated until the packet is delivered
to the targeted destination, which is typically a sink for
collecting the sensed information, or until the packet travels
more than a defined maximum number of hops. Independent
of the forwarding policy of traffic, the main parameter that
affects the amount of energy for reception will be the number
of neighbors. Our optimization problem will include this
parameter in combination with other parameters.

III. OPTIMIZING THE FACTORS OF ENERGY
CONSUMPTION

Based on the joint model of energy harvesting and con-
sumption, developed by Jornet and Akyildiz [1], [4], various
factors are identified that can affect energy harvesting and
consumption, and consequently network performance (e.g.
delay, probability of successful transmission). Particularly,
packet size, code weight, and repetition can affect the amount
of energy that is consumed. We also must find the optimal
achievable network performance in terms of various QoS
requirements (e.g. delay, transmission reliability). Therefore,
finding the optimum design point between energy usage ef-
ficiency and the network performance is the challenge here.
We develop an optimization model that can find the best
combination of these parameters. Then, we show how the best
answer could be selected among a list of candidates when
traffic load is taken into account.
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Fig. 1. Pareto points among other solution points for a two objective function
problem

A. Optimization Model

We model the problem as a Multi-Objective Combinatorial
Optimization (MOCO), a special form of Multi-Objective
Optimization (MOP) [12], where variables can take discrete
values. The general form of a MOCO is

minx [f1(x), f2(x), . . . , fn(x)]
T

s.t.
g(x) ≤ 0

h(x) = 0

xl ≤ x ≤ xu

where fi is the i-th objective function, g and h are the
inequality and equality constraints, respectively, and x is the
vector of optimization or decision variables. The solution to
the above problem is a set of Pareto points. In a MOP/MOCO
problem, several functions need to be optimized at the same
time. Then, instead of having a unique solution to the problem,
the solution is a possibly infinite set of Pareto points. These
points are called Pareto optimal. A design point in objective
space f is termed Pareto optimal if there does not exist another
feasible design objective vector f∗ such that fi ≤ f∗i for all
i ∈ {1, 2, . . . , n}, and fj < f∗j for at least one index of j
,j ∈ {1, 2, . . . , n}.

Figure 1 represents the Pareto points among all possible
solutions for a two objective function problem that requires
the minimization of both objective functions. The curved
line represents the Pareto-front, identified by non-dominated
solutions that have labels 1, 2 and 3. The other points are
not optimal Pareto points because they have a higher value in
at least one of objective functions. For example, point 4 has
higher value than point 3 for first objective function, and point
9 has a higher value than point 2 for second objective function.
Clearly, representing and finding the solution of a MOCO
problem when the number of variables, number of objective
functions, and search space is larger is more challenging.

In our problem, the functions to be optimized for the N
bit packet size, repetition R, and code weight W variables are
defined as follows.

The first function is energy consumption, that is, the energy
consumed for transmission (Eq. 1) plus reception (Eq. 2) of a

packet by all the neighbors with N bit data.

f1 =
Epacket−tx +G · Epacket−rx

N
=

m′ ·W · Epulse−tx +G ·m′ · α · Epulse−tx
where m′ = N + a, and a is the number of additional bits
added to N that enables coding with code weight W . Recall
that G is number of neighbors and α is the ratio of the energy
required for reception to that of transmission of a pulse. We
developed the model in the general form where there are G
neighbors. Therefore, it will cover most unicast or broadcast
scenarios where the packet will be received by one, some, or all
of the neighbors. This function is set to be minimized, which
means that the total energy that is consumed for transmission
and reception per bit of information should be minimized.

The next objective function, f2, concerns delay. Since
N is larger than the information generation rate, the packet
would contain several pieces of information together to avoid
the overhead of packet transmission. However, this increases
the delay in transmission of information. For example, if
information is generated at 10 bits per second and the packet
size is 1000 bits, it will take 100 seconds to prepare a packet.
This may be acceptable for non-real time applications, or when
the rest of packet can be filled with neighbors’ forwarding
data or can just be left empty. However, in our model, we are
assuming that packets only contain information generated from
one node. The simplest way to define the delay function is to
model it in a linear relation with packet length, N . However,
if delay has higher importance, the function could be modeled
as a higher degree polynomial function of N . This function is
set to be minimized.

f2 = N (3)

The next objective function, f3, associates the chance of
bit error rate with code weight. Lower code weight means
transmission of fewer 1s, which results in a lower probability
of absorption as well as collisions between 1s. This function
is set to be minimized.

f3 =W (4)

The optimization problem can be formulated with only the
f1, f2 and f3 functions, if repetition is not required to be
considered as a variable. This could be the case if it is known
that the environment would not affect the pulses significantly,
and it is better to repeat the whole packet in case of error rather
than consume energy with the repetition of symbols. However,
we define the functions for repetition as a variable to have a
comprehensive model.

The following function shows the effect of repetition. The
higher the repetition, the higher the chance of error detection
and recovery. Note that providing reliability depends on other
parameters such as code weight, transmission power, and inter-
symbol times. Here we are assuming that inter-symbol times
and transmission power cannot be varied. Also, the effect of
code weight on reliability is not significant as compared to
repetition. Moreover, a lower code weight would result in
reliable communication, which was considered in f3.

f4 = b
R−1
2

R
c (5)



On the other hand, lower repetition means fewer bits to
transmit and, consequently, less energy consumption.

f5 =
N

R
(6)

This function actually shows the efficient bit rate when
repetition is used, and it should be maximized.

The constraint functions would be

g1 = m′ ·W · Epulse−tx − Emax ≤ 0

g2 = m′ · Epulse−rx − Emax ≤ 0

This means that the energy for transmission or reception of
one packet cannot exceed the maximum energy capacity of
the nanonode, Emax.

The bounds on the variables of the problem are

W ∈ (0.15 : 0.05 : 0.5)

R ∈ (1, 3, 5)

1 ≤ N ≤ 2500

Note that because the problem is a combinatorial problem, the
bounds are actually the set of valid values that can be assigned
to variables, i.e. W and R. For N , in addition to the bounds,
the values should be discrete.

B. Optimization Problem Solution

Various methods are used to solve multiobjective optimiza-
tion problems, such as the method of objective weighting or
min/max formulation [13] , [12]. In some specific problems, it
is possible to merge multiple objectives into one objective so
that the resulting solution depends mainly on the weight vector
assigned to each objective [13]. As a result, the same problem
must be solved several times for different weight vectors.

Another way to solve multiobjective optimization problems
is to use Genetic Algorithms (GA). Since GAs search for the
optimal solutions based on a population of points instead of
a single point, they can find multiple Pareto optimal solutions
in a single run. It helps decision makers to choose the best
solution from set of Pareto optimal points based on the situa-
tion without involving them in burden and common difficulty
of balancing objective functions.

We use the controlled Non-dominated Sorting Genetic
Algorithms II (NSGA-II) [13] to solve our MOCO problem.
As mentioned before, the output of MOCO is a set of Pareto
optimal points. Typically, the selection of one point depends
on the context of the application.

IV. SIMULATION

We solved our defined MOCO problem with the optimiza-
tion toolbox of MATLAB. We customized the creation, muta-
tion, and crossover functions of model. Simulation parameters
for our MOCO solution with the NSGA-II method are shown
in Table II. We run the optimization with different values for
α, G and repetition to show the effect of these parameters on
the points that are selected as optimum. The results for each of
the configuration scenarios, listed in Table III, are presented in
the following subsections. Note that Pareto optimal points are
not unique and can even be different in several runs. However,

TABLE II. MOCO PROBLEM PARAMETERS

Parameter Value(s)
Population size 100
Pareto fraction 0.2

Generations 150
Selection Uniform

Crossover fraction 0.8
Mutation function Uniform
Crossover function Three parents

TABLE III. SCENARIO PARAMETERS

Scenario G α max R
1 1 0.1 1
2 1 0.5 1
3 4 0.1 1
4 1 0.1 5
5 4 0.1 5

the results that are presented here have a similar pattern for all
runs and different runs give only non-significant bit differences
in packet size.

A. Scenario 1 (G=1, α=0.1, R=1)

In this scenario, we set G to 1. This scenario will evaluate
the case of transmission between two adjacent nodes when
broadcast will result only in reception by one neighbor. The α
value is set to 0.1, based on the numerical values in [8] and
modeling in [4], which is 1 pJ and 0.1 pJ for transmission
and reception of pulse in 10 mm distance. Figure 2 shows
the Pareto optimal points that are selected. The code weight
and the packet length for each of the points is presented in
the legend. This scatter plot represents the value of first and
second objective functions for each of the Pareto points. Recall
that the first objective function tries to minimize the amount
of consumed energy per bit. On the other hand, the second
function, minimizing delay is in relation to the packet length.
Each of these points dominates the other one in one of the two
objective functions. Therefore, depending on design priority,
any of these points can be selected as the optimal solution.
For example, if the priority is energy consumption, one of the
points in the lower-right could be selected. If delay has priority,
one of points in the left side would be the choice.
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Fig. 2. Pareto Point and Function Values for Scenario 1
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Fig. 3. Additional bit overhead for various code weights

Figure 2 also illustrates that various packet lengths are
selected. A deeper look at the selected code weight for these
points shows that all of them are equal to 0.15, which is the
minimum code weight. It means that with this setting for G
and α, it is better to choose the minimum code weight that
is available. In fact, when one of the objective functions will
have only optimum values for a specific value of variables,
here W , then the problem focuses on the limited optimization
of the other objective functions, in this case, packet length.

Figure 2 also shows that the difference in terms of efficient
energy per actual information bit, f1, is not significantly
different among all the optimal points. This observation is
confirmed in Figure 3, which shows that the overhead ( aN )
from the code weight generally does not depend on the length
of data. The figure illustrates data lengths that are in [1..1000]
range. Outliers occur when the number of original bits are very
small, i.e. less than 10 bits. These short packets lengths are not
applicable.

B. Scenario 2 - Effect of α

In this scenario, we increase the value of α to 0.5. Recall
that α is Epulse−rx

Epulse−tx
. Note that in reality, α is fixed. Here we are

only evaluating scenarios for different α to show its effect on
the optimization problem. The selected optimum points now
cover a wide range of various code weights and packet sizes,
as shown in Figure 4.

This easily shows that code weight is more effective for
smaller values of α. In fact, when α becomes larger, the effect
of code weight is reduced. This happens because the overhead
bits from the lower code weight increase the reception energy,
which eventually increases the average energy per bit. Because
there are more than two objective functions, the optimal points
cannot be chosen from the figure. Otherwise, if there were only
these two functions, the optimum point would be one of the
points in the bottom-left of Figure 4.

C. Scenario 3 - Effect of G

In this scenario, the effect of G on the selection of optimal
points can be viewed in Figure 5, when G is changed from 1 to
4. α is set to 0.1 as described in Table III. The main observation
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Fig. 4. Pareto Point and Function Values for Scenario 2
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Fig. 5. Pareto Point and Function Values for Scenario 3

is that more points with lower code weights are selected since
there are more recipients, which makes it efficient to use a
lower code weight. This effect can be viewed also in the
average energy per bit function, f1, where it is almost twice
that of Scenario 1 (with one neighbor) while the number of
neighbors has increased four times.

D. Scenario 4 - Effect of Repetition

This scenario takes into account the effect of repetition as
another variable. 3 and 5-repetition is possible in this scenario.
As shown in Table III, this scenario is similar to Scenario 1,
as G and α are set to 1 and 0.1 respectively. Figure 6 shows
the selection of optimum points. Points with various ranges
of values for repetition, code weight and packet length are
selected. This behavior is mainly due to the dominance of
one of the objective functions. For example, point number 3
is selected because it provides a low average energy per bit.
On the other hand, point 7 is selected because it provides high
reliability with 5 repetition even though it has higher delay, i.e.
packet length, and higher average energy per bit in comparison
to the other points.
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Fig. 7. Pareto Point and Function Values for Scenario 5

E. Scenario 5 - Repetition for Higher G

The fifth scenario evaluates the effect of repetition in
combination with a higher number of neighbors (from one
to four). As indicated in Table III, the maximum repetition
and α are set to 5 and 0.1 respectively. In this scenario, the
optimal points, as illustrated in Figure 7, are selected from
almost all ranges of code weight and repetition. However,
packet length values are mainly chosen from very short or
very large packet sizes. The reason is that when a short packet
size is selected, the energy bit efficiency and delay will be the
dominant functions. On the other hand, for large packet sizes,
code weight will be the dominant factor that leads to lower
average energy per bit.

F. Selection Based on Performance

The final choice of optimum point will depend on the traffic
load, i.e. packet generation rate from sensing. Using a model
such as one developed by Jornet and Akyildiz [4], the various
network performance metrics (e.g. delay, probability of success
transmission) could be computed and the optimum point that
satisfies the QoS requirement would be selected. For instance,
the probability of success is affected when the node is out
of energy due to high traffic load. In this case, even for an

optimal point, the performance can be unacceptable if load is
very high. So, a performance evaluation model in combination
with this optimization model can find the optimum operation
condition of a nanonode. Likewise, when the nanonode is out
of energy, it takes time to harvest energy to transmit a packet.
Therefore, if the traffic load is very high, it will result in a long
delay due to lack of energy for the transmission of packets.
These evaluations are part of our future work.

V. CONCLUSION

This paper investigated simultaneous optimization of en-
ergy consumption and the QoS requirements of perpetual wire-
less nanosensor networks. Code weight and repetition as pa-
rameters to reduce energy consumption and increase transmis-
sion reliability were studied in combination with packet size.
The goal is to provide optimum energy consumption while
the QoS requirements, i.e. delay and transmission reliability,
are considered. The effect of energy for reception/transmission
of pulse and network topology is shown in the model. The
optimized model provide a guideline for optimal design of
energy harvesting wireless nanosensor networks.
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