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Many satellite communication systems operating today em-
ploy low cost upconverters or downconverters which create
phase noise. This noise can severely limit the information rate
of the system and pose a serious challenge for the detection
systems. Moreover, simple solutions for phase noise tracking
such as PLL either require low phase noise or otherwise
require many pilot symbols which reduce the effective data
rate.

In the last decade we have witnessed many research papers
on the design of signal constellations for channels with phase
noise. In [4], the phase noise is assumed to be a memoryless
Tikhonov distributed stochastic process. The authors compute
the maximal information rate assuming an i.u.d input and
find the optimal constellation which achieves this rate. The
resulting constellations for different Tikhonov distributions
are all asymmetrical constellations and look very different
from the APSK/MPSK constellations, usually used in wireless
communications today. However, the physical phase noise
process is not white, the most widely used stochastic model
for phase noise is the Wiener process [3]. The memoryless
Tikhonov distributed phase noise is obtained as the residual
error after a PLL is already locked on the signal. Thus,
whenever the phase noise is too strong for allowing the use
of PLL, the phase noise is not memoryless, and the methods
devised in [4] cannot be used. For the best of our knowledge,
there is no result for an optimal discrete constellation, in
terms of maximal information rate, for the Wiener phase noise
channel.

Combining strong error correcting code like LDPC or turbo
code with phase noise mitigation algorithm requires iterative
algorithm which iterates between the symbol demodulator
and the decoder. These algorithms rely on the insertion of
pilot symbols for solving phase ambiguities and bootstrapping
the decoding process. Alternatively, noncoherent methods are
used, usually with some degradation in performance [5],[1].
However, the insertion of pilots sequence, reduces the effective
information rate. Thus a tradeoff exists, the more pilots are
inserted, the better the estimation process is, but the effective
information rate is lower. In addition, in some existing stan-
dards, like DVB-S2, the pilots are too separated between each
other to allow good tracking in high phase noise.

In order to increase the effective information rate, we
propose a signal constellation which does not require pilots,
at all, in order to converge in the decoding process. In this
contribution, we will present a signal constellation which does
not require pilot sequences, but we require a signal that does
not present rotational symmetry. For example a simple MPSK
cannot be used.Moreover, we will provide a method to analyze
the proposed constellations and provide a figure of merit for
their performance when iterative decoding algorithms are used.

I. SYSTEM MODEL

We consider the transmission of a sequence of complex
modulation symbols c = (c0, c1, ..., cK−1) over an AWGN
channel affected by carrier phase noise. The discrete-time
baseband complex equivalent channel model at the receiver
is given by:

rk = cke
jθk + nk k = 0, 1, ...,K − 1. (1)

We assume a Wiener process phase noise stochastic model:

θk = θk−1 + ∆k (2)

where ∆k is a real, i.i.d gaussian sequence with ∆k ∼
N(0, σ2

∆).
We are interested in computing a MAP decoder for the data

symbols. This decoder can be designed using the Sum and
Product Algorithm on the factor graph representation of the
joint posterior distribution which was given in [2] and is shown
in Fig. 1.

The resulting Sum & Product messages are:

pf (θk) ∝
∫ 2π

0

pf (θk−1)pd(θk−1)p∆(θk − θk−1)dθk−1 (3)

pb(θk) ∝
∫ 2π

0

pb(θk+1)pd(θk+1)p∆(θk+1 − θk)dθk+1 (4)

pd(θk) ∝
M−1∑
m=0

Pd(ck = ej
2πm
M )fk(ck, θk) (5)

Pu(ck) ∝
∫ 2π

0

pf (θk)pb(θk)fk(ck, θk)dθk (6)
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Fig. 1. Factor graph representation of the joint posterior distribution

where,

fk(ck, θk) ∝ exp{−|rk − cke
jθk |2

2σ2
} (7)

p∆(θk) =

∞∑
l=−∞

g(0, σ2
∆, θk − l2π) (8)

and M ,rk,Pd, σ2 and g(0, σ2
∆, θ) are the constellation order,

received base band signal, symbol soft information from
LDPC decoder, AWGN variance and Gaussian distribution
respectively.

Since a direct implementation of the above messages is
impractical due to the fact that the phase is a continuous
random variable, several approximation algorithms have been
proposed. In [2], section 3, an algorithm which quantizes the
phase noise and performs an approximation of the sum &
product algorithm (SPA) is presented. This algorithm (called
DP - discrete phase in this paper), can approach the BER per-
formance of the MAP decoder if the quantization level is large
enough. However, this algorithm requires large computational
resources to reach high accuracy, rendering it not practical for
some real world applications.

In [6], a low complexity algorithm was proposed which
does not quantize the phase process, but approximates the SPA
messages according to the following Tikhonov mixtures,

pf (θk) =

Nf∑
i=1

αki f
f
i (θk) (9)

pb(θk) =

Nb∑
i=1

βki f
b
i (θk) (10)

where:

ffi (θk) =
eRe[z

f,k
i e−jθk ]

2πI0(|zf,ki |)
(11)

f bi (θk) =
eRe[z

b,k
i e−jθk ]

2πI0(|zb,ki |)
(12)

Fig. 2. SP Phase Noise Forward Messages

Using mixture approximations in bayesian inference meth-
ods, such as SPA, results in an increase of the mixture order
from symbol to symbol. In [6], there is a mixture reduction
algorithm which keeps the mixture order small while keeping
the BER levels low. For large enough mixture order, this
algorithm can perform as well as the DP algorithm, while
having much lower computational complexity. Moreover, this
algorithm gives us an insight to the underlying physics of
phase noise tracking.

As shown in Fig. (2), the phase noise messages can be
viewed as multiple separate phase trajectories. The mixture
algorithm proposed in [6], can be viewed as a scheme to map
the different mixture components in the phase messages to
different phase trajectories and the respective probabilities αki
and βki are the probabilities of each phase noise trajectory. In
[6], the mixture algorithm receives a mixture describing the
next step of all the trajectories and assigns a tracking loop to
each trajectory, thus we are able to accurately track all the
hypotheses for all the phase trajectories.

II. SKEWED-MPSK AND OTHER ASYMMETRICAL
CONSTELLATIONS

In this section we propose a new signal constellation for
pilotless communications over the Wiener phase noise channel.
The skewed MPSK (SM) is just one example to Asymmetrical
Constellation (AC) that can be used, and the following analysis
applies to any constellation. An AC is any constellation which
has no rotational symmetry, i.e. there is no θ such that ckejθ

is a valid symbol, ∀k. As discussed earlier, using symmetrical
signal constellations without pilot sequences will result in
decoding failures. Suppose we use an MPSK constellation
and approximate the forward message well as (9). The next
step in the SPA is to insert this approximation to (3) and
get a bigger mixture representing the next forward message.
However, since we use MPSK, then pd(θk) is simply a mixture
of identical Tikhonov distributions, and therefore each mixture
component in (9) will be multiplied by the same function,
resulting with many phase trajectories which behave the same
but are separated by multiples of 2π

M , similarly to a cycle slip



in a PLL. Therefore, in a pilotless scenario, one must use
asymmetrical signal constellations which enable the decoding
algorithm to discard certain phase trajectories.

We now define the SM signal constellation,

sm = ej
2πm

M+skew m = 0, 1, ...,M − 1. (13)

This constellation takes the standard MPSK constellation
and instead of having the symbols equally spaced with angle
2π
M between them, the angles are now not equally spaced thus
creating an asymmetry. This of course has some effect on the
symbol error probability, but since we are using a long LDPC
code the effect should be small for small skew values.

When applying this constellation to the DP algorithm or the
mixture model algorithm, this constellation, creates an asym-
metrical pd(θk). Therefore, when using (3), the probabilities
,αki , of the incorrect trajectories in (9) are attenuated and decay
over time. Therefore, there is a process of eliminating the
incorrect phase trajectories in (9) and basically lowering the
mixture order. If the skew value is high then there is more
asymmetry and the decay of the probabilities is faster. This
decay process is different for each skew value and can be
used to assess the performance of the signal constellation in
a tracking scenario.

A. Decay Factor

We propose a method to analyze the performance of AC
over channels corrupted by Wiener phase noise. Without the
loss of generality, we will show the results for the forward
recursion of the SPA, but the same applies for the backward
recursion. Since we can view the phase estimation process
as multiple phase trajectories tracking, then we can create a
recursion equation for the probabilities, αki , of each trajectory
in the forward message (9). As discussed earlier, for asym-
metrical constellations, the process αki of a wrong trajectory,
decays with k. We will show that the expectation process, i.e
E(αki ) decays exponentially with k. Therefore, the exponential
rate, which we denote as decay rate can perform as a figure
of merit for the performance of the AC.

The skew value in the SM presents a tradeoff. If the decay
rate is large, then the probabilities αki decay fast and the
phase estimation algorithm estimates the correct trajectory fast
without the need for pilots. However, if the skew value is too
large then the minimum distance is lower and that can affect
the code performance. It is easy to assess the degradation
in performance by calculating the information rate over the
AWGN of such constellation.

We will now compute the recursion equation of the proba-
bilities αki . For the sake of simplicity, we will only address the
case of two trajectories, one which is the correct phase noise
trajectory and another which resulted due to a phase ambiguity
φ, which is a multiple of the symbol spacing , 2π

M+skew .
Assuming that the forward message can be modeled as (9),

pf (θk) =

2∑
i=1

αki f
f
i (θk) (14)

where:

ff1 (θk) =
eRe[z

f,ke−jθk ]

2πI0(|zf,k|)
(15)

ff2 (θk) =
eRe[z

f,kejφe−jθk ]

2πI0(|zf,k|)
(16)

then applying (3), will result in a new mixture which
according to the mixture reduction algorithm in [6], can be
reduced to a mixture of smaller size. Moreover, we assume
that all Tikhonov components cluster according to the ffi (θk)
which created them, thus creating (17), which has only two
strong Tikhonov components.

pf (θk+1) =

2∑
i=1

αk+1
i

e
Re[

z
f,k+1
i

1+σ2
∆
|zf,k+1
i

|
e−jθk+1 ]

2πI0(| zf,k+1
i

1+σ2
∆|z

f,k+1
i |

|)
(17)

zf,k+1
1 = zf,k +

rkξ
∗

σ2
(18)

zf,k+1
2 = zf,kejφ +

rkζ
∗

σ2
(19)

αk+1
1 = αk1

M∑
l=1

[Pd(ck = ej
2πl

M+skew )
I0(|zf,k + rke

−j 2πl
M+skew

σ2 |)
I0(|zf,k|)

]

(20)

αk+1
2 = αk2

M∑
l=1

[Pd(ck = ej
2πl

M+skew )
I0(|zf,kejφ + rke

−j 2πl
M+skew

σ2 |)
I0(|zf,k|)

]

(21)
where, ξ and ζ are symbols taken from the SM constellation.
Using some algebra, we find the recursion equation for the

probability of the wrong trajectory (21),

αk+1
2 =

1

1 +
α0

1

α0
2

∏k+1
i=1

I0(|Z̃f,i1 |)
I0(|Z̃f,i2 |)

(22)

We assume that approximately the expected value of the
probability of the incorrect trajectory decays exponentially
with a decay factor δ,

E(αk2) ≈ eδk

Thus, the decay factor δ, can be computed as,

δ = −E[log(
I0(|Z̃i1|)
I0(|Z̃i2|)

)] (23)

Assuming (18) is correctly tracking the phase noise trajec-
tory θk, and using (1), we can write the following,

ejθk+1(C +
(ck + ñk)e−j

2πl
M+skew

σ2
) (24)

where C and ñk are a real number indicating the MSE
in estimating the phase noise using the received samples
and a complex random variable with the same pdf as nk,
respectively.
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Fig. 3. Decay factor for each skew value

Using (24), we can numerically compute (25) and use this
decay factor as a figure of merit for the performance of the
constellation,

δ = −E[log(
I0(|C + (ck+nk)e

−j 2πl
M+skew

σ2 |)

I0(|Cejφ + (ck+nk)e
−j 2πl

M+skew

σ2 |)
)] (25)

Moreover, note that the proposed analysis method can be
applied to to any signal constellation and assess the decay
factor.

In Fig. (3), we show the decay factors of Skewed-QPSK
with σ∆ = 0.1[rads/symbol], for different skew values. We can
see that for larger values of skew, the decay factor increases,
and for a skew value of zero, i.e standard MPSK, we have a
zero decay factor, which means that the decoding algorithms
will not converge without pilots. Moreover, we observe that the
decay factor increases in absolute value as the SNR increases.
This is because the Tikhonov distributions in the forward and
backward messages become narrower and thus the decay is
accelerated.

Next, we ran a Monte Carlo simulation of tracking
two phase trajectories with SNR = 4dB and σ∆ =
0.1[rads/symbol]. In Fig. (4), we show the mean value of the
probability of the wrong trajectory (”Real”) and the decay of
the probability according to the decay factor (”Model”).

III. SIMULATION RESULTS

In this section we show the BER (Bit Error Rate) for the
proposed scheme and compare it to an MPSK constellation
with pilots. We have used a Monte Carlo simulation with
QPSK and a skew value of 0.7. We have also used a 4096
length, LDPC code with rate 0.89 and for the QPSK case,
we have used one pilot every 40 symbols and σ∆ = 0.2
[rads/symbol]. The decoding algorithm chosen is the DP
algorithm.

The results in Fig. (5), show that the proposed method is
much superior to QPSK in very strong phase noise channels.
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IV. CONCLUSIONS

In this paper we proposed a new signal constellation for
pilotless transmission of signals over Wiener phase noise chan-
nels. We also provided a method to analyze the performance of
this constellation. This analysis can also be used to assess the
performance of other signal constellations and provide insight.
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