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Abstract—In this paper, we propose a novel Compressive
Sensing (CS)-enhanced spectrum sensing approach for Cognitive
Radio (CR) systems. The new framework enables cyclic feature
detection with a significantly reduced sampling rate. We associate
the new framework with a novel model-based greedy recon-
struction algorithm: interdependent matching pursuit (IMP). For
IMP, the hidden block sparsity owing to the symmetry present
in the cyclic spectrum is exploited which effectively reduces
the degree of freedom of problem. Compared with conventional
CS with independent support selection, a remarkable spectrum
reconstruction improvement is achieved by IMP.

I. INTRODUCTION

IN the cognitive radio (CR) regime, cognitive users (CUs)
intelligently monitor and scavenge the holes in spectrum to

improve the spectrum utilization. To reduce the interference
to the primary users (PUs), CUs must be sensitive enough
to detect weak primary signals drowned in noise. Feature
detection is superior compared with its energy detection coun-
terpart, regarding its ability to differentiate the PUs from white
noise. For example, a cyclostationarity detector identifies the
primary signal by exploiting its periodic characteristics [1],
hence exhibiting robustness against the severe stationary white
noise.

To enhance the spectrum sensing capability of a cyclosta-
tionary CR detector, compressive sensing (CS) has recently
been employed that goes beyond the Shannon-Nyquist sam-
pling paradigm [2]. Tian et al. contribute in the pioneering
work [3] to linearly connect the sub-Nyquist measurements
with the desired cyclic statistics in a CS framework. Sequen-
tially, with the aim to reduce computational complexity, Rebeiz
et al. propose to merely reconstruct the peak values of the
spectral correlation density (SCD) matrix [4] by using the SCD
estimator in [3]. In [5], Khalaf et al. consider the case that the
cyclic frequencies of two consecutive time slots share the same
nonzero supports and implement parallel CS reconstruction
based on a joint detection among slots.

However, most of those existing CS-CR cyclic detectors
resort to a recast optimization problem without considering
remedies for the nontrivial computational difficulties. In [4],
although only a part of the SCD is reconstructed to reduce the
problem size, the recast l2 norm problem is not guaranteed to
yield the unique sparsest solution.
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Taking into account these challenges, we propose a novel
spectrum sensing framework to recover cyclostationary spec-
trum from CS measurements. The new framework bypasses
the use of the auxiliary autocorrelation matrix or any map-
ping matrices which are critical for the framework in [3].
Particularly, since in [3] the symmetric components in the
auxiliary autocorrelation matrix are discarded to reduce the
problem dimension, severe spectral tails are incurred. We
instead apply an average periodogram approach and benefit
from interdependency among the symmetric supports, to reach
the same goal of reducing the degree of freedom. We show that
spectral tails in the SCD matrix are effectively suppressed by
the proposed approach, which leads to higher accuracy and
reliability for the sparsity-enforcing reconstruction. Further-
more, inspired by the model-based CS [6], we incorporate
the characteristics of the proposed SCD estimator to facilitate
the spectrum reconstruction and propose a novel model-based
CS algorithm: Interdependent Matching Pursuit (IMP). In
contrast to the existing algorithms that follow the conventional
CS approach, IMP exploits hidden block sparsity among the
symmetric spectral supports and effectively reduces the risk of
reconstruction artifacts and false detection. Simulations show
that the proposed framework with IMP has substantially lower
mean square error (MSE) concerning the spectrum reconstruc-
tion and also higher probability of spectrum detection than
the state-of-art. We further show that the model-based IMP is
more robust against noise than the OMP, especially in the case
where highly compressed measurements are provided.

The notation used is as follows. The superscripts (·)H ,
(·)∗, (·)T (·)−1 and (·)† denote complex conjugate-transpose,
complex conjugate, transpose, inverse and Pseudo-inverse of
a matrix respectively (X† = (XHX)−1XH). Bold {Xk}
(k = 1, 2, ...K) denote a group of matrices. ⊗ and ∗ corre-
spond to Kronecker product and convolution respectively. ∥·∥p
denotes the lp norm for a vector and vec(X) vectorizes matrix
X by sequentially concatenating columns into a vector. X[i] is
the ith column of X and X[J ] the J th block of X. J denotes
the complement of set J . mod(x, y) computes the modulus
of x/y and ⌊x⌋ floors x as an integer towards negative infinity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Compressive Sensing (CS)

We consider a discrete-time signal y ∈ CN which is sparse
in some sparsifying basis Ψ ∈ CN×N . The signal y can be



linearly expressed as:
y = Ψs, (1)

where s ∈ CN has only Ks (Ks < N) nonzero coefficients.
CS theory states that although only a small number of mea-
surements z are collected:

z = Φy = ΦΨs = As, (2)

where Φ ∈ RM×N is an M × N (Ks < M < N) sensing
matrix, an overwhelming probability to accurately reconstruct
s from z holds, if A=ΦΨ satisfies the restricted isometry
property (RIP) [2]. The sparseness-promoting problem:

min ∥s∥0 s.t. y = Ψs (3)

is an NP-complete problem. The convex relaxed version [2]
of Eq. (3) bypasses the computational difficulty by replacing
the l0 norm with the l1 norm and also guarantees correct
reconstructions if certain conditions, such as RIP, for the
equivalent sensing matrix A are satisfied. However, convex
solvers encounter notable computational complexity for large
scale problems. The significant delay introduced will hinder
applications which demand fast reconstruction and detection.
Although convex solvers guarantee higher reconstruction ac-
curacy, alternative greedy algorithms such as the Orthogonal
Matching Pursuit (OMP) [7] and CoSaMP [8] offer advantages
in terms of speed and ease of implementation. Particularly,
in a dynamic CR context, fast spectrum detection plays a
critically important role, hence motivating us to tailor new
greedy pursuit techniques for the CR regime.

B. Nyquist rate Cyclic Feature Detection

The continuous cyclic autocorrelation function (CAF) for a
second order cytostatically signal x(t) is defined by [9]:

Rα
2x(τ) = lim

T→∞

1

T

∫ T/2

−T/2

u(t+ τ/2) · v∗(t− τ/2)dt

=
1

T
· u(τ) ∗ v∗(−τ), (4)

where u(t) = x(t)e−jπαt, v(t) = x(t)ejπαt and α denotes the
cyclic frequency. The SCD, which are the Fourier coefficients
of the CAF, is defined by:

Sα
2x(f) = F [Rα

2x(τ)] =
1

T
· U(f) · V ∗(f), (5)

where U(f) = X(f + α
2 ) and V (f) = X(f − α

2 ) are
the frequency responses of u(t) and v(t) respectively. Eq.(5)
unveils the nature of cyclic spectrum as a measurement of
frequency correlation separated by α. The SCD can hence
be obtained by time smoothing among the periodograms to
achieve consistent estimation for Eq.(5), wherein the ‘time
variant cross periodogram’ is defined by [9]:

Iα2x(t, f) =
1

T
XT (t, f +

α

2
) ·X∗

T (t, f − α

2
). (6)

Here, XT (t, f) is the time-variant frequency response ob-
tained using a window of length T . A classical nonsymmet-
ric SCD estimator was proposed in [10] using ‘smoothed

periodograms’, that resorted to the convolution of the peri-
odograms with a window function. This incurs difficulties
in matrix formulations for a CS based approach, so alter-
natively we employ Welch’s method in a ‘sliding window’
manner to average periodograms within a temporal data range
T1 = N ·K, where N is the window length in samples and K
denotes the total number of frames truncated. Therefore, we
have the modified discrete estimation of SCD as:

S2x[a,m] =
1

K·N

K∑
k=1

Xk[m+ a]X∗
k [m− a], (7)

where α = 2a ·∆f represents the cyclic frequency. Here ∆f
denotes the resolution of the N -dimensional Discrete Fourier
Transform (DFT) coefficients Xk[m], 0 ≤ m ≤ N −1, which
are computed using the kth truncated frame.

III. A NOVEL FRAMEWORK FOR SPARSER SCD

This section presents the proposed SCD estimator based on
Welch’s method to facilitate the following model-based CS
reconstruction. Rectangular windows are applied to sample the
data.

Let xk ∈ RN denote the kth frame of samples collected
from x(t) at sampling rate fs = fn, where N indicates the
temporal window length and fn corresponds to the Nyquist
sampling rate. N should be chosen to be at least 3 to allow the
conjugate symmetry [11] of the spectrum. The N -dimensional
square Fourier matrix D ∈ CN×N enables the DFT as:

fk = Dxk, (8)

where fk ∈ CN represents the Fourier coefficients of the kth
frame. In order to avoid the spectrum from being folded as
in [3], we need a spectrum centered at zero frequency. To
achieve this goal, we exchange the block consisting of the
first N −

⌊
N
2

⌋
rows of D with the block of the remaining⌊

N
2

⌋
rows, while we retain the notation D.

We define the matrix S2x by reforming Eq.(7) as:

S2x =
1

K ·N

K∑
k=1

fk(fk)
H
. (9)

The resultant matrix S2x ∈ CN×N consists of the SCD entries
s[i, j] on the ith row and jth column as:

s[i, j] =
1

K·N

K∑
k=1

fk[i] · fk∗[j], 1 ≤ i, j ≤ N. (10)

Each entry in Eq.(10) is a scaled averaged discrete version
of the periodogram defined by Eq.(6). The index difference
i− j for each entry s[i, j] implies the spectral gap separating
two correlated spectral components. In this way, entries on
the same diagonal of S2x share the identical index difference
i − j, and hence the same cyclic frequency α = 2a · ∆f =
(i−j) ·∆f , while entries on the same anti-diagonal i+j refer
to an identical frequency fk[

i+j
2 ].

Hence, the main diagonal of S2x in essence represents the
f axis (α = 0), while the minor diagonal indicates the α axis



(f = 0). In order to ensure both a and i+j
2 are feasible integers,

we only extract diagonals from the reconstructed S2x where
i − j is even for the post-recovery detection test. Owing to
this decimation, the resolution of cyclic period is ∆α = 2fn

N ,
which halves the spectral resolution ∆f = fn

N .
We adopt the causal random sampler [12] in order to

maintain the causality of the sampling process, in which the M
rows of the sensing matrix Φ ∈ RM×N are randomly selected
from an identity matrix IN without changing the order of the
rows. Let zk denote the random measurements vector with a
reduced sampling rate fs =

M
N fn:

zk = Φxk, (11)

where M
N is the compression rate. According to Eq.(9), S2x

can be rewritten as:

S2x =
1

K·N

K∑
k=1

Dxkx
T
kD

H =
1

K·N
D(

K∑
k=1

xkx
T
k )D

H ,

(12)
and it follows that:

ΦD−1S2x(D
H)−1ΦT =

1

K·N
Φ(

K∑
k=1

xkx
T
k )Φ

T . (13)

Note that DH = N ·D−1, which avoids the inverse manipu-
lation of D. Therefore, according to Eq.(11) and Eq.(13), we
have:

1

N2
ΦDHS2xDΦT =

1

K·N

K∑
k=1

zkz
T
k . (14)

Since vec(ABC) = (CT ⊗A)vec(B), we obtain:

[(DΦT )T ⊗ΦDH ]vec(S2x) =
N

K
vec(

K∑
k=1

zkz
T
k ). (15)

This completes the new under-determined linear system:

As = z, (16)

where A = ΦDT ⊗ ΦDH , z = N
K vec(

K∑
k=1

zkz
T
k ), and s is

the vectorized S2x.

Note that
K∑

k=1

xkx
T
k in Eq. (12) essentially represents the

averaged covariance matrix without rotation, which contrasts
with the use of the auxiliary autocorrelation matrix in [3].
Eq.(16) thus retains all useful temporal information, avoiding
zero paddling or the use of mapping matrices as in [3] and
consequently, much alleviated spectral tails. The equivalent
sensing matrix A only necessitates the use of a DFT matrix,
allowing a more straightforward temporal-spectral expression.

IV. CAPITALIZE ON MODEL-BASED CS: IMP

In view of the fact of the symmetry and cyclic patterns in
SCD, multiple peak entries in matrix S2x jointly indicate the
spectrum occupancy of the same user. The appearance of one
user is thus reflected in the vector s = vec(S2x) as a group of
associated but scattered entries. We show in this section that

this characteristic is effectively equivalent to the block sparsity
model [13] [14] with a certain block size d. Consequently, we
can take advantage of the hidden block sparsity in solving
Eq.(16), although we do not assume any block structure in
the spectrum itself.

A. Block Sparsity Model Preliminaries

Considering the under-determined system Eq.(16), the un-
known vector s ∈ CN̂ can be partitioned as a concatenation
of blocks sT [J ], J = 1 · · · M̂

s = [s1 · · · sd︸ ︷︷ ︸
sT [1]

sd+1 · · · s2d︸ ︷︷ ︸
sT [2]

· · · sN̂−d+1 · · · sN̂︸ ︷︷ ︸
sT [M̂ ]

]T , (17)

where d denotes the block size and M̂ = N̂/d is the total
number of blocks, the sensing matrix A can be similarly par-
titioned into concatenated column-blocks A[J ], J = 1 · · · M̂ :

A = [a1 · · ·ad︸ ︷︷ ︸
A[1]

ad+1 · · ·a2d︸ ︷︷ ︸
A[2]

· · ·aN̂−d+1 · · ·aN̂︸ ︷︷ ︸
A[M̂ ]

]. (18)

The signal s is called ‘block Ks-sparse’ if it contains only at
most Ks blocks with nonzero Euclidean norm.

It is proved in [13] that both the block coherence

µB = max
1≤J1 ̸=J2≤M̂

1

d
∥A∗[J1]A[J2]∥ , (19)

and the sub-coherence:

ν = max
1≤l≤M̂

( max
(l−1)d+1≤i ̸=j≤ld

∥a∗i aj ]∥1), (20)

are substantially smaller than the conventional coherence

µ = max
1≤i ̸=j≤N̂

1

d
∥a∗[i]a[j]∥ . (21)

‘Block sparse’ signal reconstruction hence can be guaranteed
with an eased requirement for the equivalent sensing matrix,
comparing to the reconstruction with the conventional CS
model.

B. Interdependent Matching Pursuit (IMP)

We are now motivated to cluster the associated SCD entries
in s ∈ CN2

into a block structured equivalant sb ∈ CN2

, in
which one block only contains supports owing to one user
of the spectrum. We hence introduce a unitary permutation
matrix P ∈ RN2×N2

with the aim of permutating s into a
block sparse vector sb = Ps. The permutation matrix P is
all zeros except for a sole ‘1’ at each row and each column
(i.e., an orthonormal basis). Hence, the column index of each
sole ‘1’ from the first row through the N2th row sequentially
indicates the desired order of the entries taken from s to be put
into sb. Based on the property of unitary matrices, we derive:

z = As = AP−1Ps = APTPs = APT sb, (22)

where sb = Ps is a potential block sparse vector associated
with the new projection matrix APT , while APT = (PAT )T



Algorithm 1 Interdependent Matching Pursuit
Input: Sensing matrix A, model-based function J, permu-
tation matrix P, measurements vector z
Initialization: t = 0, s0 = 0, r0 = z, Q0 = ϕ, A0 = ϕ;
while halting criterion false do

t = t+ 1;
Jt = argmax

J

∥∥∥(APT )
H
[J ]rt−1

∥∥∥
2
;

Ât = (APT )[Jt], At = [At−1 Ât], Qt = Qt−1 ∪ Jt;
st = A†

tz;
rt = z−Atst; (rt is the residual)

end while
sb,Qt = st, sb,Qt

= 0;
return s̃ = PT sb;

permutates the columns of A in exactly the same order as in
sb.

The format of the permutation matrix P depends on the
desired order of the entries to be clustered. This order in fact
is fixed and is only determined by the embedded symmetry
of S2x as well as the presented cyclic features owing to
the modulation type. The block size is denoted as d, while
we denote the modulation type related model function as
J which is stated in the following Lemma 1 and Lemma
2. The indices to be included in each block is grouped as
J = {j1, . . . , jd} = J(j1), where there are total of N2

d
such grouped blocks in sb. Note that the remaining indices
{j2, . . . , jd} are determined by function J given any arbitrary
entry index j1 in s. P is thus readily obtained with the goal
to permutate all N2 entries in s into a concatenation of blocks
according to the block-oriented permutation determined by
J. As a result, by sequentially computing J = J(j1) for
j1 = 1, . . . N2, all entries in s are clustered into a block
structured sb, where a single block sb[J ] actually consists
of the entries indexed by a J = {j1, . . . , jd} in s, which
corresponds to symmetrical replicas and cyclic features owing
to a single spectrum user. The indices that have been included
in previous blocks must not be processed again as initial new
j1 for subsequent block computations J(j1) and so are jumped.

Lemma 1. The s = vec(S2x) is conjugate symmetrical about
s[N

2+N+2
2 ] for even N and s[N

2+1
2 ] for odd N regardless of

the modulation type, giving d = 2 and interdependent indices
pair {j1, j2}, where j2 = N2 + N + 2 − j1 (N even), and
j2 = N2+1−j1 (N odd). Here j1 is an arbitrary entry index
for s.

Lemma 1 stems from the conjugate symmetric nature of the
DFT coefficients for a real discrete signal: Xk[m] = X∗

k [N −
m], 1 ≤ m ≤ N − 1 [11]. Regarding the fold-free fk[i] in
Eq.(8) yields:

fk[i] = f∗k [2 ·
⌊
N

2

⌋
+ 2− i], 2 ≤ i ≤ N, (23)

which states that S2x is symmetrical about the main diagonal
and conjugate symmetrical about the minor-diagonal according
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Fig. 1. Comparison of the constructed SCD for 2 BPSK spectrum users.

to Eq.(10). The symmetry present in S2x is thus reflected in
its vectorized representation s = vec(S2x) as in Lemma 1 1.
Lemma 1 unveils the hidden block sparse nature behind s with
d = 2. To further reduce the degree of freedom, multiple cyclic
features owing to one user also contribute to an increase of
d. Take for instance, if a BPSK signal is present at f = ±fc,
spectral peaks simultaneously appear at cyclic frequencies α =
±2fc [9].

Lemma 2. For a BPSK modulated signal, the block size
increases to d = 4 owing to the presence of the cyclic
frequency α = ±2fc, giving additional associated indices
j3 and j4, where j3 = 2

⌊
N
2

⌋
+ 2 − (j1 − 2 ⌊j1/N⌋ · N),

j4 = 2
⌊
N
2

⌋
+ 2− (j2 − 2 ⌊j2/N⌋ ·N).

We illustrate Lemma 1 and Lemma 2 in Fig. 1(b) where
two BPSK signals are present in the novel SCD. According
to the format in Eq.(10), the main diagonal of S2x represents
the f axis (α = 0), while the minor diagonal indicates the α
axis (f = 0). The four peaks identified by black arrows are
associated with one user and four peaks indicated with red
the other. The locations of the cyclic frequency α = ±2fc
are indexed by j3 and j4 in s. The peaks specified by j1
and j3 are present in one column in S2x with the symmetry
about the

⌊
N
2

⌋
+ 1th row, while a similar relationship applies

for the pair {j2, j4} in a different column. In other words,

1For even N , the first row and column are affected by fk[1] and f∗k[1]
which are asymmetric [11], so we manually allocate fk[1] as unoccupied to
eliminate the effect.
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Fig. 2. MSE performance comparison for SCD reconstruction (spectrum
occupancy=0.08).

⌊j1/N⌋ = ⌊j3/N⌋, ⌊j2/N⌋ = ⌊j4/N⌋, while mod(j3, N) +
mod(j1, N) = 2

⌊
N
2

⌋
+ 2 and mod(j4, N) + mod(j2, N) =

2
⌊
N
2

⌋
+ 2, which gives Lemma 2. The spectral occupancies

in the SCD matrix S2x hence imply two potentially occupied
blocks with block size d = 4 in sb = P · vec(S2x). We do
not include the effect of symbol rate in Lemma 2, since they
are highly dependent on the design of the pulse-shaping filter.

In this way, we apply block selection to carry out IMP
which is summarized as Algorithm 1. We select the J th block
APT [J ] on the new basis APT which is most correlated to
the residual rt−1 in iteration t:

Jt = argmax
J

∥∥∥(APT )
H
[J ]rt−1

∥∥∥
2
, (24)

and record the Jt sequentially in the growing set Qt. The
pseudo-inverse step guarantees an orthogonal space in iteration
t against the selected supports obtained in iteration t− 1. The
step sb,Qt = st means that the entries of sb whose indices
are from the blocks recorded in set Qt are sequentially set
to be equal to the components in st, while sb,Qt

= 0 sets
all other entries in sb to zeros. IMP finally returns s̃ as the
reconstruction of s. Upon available information concerning
the maximum number of users, a halting criterion can be
chosen based on desired residual level or sparsity level. Cross
validation techniques can also be integrated to estimate the
sparsity level adaptively [15], however this is not the focus of
this paper.

V. SIMULATION RESULTS

We simulate a wideband spectrum of bandwidth 500MHz
(fn = 1GHz), occupied with 2 primary BPSK signals. The
PUs appear randomly within the 500MHz range with symbol
rate fsb = 16.8MHz. By using a root raised cosine filter
with roll-off factor r = 0.5, we have a spectrum occupancy
of 0.08. The window length for SCD estimation is set to
N = 64 samples per frame, with a total number of K = 200
frames. We use L to indicate the total number of rounds of the
experiment. The MSE adopts the convention ∥s− s̃∥22 / ∥s∥

2
2,

where s indicates the original vectorized Nyquist SCD entries
s = vec(S2x) and s̃ is the reconstructed vector.
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Fig. 3. Probability of detection (spectrum occupancy=0.08, false alarm rate
Pf = 0.01).

A. A sparser SCD construction

Fig. 1(a) presents the Nyquist rate SCD estimator using [3]
in contrast to the proposed estimator in Fig. 1(b). We use the
integer notion [1,64] to index the axis of SCD in order to
demonstrate the same 64×64 2D support without decimation
as shown in Fig. 1(b). By using the proposed estimator, the
spectral tail due to truncation is perfectly suppressed, resulting
in a much sparser 2D SCD support than that of Tian’s. Under
the same spectrum occupancy of 0.08, the proposed estimator
retains all temporal entries while it avoids any manual rotation
or truncation regarding the symmetrical entries in the SCD or
covariance matrix. This contrasts with the work in [3] which
omits symmetric patterns and fills in the resultant vacancies
with zeros in the auxiliary covariance matrix. For the sake of
CS reconstruction, this sparsity potentially guarantees a more
accurate signal recovery.

B. Noise-free SCD reconstruction

Fig. 2 highlights the MSE performance based on the new es-
timator in contrast to that of Tian’s. In addition, OMP and IMP
are also compared with L = 200 rounds for reconstruction. We
extract certain diagonals from the SCD for spectrum detection
according to Section III. Hence, to achieve the same cyclic
spectrum resolution during PU detection, our window length
should be twice the size of Tian’s. Hence, we implement Tian’s
estimator with N = 32 and use N = 64 for the proposed
estimator to evaluate the performance. Reconstructing on a
much sparser SCD support, the proposed estimator leads to
higher recovery accuracy as the compression ratio M/N varies
from 0.1 to 0.9. We observe that the MSE performance of
IMP approaches that of the convex solver while it has the
much lower computational complexity of greedy pursuit. The
gap between OMP and IMP diminishes as M/N increases.
This is consistent with [13] which observes that the dominant
bottleneck of the reconstruction shifts from undersampling to
the true sparsity level of the signal once enough samples have
been acquired.

The MSE floor in Fig. 2 essentially differs from the
compression wall in [4]. Our result stems from the finite
number of iterations of the greedy algorithm for a ‘near sparse’
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signal, while the floor in [4] is attributed to the non-unique
solution caused by the introduced matrix regularization. If the
reconstruction is performed by an l1 based convex solver, the
proposed framework breaks MSE floor as shown as Fig. 2.

With a finite number of K averaged frames, the SCD
can be only reconstructed with errors owing to its ‘near
sparse’ nature. The existing Generalized Likelihood Ratio
Test (GLRT) [10] method thus no longer fits the statistics
gained from the imperfect SCD. We instead apply the pro-
posed test model in [4], where the distribution of the test
statistic under the null hypnosis H0 ‘the channel is idle’ is
estimated first and then used to determine a threshold Γ.
This distribution gives reference to a certain false alarm rate
according to the threshold, namely PF = Pr(Λ > Γ|H0).
The probability of detection is then yielded by the probability
PD = 1

L

∑
ndet/ntrue under a certain PF , where ntrue is

the actual number of channels occupied in each round of
experiment, and ndet is defined as the number of detected
users according to the threshold. Fig. 3 illustrates that by
employing a more reliable SCD reconstruction, the probability
of detection Pd is correspondingly improved, at a fixed false
alarm rate Pf = 0.01.

C. Robustness against noise

To evaluate the robustness of IMP against noise, we account
for measurement error and spectrum background noise by
adding a zero mean uncorrelated Gaussian noise n to the
model. This gives the model z = As + n, upon which we
carry out L = 200 round experiments with regard to SNR
for certain fixed compression ratios. The received signal to
noise ratio SNR is defined as SNR= 10log10

∥z−n∥2
2

∥n∥2
2

, while
the definition of MSE remains unchanged. This implies that
we do not treat the wideband background noise as actual
signal to be reconstructed but rather a disturbance added to
the measurements. Fig. 4 shows the superior recovery of IMP
at M/N = 0.2 and 0.3, which verifies the lower error bound
guaranteed in [14] with d = 4. IMP selects 4 supports at each
iteration, yielding an averaged reconstruction time 0.1197s
(M/N = 0.2) and 0.4324s (M/N = 0.3) in our Matlab

simulation, which is about 4 times better than we achieved
by using conventional OMP. This demonstrates the negligible
overhead introduced by P. The performance gap between the
two grows significantly as the SNR decreases. Especially in
the range of SNR from 10 to 15 dB when conventional greedy
pursuit becomes vulnerable to disturbance, the model-based
IMP exhibits robust noise tolerance with slower performance
degradation, showing strong evidence of a reduced degree of
freedom based on the block sparse model J.

VI. CONCLUSION

In this paper, we propose a novel CS-enhanced cyclosta-
tionarity based spectrum sensing framework associated with
a novel spectrum reconstruction algorithm IMP. We attribute
the recovery superiority and performance guarantee of the
proposed approach to the hidden block sparse nature and verify
its performance via simulations. Our future work includes a
theoretical analysis for the statistical test on the lossy SCD
reconstruction in lower SNR scenarios.

REFERENCES

[1] E. Axell, G. Leus, E. Larsson, and H. Poor, “Spectrum sensing for
cognitive radio : State-of-the-art and recent advances,” Signal Processing
Magazine, IEEE, vol. 29, no. 3, May 2012.

[2] E. J. Candès, “Compressive sampling,” in Proceedings of the Interna-
tional Congressof Mathematicians, Madrid, Spain, 2006.

[3] Z. Tian, Y. Tafesse, and B. Sadler, “Cyclic feature detection with sub-
nyquist sampling for wideband spectrum sensing,” Selected Topics in
Signal Processing, IEEE Journal of, vol. 6, no. 1, Feb. 2012.

[4] E. Rebeiz, V. Jain, and D. Cabric, “Cyclostationarity-based low complex-
ity wideband spectrum sensing using compressive sampling,” in Com-
munications (ICC), 2012 IEEE International Conference on, Ottawa,
Canada, June 2012.

[5] Z. Khalaf, A. Nafkha, and J. Palicot, “Blind spectrum detector for cog-
nitive radio using compressed sensing,” in Global Telecommunications
Conference (GLOBECOM), 2011 IEEE, Dec. 2011.

[6] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based com-
pressive sensing,” Information Theory, IEEE Transactions on, vol. 56,
no. 4, pp. 1982 –2001, april 2010.

[7] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” Information Theory, IEEE Transac-
tions on, vol. 53, no. 12, Dec. 2007.

[8] D. Needell and J. Tropp, “CoSamp: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 301 – 321, 2009.

[9] W. Gardner, “Exploitation of spectral redundancy in cyclostationary
signals,” Signal Processing Magazine, IEEE, vol. 8, no. 2, April 1991.

[10] A. Dandawate and G. Giannakis, “Statistical tests for presence of
cyclostationarity,” Signal Processing, IEEE Transactions on, vol. 42,
no. 9, Sep 1994.

[11] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Digital Signal
Processing. New Jersey: Prentice Hall, 1998.

[12] W. Chen and I. Wassell, “Energy-efficient signal acquisition in wireless
sensor networks: a compressive sensing framework,” Wireless Sensor
Systems, IET, vol. 2, no. 1, pp. 1–8, 2012.

[13] Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Un-
certainty relations and efficient recovery,” Signal Processing, IEEE
Transactions on, vol. 58, no. 6, pp. 3042 –3054, june 2010.

[14] Z. Ben-Haim and Y. Eldar, “Near-oracle performance of greedy block-
sparse estimation techniques from noisy measurements,” Selected Topics
in Signal Processing, IEEE Journal of, vol. 5, no. 5, pp. 1032 –1047,
sept. 2011.

[15] H. Sun, A. Nallanathan, J. Jiang, and H. V. Poor, “Compressive
autonomous sensing (CASe) for wideband spectrum sensing,” in Com-
munications (ICC), 2012 IEEE International Conference on, Ottawa,
Canada, June 2012.


