Distributed Decision Making in Cognitive Radio
Networks Through Argumentation

Brent Horine, Ladislau B6loni, and Damla Turgut
School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816-2362
{bhorine,lboloni,turgut} @eecs.ucf.edu

Abstract—We have developed a multi-agent negotiation system
to distribute decision making in cognitive radio networks through
argumentation. The challenge in wireless network negotiation is
to efficiently exchange information to facilitate a deal without
incurring excessive communication overhead or indeterminate
negotiation time. Our goal is to improve both total network
throughput and the number of total supported connections. We
detail a set of rules, a protocol, and a compact set of messages
to conduct these negotiations and complete in finite time and
with little overhead. We describe our simulation environment and
present results of an illustrative scenario with various conditions.
This scenario includes the ability of an agent to assert high
priority, possibly triggering a downgrade of an existing, non-
priority connection to a slower rate in order to accommodate
more connections. We compare our system’s total network
throughput, number of connections, and request satisfaction score
to several baselines with various levels of reconsideration and
conclude that our system outperforms these other approaches in
all metrics.

I. INTRODUCTION

Ad hoc radio networks offer the advantages of providing
robust communications without the need for infrastructure, and
in particular, centralized control. To fully take advantage of
these systems, some distributed means of admitting individual
communications onto the media (i.e. spectrum) is required,
a process known as session admission control (SAC). Since
radio spectrum is, for practical purposes, a finite resource and
only a certain data rate can be supported in that spectrum
under given radio conditions, at some level of network loading,
the radio nodes will be unable to support any additional
communication links. We seek to extend this boundary through
negotiations.

The distributed decision-making process is effectively mod-
eled using a multi-agent framework. Each radio node acts
as an independent agent that cooperates with other agents to
accomplish a goal. In this study, these agents are not individ-
ually rational, but instead seek to maximize the satisfaction of
lease requests, total network throughput, and total number of
connections.

We consider the problem of allocating link capacity for
long duration streaming media of three discrete grades: high
definition video (HDV), standard definition video (VID), and
audio (AUD). The links between source and destination are
capacity limited at high network loads, causing requests for
new leases to be rejected. We are interested in ways to recover

from these rejections. This can be accomplished by attempting
alternate routes, or arguing that the requested connection has a
higher priority than one or more existing connections (granted
by some higher, agreed-upon authority). It is possible for an
ongoing connection to be downgraded from a higher level to
a lower one under certain conditions, although no connection
will be dropped in favor of a new one.

In [6], we used argumentation to negotiate links in a simple
topology using both priority and fairness arguments along with
information exchanges about entities that are only known to
some agents. This work demonstrated that argumentation can
lead to superior solutions compared to simple negotiation. Our
work here uses a simpler negotiation system, but on a larger
scale with more nodes and multiple requests issued over a
simulated 8 hours.

II. PRELIMINARIES: RULES AND MESSAGES

The negotiations are governed by a set of rules, some ex-
plicit and others implicit. These rules determine acceptance of
proposals and arguments. They also determine which actions
to take at any given point in the negotiations, for example,
in response to a received message. This begins to define the
negotiation protocol. We develop it more explicitly in the next
sections.

A. Implicit Rules

The nodes trust other nodes’ arguments, such as priority.
Nodes are conservative in that they do not ask for a higher
grade of service than they need. Relay nodes do not discrimi-
nate between their sourced or sinked connections and a relayed
connection. Agents know the capacity and actively maintain
knowledge of the current load of their one-hop routes.

B. Explicit Rules

A node shall attempt to create a connection along the
shortest route. Each node along the path shall accept the
proposal if it has enough remaining capacity to support the re-
quested grade of service. Otherwise, it will reject it. Received
rejections result in an identical request, but along the next
shortest route. A priority connection can force a current, non-
priority connection to downgrade from HDV to VID in order
to free up capacity to support the new priority connection.
Conversely, a node shall accept a downgrade proposal when

presented with a priority argument, unless it can assert its own
priority for the specified connection.

Because of the plurality of routes in a densely connected
network and the additional considerations due to priority
arguments, many solutions may be possible at any given nego-
tiation step. In highly dynamic mobile radio networks, possibly
using dynamic spectrum access, lengthy negotiations may not
be practical. The limits are application dependent. This work
uses fairly severe limitations on the number of negotiation
options to be explored by any agent. In particular, if a given
route includes an over-capacity link, another route will be
chosen (if available), but if that one is also over-capacity, no
more routes will be explored. If the desired connection has a
high priority status, a single attempt will be launched from the
originator, before failing. Likewise, when a priority argument
is received after rejecting a proposal, the node will search for
a connection to downgrade in order to clear capacity for the
priority connection. The downgrade proposal will then be sent
to the source node for that connection. It is possible that the
connection will also have a high priority, in which case the
proposal will be rejected. Only a single attempt is made for
each argument. This approach avoids the danger of consuming
excessive network resources in negotiation at the expense of a
higher failure rate. Obviously, some applications will call for
more diligent negotiation.

C. Messages

The various radio agents or nodes communicate with each
other via a small number of message types. Because communi-
cation overhead should be minimized in capacity constrained
systems, these messages are very compact.

« Propose: requests a lease to communicate from a source
node to a destination at a specific grade of communica-
tion. It specifies a start and stop time. It also includes a
route.

o Accept: indicates that the proposal is acceptable and
flows back through the reversed route to the proposal
originator.

« Reject: issued when a node is unable to support the
proposal due to a capacity constraint. It includes an
argument specifying the node that failed the capacity
constraint. This information can be used by the proposer
to synthesize a counter proposal.

o Argue: sends a fact supporting a proposal. A priority
assertion takes on unknown, normal, or high priority
status. High priority statuses are associated with partic-
ular connections and can force a downgrade of another
connection in order to support the priority one.

« Downgrade: specialized proposal sent when a relay does
not have the capacity to support a proposal, but has
received a priority argument. The downgrade is sent to
the originator of a downgrade-able connection.

« Notify: informative message that spreads the news of
an accepted downgrade to other nodes in the connection
route that is not on the path of the original downgrade
and accept message pair.

o Confirm: sent by the ultimate destination of the notify
message back to the originator of the notify. This is
primarily used to synchronize message passing so that
node that initiated the downgrade proposal can either
accept the original proposal (if it is the final destination)
or forward it.

III. PROPOSED PROTOCOL

The rules and messages combine to a set of algorithms that
represents the negotiation protocol. Negotiations start when a
node has a desire to communicate with another at a specific
rate. If appropriate, a high priority status is attached to the
desire. This becomes an intention with a start time, duration,
and a route. A proposal in the form of a request is then created
and dispatched to the first node in the route.

Requests or proposals are accepted if sufficient excess
capacity exists. This process is described in Algorithm 1.
The agent examines the outbound connection at each node
and compares the current load plus the proposed load to
the capacity limit. If it is below the limit, the proposal
is forwarded. Notice that if the current node is the final
destination, the proposal can be immediately accepted, since
the capacity has already been verified by preceding nodes.
Actual acceptance from intermediate nodes is deferred until
the destination nodes have accepted the proposal. When an
intermediate agent forwards a proposal, it reserves the capacity
on the assumption that the connection will ultimately be
accepted by all nodes along the route. Eventually, the node
will receive a response message from the node to which
it forwarded the proposal. If it is an acceptance, then the
reservation becomes a commitment for the duration of the
connection. If it is a rejection, the reservation is cancelled. In
either case, the message is forwarded along the reverse route
back to the originating node. Timeouts can be used to clean up
the negotiation state in case of a broken link. When an initial
proposal is rejected, the originating agent can either issue a
proposal along a different route, or issue an argument, if one
is available, as shown in Algorithm 2.

If an agent receives an argument, it retrieves the cached
proposal to which it refers (Algorithm 3). In the case of a pri-
ority argument, it attempts to find an existing connection that
it can downgrade in order to clear capacity for the proposed
connection. Assuming it finds one, it then issues a downgrade
proposal to the originator of that connection. This gives that
agent an opportunity to issue its own argument, for example, it
also has priority, against the downgrade. Otherwise, it accepts
it. Agents handle a downgrade request by forwarding to the
originating agent of the connection to be downgraded, which
is the destination of the message route. The agent retrieves
the connection from its database and checks to see if it has
a high priority status. If it does, it rejects the downgrade
request; otherwise, it accepts it and makes the appropriate
changes to its connections and link loading databases. In
either case, the message is sent back along the reverse route.
Acceptances from both proposals and downgrade requests
require the updating of the connections and links databases.

If the node issuing the downgrade proposal is an intermediate
node in the downgraded connection’s route, it needs to notify
the other agents in the opposite direction from the originator.
This process is accomplished through a notification message
and a corresponding confirmation. No decisions are required
at any of the nodes in this message route. As before, actual
changes to the connections and link loading databases are
deferred until the confirmation message is received.

Algorithm 1 Handle Proposal algorithm

function HANDLEPROPOSAL(Proposal proposal)
if isFinalDestination() then
new_msg — accept(proposal)
connections.add(new Connection(proposal))
else
if current_load -+ proposed_load < maximum_capacity then
new_msg < forwardM essage(proposal)
else
new_msg < reject(me, proposal)
end if
end if
return new_msg
end function

Algorithm 2 Handle Reject algorithm

function HANDLEREJECT(Reject reject)
if isOriginatingNode() then

if num_attempts = 1 then
route_num < route_num + 1
new_msg < createProposal(route_num)
num_attempts <— num_attempts + 1

else
if havePriority(desire) then

new_msg < createArgument(priority)

else
Fail > Negotiation fails and terminates
new_msg <— null
end if
end if
else
new_msg < forwardRejection(reject)
end if

return new_msg
end function

Algorithm 3 Handle Argument algorithm

function HANDLEARGUMENT(Argument arg)
fact < arg.fact
if priority then
connection < findDowngradeConnection
if connection # null then
new_msg « createDowngrade(connection)
else
new_msg < reject
end if
end if
return new_msg
end function

IV. SIMULATION STUDY

We developed a simulator to compare the performance of
the negotiation technique to a variety of loads. We first discuss
the metrics that guide the design of the simulator system,

which we review before presenting the results of an illustrative
scenario.

A. Metrics

The performance measures include the overall network
throughput and the satisfaction rate of requests under various
loading conditions. We also investigate the satisfaction of
individual links in the context of downgrades during the
connection lifetime due to priority or fairness assertions.

An additional and very significant measure in negotiation is
the number and total size of messages used to complete the
negotiations. The number of messages can be minimized by
passing all of the data in the knowledgebase in each message.
On the other hand, this can increase the total load, especially
when no deal is possible or a simple deal is possible. In
this case, the transmission of the extra data is either futile or
unneeded. With a small network load, it is likely that initial
proposals will be immediately accepted and there is no need
to transmit excessive information. With very heavy loads, it
becomes more unlikely that a deal can be reached; the network
is at full capacity. Of course, the node may still wish to engage
in negotiation and should send its strongest argument. It is
reasonable for the originating node to consider its own knowl-
edge of the network load and adapt its negotiating strategy
accordingly. In the current work, we choose to transmit less
information per message. This approach allows us to see the
progress of decisions in the negotiation process more clearly,
since the result of each significant decision is a message. While
we measure the number of messages required to complete
a negotiation, one should be cautious about drawing final
decisions based upon this information.

The overall achieved performance is characterized in several
ways. The total carried network load, or throughput is found
by summing the grade for each unique connection. This
can be further analyzed by comparing it to the requested
capacity. This will account for the impact of downgrades.
Similarly, satisfaction measures how good of a deal is reached
for a request, with zero signifying a complete rejection, one
signifying acceptance of the original request, and a number in
(0,1) reflecting the degree of satisfaction when the achieved
grade is less than the requested grade. The total number of
unique connections measures the ability of the system to
support as many users as possible. Finally, the number of hops
it takes to support the connections measures the impact of
rerouting to non-optimal routes.

B. Simulator Design

With the metrics, rules, and messages defined, we now dis-
cuss the design of the simulator system. Each of the messages
described in section II inherit from a common class. This
class encapsulates the routing data common to all messages.
A topology class controls the generation of a specified number
of nodes, randomly determines the connectivity between each
pair of nodes, and calculates a number of routes between
each pair. This simulation assumes homogeneous links with a
specified maximum capacity, although nothing in the protocol

precludes heterogeneous links. Using identical links with
either no capacity or MAX_CAPACITY, the results are
more clearly discerned. Options are available to study both
a densely and a sparsely connected network, but the settings
are adjusted to ensure that all nodes can be reached from any
node. In other words, these are all topological spaces. Because
of this, failures can be attributed to a load versus capacity
constraint rather than a disconnected graph.

A scenario generator issues desires based upon a Poisson
distribution, parameterized by its mean, A. It is called once
per simulated second. This results in a mean request rate of
A requests per simulated second. It creates an intention from
this desire by randomly choosing an originating node and a
distinct destination node according to a uniform distribution.
It enforces the distinct condition by repeatedly drawing a node
number from the distribution until it is different than the
originating node. The requested connection grade is chosen
from a uniform distribution, [0, 1], such that if the drawn
number is in [0.67,1.0], a HDV connection is requested. A
VID connection is used if the number drawn is in [0.33,0.67).
Otherwise, an AUD connection is requested. A high priority
status is set for the connection if a uniform distribution
generator provides a value in [0.0,0.75). Finally, the start time
of the connection is set to the current time (assuming that the
negotiation time is negligible) and the stop time is set such
that the duration is drawn from a Poisson distribution with
mean of 3600, i.e. one hour.

If an intention is generated at a particular time step, it is set
in the originating node and that node subsequently attempts to
generate a proposal based upon that intention. The proposal
generation process can fail if there are no outbound links
with sufficient capacity, and in the case of the argumentation
agent, no argument can be formed. This is logged as a failure.
A message queue dispatches messages to the target agents
message handling routine.

At each time step, each node cleans up any expired con-
nections. Then the scenario generator is called. If one or
more intention is generated, the negotiations are conducted.
Finally, the results are scored. Scoring involves retrieving a
set of distinct connections from the agents. The grade of each
connection is summed to calculate the total network load,
along with counting the number of connections to assess how
many users are supported.

C. Illustrative Scenarios

The simulator allows us to investigate a number of scenarios
using different agent models. As a baseline, we developed
a radio agent (RadioNode) that simply requests the shortest
path. If the capacity is available, it is accepted, otherwise
it is rejected. A slightly more sophisticated model (RadioN-
odeReRoute) will attempt the next longest route upon receiv-
ing a rejection. Our RadioNodeABN conducts negotiations
according to the rules we have discussed in section II. Finally,
we also implemented an oracle (RadioNodeOracle) that has
full knowledge of the link loadings throughout the network.
When proposing, it is able to choose a route that it knows

TABLE I
SIMULATION PARAMETERS

Parameter [Min [Max
Number of nodes 7
Capacity 48 Mbps
Lambda 0.0001 | 0.05
Request rate 0.36/Hr | 180/Hr
Connection density sparse dense

will succeed, if one exists. On the other hand, it allocates
on the fly, temporally. It also chooses the shortest available
route, rather than another possible option, the least loaded
route. Most importantly, it does not reconsider existing routes
when analysing current requests. When considered within the
context of the degrees of freedom associated with our rules,
an optimum approach is ill-defined. Our rules favor supporting
as many connections as possible, while respecting a possible
priority condition. This is different than maximizing total data
throughput in the network or conventional fairness criteria.

We consider three connections grades, high definition video
(HDV) at 8Mbps, regular video (VID) at 3.5 Mbps, and audio
(AUD) at 256 kbps. Table I lists the remaining simulation
parameters.

The exchange of one of the more complicated negotia-
tions at time step 23347 (6:29:07) when A = 0.017 (61.2
requests/sec.) is listed in Table II and diagrammed in Fig.1.
The initial proposal is for VID from node F to node E. It
is rejected along the route by node C. This information is
passed back to node F, which then finds a new route from F
to E that does not include C. This route also fails, this time at
node A. Node F then asserts a high priority status through an
argument targeting node A. Node A finds a connection from
D to B that passes through A that can be downgraded from
HDV to VID to clear up room for the proposed connection.
It then sends a downgrade request to node D, which accepts
the request. Since node A is just an intermediate hop on the
downgraded connection’s route, it sends a notification in the
opposite direction to the destination node, i.e. towards B. Once
A receives the confirmation associated with the notification, it
again retrieves the original proposal to forward to the next
node on the route. Finally, accept messages flow back to node
F and the negotiation concludes successfully, at the expense to
the connection between D and B of a single level downgrade.
The confirmation message actually arose in order to keep the
simulation synchronized in terms of message passing. It does
seem useful in an implementation in order to roll back the
transaction if a link is broken somewhere. The protocol as
outlined here can be made transactional to a point if reliable
message handling is used and a rollback message added.
This would be necessary to keep the agents’ knowledgebases
consistent in terms of active connections and link loadings.
Rollback of a downgraded connection would be the greatest
challenge, mostly complicated by the record keeping necessary
to perform a rollback.

TABLE II
MESSAGES PASSED IN SCENARIO 1

S | R | Message

Desire, F, E,VID, 23347, 26965
1 F | E | Request,F,E,VID,23347,26965, [A, F,C, E|
2 E | F | Reject, C,NOCAPACITY
3 F | A | Request, F,E,VID,23347,26965, [F, A, D, E|
4 A | F | Reject,C,NOCAPACITY
5 F | A | Argue, HIGHPRIORITY
6 | A | D | Downgrade, Conn|D,B], HDV,VID,|A, D]
7 | D[A | Accept,[D, A]
8 | A| B | Notify, HDV,VID,Conn[D, B], [A, B]
9 | B| A | Confirm,[B,A]
10 | C | E | (fwd)Rq, F,E,VID,23347,26965, [F, A, D, E
11 | D | E | (fwd)Rq, F,E,VID,23347,26965, [F, A, D, E
12 | E | D | Accept,|E,D,A, F
13 | E | D | Accept,|[E,D,A, F
14 | A | F | Accept,|E,D,A, F

Fig. 1. Message exchange including downgrade and notify messages.

D. Results

The top chart in Fig.2 demonstrates the superior total bits
transferred over a simulated day for a densely connected
network at a high request rate where it is challenged in terms
of load. Our argumentation based approach yield a clearly
higher throughput.

We characterized the number of active connections sup-
ported over time. The scenario generator randomly creates
desires for connections at one of three different grades with
durations around a mean of one hour. With a review of the mid-
dle chart in Fig.2, one can see that the argumentation approach
supports more connections than any of the other techniques at
higher request rates. This is accomplished mainly through the
downgrade process that is essential to satisfying new priority
connections, while preserving existing connections’ ability to
communicate, albeit at a low rate.

The bottom chart in Fig.2 illustrates the failure rate for the
various models at a request rate of 180 requests/hour with both
sparse and dense connectivity. As expected, the argumentation
approach has the lowest failure rate. This is due to the ability to
downgrade connections in order to squeeze more into the finite
capacity. Densely connected networks suffer fewer failures

3 T - .
== ReRoute
25F | Basic b
= = =QOracle (/
» 2] |—™ABN el
= Ny
5)
© 1.5r b
o
—
i |
0.5r 1
0
0 8
120
7]
S
2 100} g5 P Vo
ClCJ S rra “ 3 2ai v t‘f\?lf“%
g 80+ RS, ¥ B
&) 4
o vy 2T
@ 60r [T 1
< 1
g
Q 40 §
5‘) ReRoute
S 20 1 Basic
5 = = = Oracle
= — ABN
0 L L I
0 2 4 6 8
Hours
800 ; : -
ReRoute-D . g
700F Basic-D o 1
Oracle-D R
600 —— ABN-D ‘y |
$ ReRoute-S g
5 5007 11 Basic-S “\‘-" i
. = = = Oracle-S PP
L 400|| === ABN-S P R
IS < ‘
‘S 300t o T 1
[t Pl :
200+ pry i E
Rg .
’v
100 * il
P
0 ! , , , , , ,
0 1 2 3 4 5 6 7 8
Hours

Fig. 2. Top:Total bits transferred with high request rate densely connected,
middle: Total active connections with high request rate sparsely connected,
bottom: Failures with high request rate

than sparsely connected ones since there are more options
to explore. It is interesting to note that the ReRouting agent
performs worse than the basic agent. Even though re-routing
may cause a single proposal to be accepted, it actually loads
more nodes, thereby making future proposals more likely to
run into capacity constraints. Perhaps in actual operation, the
greater number of hops might mean a shorter distance between
each hop. This would enable a higher order modulation to
maintain a constant signal to noise ratio at the same power,
leading to a narrower bandwidth. Ultimately, the channel could
support more connections. Our model does not account for
these details. Since the Oracle model has perfect knowledge
of the link capacities throughout the network, it never fails
during a negotiation. Instead, at high loads, it fails at the very
beginning in trying to create a proposal from the intention,

O T T
S === ReRoute Sparse = Q = ReRoute Dense|
E 55 —+— Basic Sparse — B - Basic Dense i
% —O6— Oracle Sparse — % — Oracle Dense
0]
z === _ABN Sparse -* = ABN Dense
3 5 1
=
|73
173
8
O 45 b
=]
2]
~
7]
%]
)
3|
%])
<] [y
ES.S’ “ '*_.*. ',‘: 1
. | g:- "E"“-EL.* -7
o} . p == "B sl -
é 3l *\‘*’tvg/ “e- - -n e
e Sg -
=]
z
2.5 ’ ' :
0 50 100 150 200
Requests per Hour
Fig. 3. Number of messages per successful negotiation.

because it cannot find an available route.

One of the concerns in negotiations is the overhead and
latency induced by the need to negotiate. We estimate this by
examining the number of messages required for each negotia-
tion model. As seen in Fig.3, there is only a small penalty in
using the more powerful argumentation approach. Recalling
our statements in metrics subsection, these predictions are
likely to be pessimistic compared to an operational system.

V. RELATED WORK

A great deal of research has focused on the challenge
of guaranteeing a specified quality of service (QoS) in mo-
bile ad hoc networks (MANET). Some of these proposed
solutions work with scheduled media access control (MAC)
layers, while others work with contention based MACs. One
of the challenges of these systems is having to deal with
local information, keeping exchanged information fresh, and
estimating channel capacity conditions [5]. Pitt et al. [11] use
a norm-governed multi-agent system to address QoS provi-
sioning in MANETSs. Their system runs over a Multimedia
Network Support Platform (MNSP). The MNSP provides
the communication services while the multi-agent system
provides the decision making services through a deliberative
process according to norm-governed policies and protocols.
Forster surveys machine learining techniques in wireless ad
hoc networks in [3], covering reinforcement learning, swarm
intelligence, heuristics, and mobile agent technologies. Liu
and Issarny study trust relationships through reputation for
MANETs in [7]. Finally, Gan et al. address energy efficiency
using agent techniques in [4].

Rahwan et al. present the limitations of game theoretic and
heuristic approaches to negotiation and how argumentation can
overcome them [12]. A number of researchers have explored
argumentation based negotiation as a means of changing

preference relationships during negotiations [1], negotiating

with constraints [8], and deciding with incomplete, uncertain,
or inconsistent information [9], [15]. A number of frameworks
have been proposed [2], [12], [13], [14] and been analyzed
formally [1] and empiracally [10].

VI. CONCLUSIONS

We have presented a negotiation protocol to allocate leases
for radio connection in an ad hoc network. The process is
entirely distributed and is governed by a simple set of explicit
and implicit rules. A well defined set of messages exchange
requests, results, and arguments between nodes. Simulations
indicate that our system produces superior results in terms
of maximizing accepted connections. The system is reliable
under a variety of request rates and with both a sparsely and
densely connected network.

REFERENCES

[1] L. Amgoud and S. Vesic. A formal analysis of the role of argumentation
in negotiation dialogues. Journal of Logic and Computation, 2011.

[2] P. M. Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and -person games.
Aritificial Intelligence, 77(2):321-357, September 1995.

[3] A. Forster. Machine learning techniques applied to wireless networks:
Guide and survey. In 3rd International Conference on Intelligent
Sensors, Sensor Networks and Information, 2007.

[4] L. Gan,J. Liu, and X. Jin. Agent-based, energy efficient routing in sensor
networks. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, 2004.

[5] L. Hanzo II and R. Tafazolli. A survey of QoS routing solutions for
mobile ad hoc networks. IEEE Communications Surveys & Tutorials,
9:50-70, 2007.

[6] B. Horine, L. B6l6ni, and D. Turgut. Argumentation based negotiation
in cognitive radio networks. In The 37th IEEE Conference on Local
Computer Networks, 2012.

[7] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad hoc
networks. In Second International Conference on Trust Management:
iTrust, 2004.

[8] M. Mbarki, J. Bentahar, B. Moulin, and A. Moazin. Constraints-
based negotiation using argumentation. In Proceedings of the 13th
International Workshop on Non-Monotonic Reasoning (NMR), 2010.

[9] S. Modgil, F. Toni, F. Bex, I. Bratko, C. I. Chesfievar, W. Dvorak, M. A.
Falappa, X. Fan, S. A. Gaggl, A. J. Garcia, et al. The added value of
argumentation. In Agreement Technologies, pages 357—403. Springer,
2013.

[10] P. Pasquier, R. Hollonds, I. Rahwan, F. Dignum, and L. Sonenberg. An
empirical study of interest-based negotiation. Autonomous Agents and
Multi-Agent Systems, 22(2):249-288, 2011.

[11] J. Pitt, P. Venkataram, and A. Mamdani. QoS management in MANETS
using norm-governed agent societies. In O. Dikenelli, M.-P. Gleizes, and
A. Ricci, editors, Engineering Societies in the Agents World VI, volume
3963 of Lecture Notes in Computer Science, pages 221-240. Springer
Berlin / Heidelberg, 2006.

[12] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons,
and L. Sonenberg. Argumentation-based negotiation. In The Knowledge
Engineering Review, volume 18, pages 343-375. Cambridge University
Press, Dec 2003.

[13] C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework
for argumentation-based negotiation. In M. P. Singh, A. Rao, and M. J.
Wooldridge, editors, Intelligent Agents IV: Agent Theories, Architectures,
and Languages: 4th, volume 1365 of Lecture Notes in Artificial Intelli-
gence, pages 117-192. Springer-Verlag, July 1997.

[14] N. Turan, T. Dai, K. Sycara, and L. Weingart. Toward a unified negoti-
ation framework: Leveraging strengths in behavioral and computational
communities. In Models for Intercultural Collaboration and Negotiation,
pages 53—65. Springer, 2013.

[15] W. Visser, K. V. Hindriks, and C. M. Jonker. Argumentation-based qual-
itative preference modelling with incomplete and uncertain information.
Group Decision and Negotiation, 21(1):99-127, 2012.

