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Abstract—Linear network coding provides a new communica-
tion diagram to significantly increase the network capacity by
allowing the relay nodes to encode the incoming messages. How-
ever, this communication diagram is fragile to communication
errors and node compromising attacks. How to combat errors
while maintaining the network efficiency is a challenging research
problem. In this paper, we characterize a linear network coding
through a series of cascaded linear error-control codes. This
representation enables us to determine the independent source of
errors in the cascaded network level. It could lead to a successful
decoding of the original message and locating of the malicious
network nodes. We provide comprehensive theoretical analysis
on network coding in both unicast and multicast scenarios. Our
research provides a new approach to understand network coding
schemes and also a novel methodology to develop network coding
schemes that can combat node compromising attacks and locate
the malicious nodes.

I. INTRODUCTION

Network coding was first introduced by Ahlswede et al. [1].
Network coding provides a trade-off between communication
capacity and computational complexity in directed networks
by allowing the relay nodes in the network to encode the
incoming messages before forwarding the messages to the
subsequent nodes. For sink nodes to successfully retrieve the
original messages, all the messages transmitted in the network
must be received error free. This requires the communication
to be error resilient. Currently the research on combating
errors in network coding is mainly focused to linear network
coding [2], [3]. It has been proved that linear network codes
are sufficient to achieve the multicast capacity. Therefore, in
this paper, we will focus on discussion to linear network
coding for the rest of this paper.

The approaches to implement error control in linear network
coding can be divided into two categories: error-detection
at the intermediate nodes, and error-correction at the sink
nodes. For error detection in network coding, Krohn et al. [4]
proposed to verify the messages integrity at the intermediate
nodes using homomorphic hash functions. Charles et al. [5]
used the cryptographic technique to capture and discard cor-
rupted packets. Kehdi and Li [6] proposed the null keys
algorithm, in which the idea of orthogonal spaces was utilized.
Qiao et al. [7] improved the null keys scheme by collecting
the erroneous messages. For research on error correction, Cai
et al. [8] proposed to correct errors at sink nodes using error
correcting network coding. They derived the Hamming bound
and the Gilbert-Varshamov bound. Jaggi et al. [9] developed
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a two-part rate-region for their codes based on BEC channel
codes.

In our previous work [10], we have proven that each
network coding can be transferred into an error-control code
in a bipartite graph. However, in the paper, we ignored the
structure of the underlying error-control coding. In this paper
by exploring the inner structure of network coding, we can
transfer a network coding scheme into a series of cascaded
error-control codes. This mapping enables us to identify the
minimum number of independent error pattern in the corre-
sponding network level and identify the malicious network
nodes.

The main contributions of this paper are two-fold:

1) We develop a methodology to map each network coding

into a series of cascaded error-control codes.

2) We provide a novel approach to design efficient network
coding schemes that can combat network errors and
node compromising attacks utilizing the inner structure
of the network code.

The rest of this paper is organized as follows: Section II
gives an overall of the preliminary. An illustrative example is
presented in Section III. Section IV analyzes the relationship
between the network coding and the cascaded error-control
codings in unicast scenario and Section V provides analysis
in multicast case. We conclude in Section VI.

II. PRELIMINARY
A. Network Coding

In this paper, we adopt the notations of [3]. A network
is equivalent to a directed graph G = (V,E), where V
represents the set of vertices corresponding to the network
nodes and E represents all the directed edges between vertices
corresponding to the communication link. The start vertex v
of an edge e is called the tail of e and written as v = tail(e),
while the end vertex u of an edge e is called the head of of e
and written as u = head(e). We define the capacity of an edge
as the number of symbols that can be transmitted through the
edge in one time unit. So the capacity should be non-negative
integers. In this paper, we normalize the capacity of one edge
to 1. If a channel between two nodes has capacity C' larger
than 1, we model this channel as C' multiple edges each with
capacity 1. We assume the network is delay-free [3], that is
all the edges in the graph have zero delay. And the network is
acyclic, that is all the vertices in the graph can be organized
in an ancestral ordering.
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For a source node u, there is a set of symbols X (u) =
(z1,...,2k) to be sent. Each of the symbol is from the finite
field F,~, where p is a prime number and m is a positive
integer. For a link e between relay nodes r; and 79, written as
e = (r1,72), the symbol y, transmitted on it is the function
of all the y,.s such that head(e’) = r;. And gy, can be written

| 3

e’:head(e’)=r1

Ye = /Be’,e *Yely

in which the encoding coefficients B.: . € F,m. For a sink
node v, there is a set of incoming symbols y. (¢’ : tail(e’) =
v) to be decoded. As long as X'(u) can be retrieved, we say
that the connection from u to v is possible.

If a relay node r is compromised, the symbols transmitted
on each edge e such that head(e) = r will be modified. The
nodes after node r will be polluted because of the network en-
coding. Eventually the sink node will receive more erroneous
symbols than those originally brought by the malicious node.
In the sections below, we try to explore the inner structure of
the network code to correct the errors and locate the malicious
node.

B. Error-Control Codes

We use (n, k) to represent an error-control code in the finite
field F,~ with generator matrix G of size k x n. Suppose msg
is a sequence of k£ symbols, the n-symbol codeword ¢ can be
obtained by ¢ = msg - GG. All the codewords form a subspace
of dimension k over the n dimensional space and each of them
is at least d,;, distance apart from the others, where d,;, is
defined as the minimum hamming distance for any two distinct
codewords z and y, i.e.:

dmin = min {d(z,y)|V codewords : x,y},

where d(x,y) is defined as the number of positions at which
the corresponding symbols are different between x and y.
Moreover, an error-control code can be depicted by a bipartite
graph with one side of nodes representing the original message
while the other side of nodes representing the codeword.
Below are some important properties of the error-control code,
according to which we can choose the proper code parameters
for our error correction requirements.

Theorem 1 (Singleton bound [11]). For a (n,k) code with
the minimum distance d, we have k +d > n + 1.

Theorem 2 ( [11]). For a (n,k) code with the minimum
distance d, it can detect all the d — 1 or less errors, or it
d—1

can correct all the LTJ or less errors, where |x| denotes

the largest integer that is smaller than z.

Reed-Solomon (RS) code is a class of error-control code
that can achieve the Singleton bound. For an RS code with
parameter (n, k), the minimum distance d = n—k+1. Because
it has the maximum achievable d,,;,, it has a strong error-
control capability. We can represent RS code by (n,k,n —
k+1).

Fig. 1. An illustrative example of linear network coding

C. System Model

We set the network as in [3]. The network consists of a
source node, relay nodes and sink nodes. Messages are sent
from source node, encoded then sent out in relay nodes and
finally decoded in sink nodes. Moreover, in this paper we will
partition the network into several cascaded levels and explore
the inner structure of the network code, thus we must be able
to correctly access the outputs of all the relay nodes. To realize
this, we add a special monitor node in the network. This node
can collect the output encoded messages from all the relay
nodes and can never be compromised.

III. AN ILLUSTRATIVE EXAMPLE

Let us examine the classic example [1] shown in Fig. 1. In
this example, source node 1 multicasts two symbols x1 1,712
to sink nodes 6 and 7. By encoding at node 4, both nodes 6 and
7 can retrieve the two symbols successfully. In our pervious
work [10], we merged the intermediate nodes and paths and
transferred the the network code into a bipartite graph. While
in this paper, we try to explore the network code to exhibit the
inner structure of the network code. To explain our main idea,
we will only focus on the communication between node 1
and node 6 (the shaded area in Fig. 1). The analysis is similar
to the communication between node 1 and node 7. In this
communication, symbol x1 ; is passed to node 2, node 4, node
5 and node 6 through one hop, two hops, three hops and two
hops respectively, and symbol x; 5 is passed to node 3, node
4, node 5 and node 6 through one hop, two hops, three hops
and four hops respectively. As shown in Fig. 2, if we add two
virtual nodes v and v, on edge e5, we can make w11 passed
to node 6 through four hops, thus turn all of the intermediate
nodes into 3 cascaded levels. Each of the level can be seen as a
single network code, so we can represent each level using the
bipartite graph shown in Fig. 3 according to [10]. In this way,
we explore the inner structure of the original network code,
which is determined by the network topology. The original
network code can be viewed as 3 cascaded error-control codes

with the generator matrices 1 0 , 10 1], L0 .
0 0 1 0 1 0 1
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Fig. 2. Transfer the network coding scheme in Fig. 1 into a 3-level cascaded
coding by adding 2 virtual nodes.
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Fig. 3. The corresponding bipartite graphs of 3 cascaded levels in Fig. 2

Although in this example, there is no redundancy in the
three error-control codes, the corresponding network code
cannot detect or correct errors, it is sufficient to show that
network code can be expanded to cascaded error-control codes.

In the next section, we will show that network codes
can be transferred into cascaded error-control codes. In this
way, we can characterize and design network codes based on
the underlying cascaded error-control codes for error detec-
tion/correction and malicious nodes locating.

IV. CHARACTERIZATION OF NETWORK CODING USING
CASCADED ERROR-CONTROL CODING IN POINT-TO-POINT
COMMUNICATION

In this section, we will formally state the relationship
between network coding and cascaded error-control coding in
the point-to-point communication. The sufficiency is studied
first then the necessity.

A. The Sufficiency

Lemma 1 ( [10]). Every network code scheme can be repre-
sented by an error-control code.

Theorem 3. Every network code scheme can be expanded to
a series of cascaded error-control codes.

Virtual No\de h. —h,

e
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Fig. 4. Transfer incoming edges of nodes having multiple incoming edges
by adding virtual nodes

connections among nodes of adjacent levels
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Fig. 5. Partition a network code into several levels

Fig. 6. An example of point-to-point network coding

Proof: To prove this, we will first show that the network
code can be partitioned into several cascaded levels of one
hop network codes. For each of the nodes that have multiple
incoming edges in the network, we add some virtual nodes on
these edges as shown in Fig. 4. For each of the incoming edges,
there may be several paths through which messages are passed
from the source node to node u including the edge. Among
all the paths, we find the longest one and calculate its number
of hops. After calculating the hop values hq,...,h,, for all
the incoming edges, we choose the maximum value h,q;-
For each of the incoming edge ¢, we add h,,q, — h; virtual
nodes on it, making all the paths from source to node u have
the same count of hops. The virtual nodes simply forward the
messages passed on the corresponding edges.

After the operation in Fig. 4 is performed in all the nodes
having multiple incoming edges, since all the paths from
source node to the same the relay node have the same hop
counts and the sink node itself must have multiple incoming
edges, every path from the source node to the sink node has the
same number of hops, thus the same number of intermediate
nodes, including the relay nodes and the virtual nodes. We can
put the nodes having the same hop counts together as a level
as shown in Fig. 5. Every single level can be viewed as one
hop network code determined by the connections from nodes
of the previous level. So every network code can be partitioned
into several cascaded levels of one hop network code.

According to Lemma 1, these one hop network codes can be
represented by error-control codes. So the cascaded network
codes can be represented by concatenating the corresponding
error-control codes together. We can expand any network code
to a series of cascaded error-control codes. [ ]

Taking the network code in Fig. 6 as an example. The
source node 1 transmits three symbols x1 1,1 2, 21,3 to sink
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Fig. 7. The corresponding cascaded bipartite graph of Fig. 6

node 4 in this network code. And sink node 4 can receive 6
encoded symbols, which indicates that there are redundancies
in this network coding. In [10], we analyze the same code
and transfer it into a (6,3) error-control code which can
correct 1 error. Here we will show this code can be transferred
into a series of cascaded error-control codes. Following the
operations mentioned in the proof of Theorem 3, we can get
the corresponding cascaded network codes and cascaded error-
control codes shown in Fig. 7. Nodes v; and vy are added as
virtual nodes to partition the original network code. The first
level error-control code is a (5,3) code and the second level
code is a (6,5) code.

If an error occurs on edge e;, node 2 will receive wrong
x1,1. The error will propagate to the succeeding nodes, thus
there will be two erroneous w11 and x1,; + 1,3 in the sink
node, which is beyond the error correction capability of the
(6, 3) error-control code. The errors cannot be dealt using the
transforming methods in [10]. However, if the monitor node
can collect the output symbols of the first level (5, 3) code, it
can correct the erroneous symbol z1 ; in node 2. So the error
propagation is eliminated from the beginning. By exploring
the inner structure of the network code, we can make better
use of the redundancy in the network.

If node 3 is an malicious node and send out corrupted
messages, there will be 3 errors in the output of both the
first level error-control code and the second level. The error
is beyond the capability of the cascaded error-control codes,
so we cannot correct errors or locate the malicious node. In
the section below, we will show that we can design network
codes corresponding to proper cascaded error-control codes to
correct errors and locate malicious nodes.

B. The Necessity

We have proved that any network code can be viewed as a
series of cascaded error-control codes, now we will consider
the reverse problem. For a point-to-point communication, a
network code is feasible only if it can successfully deliver all

the desired symbols from the source node to the sink node. For
any (n, k) error-control code, we have the following lemma:

Lemma 2 ( [10]). For a linear network with source node u,
sink node v and a desired connection C = (u,v, X(u)), An
(n,k) error-control code can be seen as a feasible network code
in the connection C' if we have the relationship: k > R(C),
where R(C) is the rate of the connection C.

Theorem 4. For a linear network and a desired connection
C = (u,v,X(u)), A series of cascaded error-control codes
with parameters (ny,ng), (n2,n1), ..., (Mm,Nm—1), can be
seen as a feasible network code in the connection C' if we
have the relationship: ny > R(C).

Proof: Suppose the original message is x = (x1,...,xg),
the output encoded message for each level of the cascaded
error-control codes is y; = (Yi1,---,¥in,;)(1 < i < m) and
the generator matrix for each of the cascaded error-control
codes is G;(1 < i < m) of the size n;_1 X n,. y; for each
level can be written as:

yi=x-G1, y2=y1-G2, ..., Ym =Ym-1-Gm.
So the entire encoding equation for the cascaded error-control
codes can be written as

ym,:X'Gl'GQ' 'Gm:X'G-

If we view the cascaded error-control codes as an error-
control code with the generator matrix GG of the size ng X 1y,
the parameter for the code is (7,,,, o). According to Lemma 2,
if ng > R(C'), the network code is feasible. [

Based on the analysis, by implementing the error-control
code for each level of the cascaded error-control codes, we
can add appropriate redundancies into the network code to
control errors and locate malicious nodes. This can be done
in two steps:

1) According to the network topology, determine the num-
ber of levels of the cascaded codes. According to the
design requirements (number of errors to detect or
correct, number of malicious nodes to locate), determine
an appropriate code rate and the type of the error-control
code for each level.

2) According to the source rate R(C'), choose a proper
ng such that ny > R(C), and derive the rest of the
n;(1 <4 < m) based on the code rate for each level of
the error-control codes. Generate the generator matrices
Gy, ...,Gy according to the code types and apply them
as the system transfer matrices to each level of the
network codes.

C. Application in Combating node comprising attack

It is easy to verify the following theorem.

Theorem 5. Suppose d;,d;+1 > 2 are the minimum distances
of 2 adjacent levels (L;, L; 1) of the cascaded network code.
If 2d; + 1 > d;41, then errors in L, spread by a single
error in L; is uncorrectable by the L; s error control code.
However, they can be corrected by the L;’s error control code.

Let us analyze the linear network shown in Fig. 8, the source
node 1 is going to send 3 symbols x1, T, 3 to sink node 12.
This network can be partitioned into 2 levels. Nodes 2, 3,4, 5
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Fig. 8. Implement a 2 level cascaded error-control code in network coding

form the first level and nodes 6,7,8,9, 10, 11 form the second
level. In order to get the best error control capability, we
implement two systematic RS codes in the two levels. They
are (7,3,5) code for level 1 and (11,7,5) code for level 2.
The minimum distances of the two codes are both 5, thus both
of them can correct 2 errors. Because the errors occurring next
to the source node are more sensitive. They may propagate to
the subsequent nodes causing much more errors. We put the
lower rate code that has stronger error control capability at the
first level.

When there is no error in the network, we have
(Yi1,Yi2,¥i3) = (x1,22,23),4 = 1,2. It is easy for the sink
node to decode the messages. If node 6 is a malicious node and
it sends out erroneous ¥ 1, Y2,2, the monitor node can correct
these 2 errors using the second level RS code and find out this
malicious node according to the network topology. If node 2
is a malicious node and it sends out erroneous ¥1.1,%1,2, the
errors will propagate to 2,1, ¥2,2, ¥2,8, ¥2,9, ¥2,10, Y2,11, Which
prevents the second level code from correcting the errors. In
the corresponding cascaded bipartite graph Fig. 9, the errors
are marked with grey color. It is clear that 2 errors from level
1 spread to 6 errors in level 2. Even if we transfer the network
code into one (11, 3,9) RS code which is capable of correcting
4 errors according to [10], the errors are still too many to
correct. However, based on the fact that the errors are burst
and correlated, after the monitor node collects the outputs of
the first level, it can correct the 2 errors occurring in node 2
using the first level RS code, find out the malicious node based
on the network topology and correct the 6 errors in the second
level. Our cascaded RS code can correct at most 6 errors by
exploring the inner structure of the code and is more powerful
than regular RS codes.

V. MULTICAST CASE

Because in point-to-point communication case, our proofs
for the relationship (written as Ryc.cec) between network
code and cascaded error-control codes are solely depended
on the proofs for the relationship (written as R ..) between
network code and error-control code in [10] (Theorem 3 and
Theorem 5 in [10], Lemma 1 and Lemma 2 in this paper)
and this kind of dependence has no relationship with the
specific communication case, we can prove that R, cec in
the multicast case is similar to that in the point-to-point

5/
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Fig. 9. The corresponding cascaded bipartite graph of Fig. 8

communication case, based on the fact that in [10] Ry ec
stays the same in both point-to-point and multicast cases.

VI. CONCLUSION

In this paper, we first analyze the relationship between the
cascaded error-control codes and the network code in unicast
case and prove that the two codes are essentially correlated.
Furthermore, we extend this correlation to multicast case.
This research provides a new methodology that can combat
the communication errors and node compromising attacks by
designing efficient network coding scheme based on cascaded
error-control codes and fully utilizing the inner structure of
network codes.
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