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Abstract—A waveform channel is considered where the trans-
mitted signal is corrupted by Wiener phase noise and additive
white Gaussian noise (AWGN). A discrete-time channel modelis
introduced that is based on a multi-sample receiver. Tight lower
bounds on the information rates achieved by the multi-sample
receiver are computed by means of numerical simulations. The
results show that oversampling at the receiver is beneficialfor
both strong and weak phase noise at high signal-to-noise ratios.
The results are compared with results obtained when using other
discrete-time models.

I. I NTRODUCTION

Communication systems often suffer from phase noise that
arises, e.g., due to the instability of RF oscillators in satellite
[1] or microwave links [2]. In optical fiber communication,
phase noise arises due to the instability of laser oscillators
[3] or due to cross-phase modulation (XPM) in Wavelength-
Division-Multiplexing (WDM) systems [4].

The nature of the phase noise depends on the application.
A commonly studieddiscrete-timemodel is

Yk = Xsymb,k e
jΘk + Zk (1)

where{Yk} are the output symbols,{Xsymb,k} are the input
symbols,{Θk} is the phase noise process and{Zk} is additive
white Gaussian noise (AWGN). For example, Katz and Shamai
[5] studied the model (1) when{Θk} is independent and
identically distributed (i.i.d.) according topΘ(·), whenΘ is
uniformly distributed (called a noncoherent AWGN channel)
and whenΘ has a Tikhonov (or von Mises) distribution
(called a partially-coherent AWGN channel). Tikhonov phase
noise models the residual phase error in systems with phase-
tracking devices, e.g., phase-locked loops (PLL) and ideal
interleavers/deinterlevers.

Tight lower bounds on the capacities of memoryless nonco-
herent and partially coherent AWGN channels were computed
by solving an optimization problem numerically in [5] and
[6], respectively. Dauwels and Loeliger [7] proposed a particle
filtering method to compute information rates for discrete-
time continuous-state channels with memory and applied the
method to (1) for Wiener phase noise and autoregressive–
moving-average (ARMA) phase noise. Barletta, Magarini and
Spalvieri [8] computed lower bounds on information rates for
(1) with Wiener phase noise by using the auxiliary channel

technique proposed in [9] and they computed upper bounds
in [10]. They also developed a lower bound based on Kalman
filtering in [11]. Barbieri and Colavolpe [1] computed lower
bounds with an auxiliary channel slightly different from [8].

In this paper, we study awaveformchannel corrupted by
Wiener phase noise and AWGN:

r(t) = x(t) ejθ(t) + n(t), for t ∈ R (2)

wherex(t) andr(t) are the transmitted and received signals,
respectively, whilen(t) and θ(t) are the additive and phase
noise, respectively. A detailed description of the model isgiven
in Sec. II. This model is reasonable, for example, for optical
fiber communication with low to intermediate power and laser
phase noise, see [3]. As pointed out in [12], the discrete-time
model (1) does not fit the channel (2) because filtering a phase-
varying signal with a constant amplitude gives rise to an output
with a varyingamplitude. The effect of filtering persists for
phase impairments other than Wiener phase noise, e.g., for
XPM in optical fiber [13]. We developed in [12] a discrete-
time channel model based on a multi-sample receiver, i.e., a
filter whose output is sampled multiple times per symbol.

In this paper, we use techniques based on [9] to compute
tight lower bounds on the information rates for the multi-
sample receiver introduced in [12]. The paper is organized
as follows. The continuous-time model is described in Sec.
II and the discrete-time model of the multi-sample receiveris
described in Sec. III. We develop a method to compute lower
bounds on the information rates of a multi-sample receiver
in Sec. IV. In Sec. V, we report the results of numerical
simulations and Sec. VI concludes the paper.

II. CONTINUOUS-TIME MODEL

We use the following notation:j =
√
−1 , ∗ denotes the

complex conjugate,δD is the Dirac delta function,⌈·⌉ is the
ceiling operator. We useXk to denote(X1, X2, . . . , Xk). Sup-
pose the transmit-waveform isx(t) and the receiver observes

r(t) = x(t) ejθ(t) + n(t) (3)
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wheren(t) is a realization of a white circularly-symmetric
complex Gaussian processN(t) with

E [N(t)] = 0

E [N(t1)N
∗(t2)] = σ2

N δD(t2 − t1). (4)

The phaseθ(t) is a realization of a Wiener processΘ(t):

Θ(t) = Θ(0) +

∫ t

0

W (τ)dτ (5)

whereΘ(0) is uniform on[−π, π) andW (t) is a real Gaussian
process with

E [W (t)] = 0

E [W (t1)W (t2)] = 2πβ δD(t2 − t1). (6)

The processesN(t) andΘ(t) are independent of each other
and independent of the input.N0 = 2σ2

N is the single-sided
power spectral density of the additive noise. We defineU(t) ≡
exp(jΘ(t)). The autocorrelation function ofU(t) is

RU (t1, t2) = E [U(t1)U
∗(t2)] = exp (−πβ|t2 − t1|) (7)

and the power spectral density ofU(t) is

SU (f) =

∫ ∞

−∞

RU (t, t+ τ) e−j2πfτdτ =
β/2

(β/2)2 + f2
(8)

The spectrum is said to have a Lorentzian shape. It is easy
to show thatβ = fFWHM = 2fHWHM where fFWHM is the
full-width at half-maximum andfHWHM is the half-width at
half-maximum. LetT be the transmission interval, then the
transmitted waveforms must satisfy the power constraint

E

[

1

T

∫ T

0

|X(t)|2dt
]

≤ P (9)

whereX(t) is a random process whose realization isx(t).

III. D ISCRETE-TIME MODEL

Let (xsymb,1, xsymb,1, . . . , xsymb,nsymb) be the codeword sent
by the transmitter. Suppose the transmitter uses a unit-energy
pulseg(t) whose time support is[0, Tsymb] whereTsymb is the
symbol interval. The waveform sent by the transmitter is

x(t) =

nsymb∑

m=1

xsymb,m g(t− (m− 1)Tsymb). (10)

Let L be the number of samples per symbol (L ≥ 1) and
define the sample interval as

∆ =
Tsymb

L
. (11)

The received waveformr(t) is filtered using an integrator
over a sample interval to give the output signal

y(t) =

∫ t

t−∆

r(τ) dτ. (12)

The signaly(t) is a realization ofY (t) that is sampled at
t = k∆, k = 1, . . . , n = nsymbL, to yield the discrete-time
model:

Yk = Xsymb,⌈k/L⌉∆ ejΘk Fk +Nk (13)

whereYk ≡ Y (k∆), Θk ≡ Θ((k − 1)∆),

Fk ≡ 1

∆

∫ k∆

(k−1)∆

g

(

τ −
(⌈

k

L

⌉

− 1

)

Tsymb

)

ej(Θ(τ)−Θk) dτ

(14)

and

Nk ≡
∫ k∆

(k−1)∆

N(τ) dτ. (15)

The process{Nk} is an i.i.d. circularly-symmetric complex
Gaussian process with mean0 and E[|Nk|2] = σ2

N∆ while
the process{Θk} is the discrete-time Wiener process:

Θk = Θk−1 +Wk mod 2π (16)

for k = 2, . . . , n, whereΘ1 is uniform on[−π, π) and{Wk}
is an i.i.d. real Gaussian process with mean0 andE[|Wk|2] =
2πβ∆, i.e., the probability distribution function (pdf) ofWk

is pWk
(w) = G(w; 0, σ2

W ) where

G(w;µ, σ2) =
1√
2πσ2

exp

(

− (w − µ)2

2σ2

)

(17)

andσ2
W = 2πβ∆. The random variable(Wk mod 2π) is a

wrapped Gaussianand its pdf ispW (w;σ2
W ) where

pW (w;σ2) =
∞∑

i=−∞

G(w − 2iπ; 0, σ2). (18)

Moreover,{Fk} and{Wk} are independent of{Nk} but not
independent of each other. Finally, equations (9) and (10)
imply the power constraint

1

nsymb

nsymb∑

m=1

E[|Xsymb,m|2] ≤ P = PTsymb. (19)

It is convenient to defineXk as

Xk ≡ X(k∆) = Xsymb,⌈k/L⌉ g ((k modL)∆) . (20)

It follows that I(Xnsymb

symb ;Y
n) = I(Xn;Y n). We define the

information rate

I(X ;Y ) = lim
nsymb→∞

1

nsymb
I(Xn;Y n). (21)

One difficuly in evaluating (21) is that the joint distribution
of {Fk} and{Wk} is not available in closed form. Even the
distribution ofFk is not available in closed form (there is an
approximation for small linewidth, see (16) in [3]). However,
we can numerically compute tight lower bounds onI(X ;Y )
by using the auxiliary-channel technique described next.



IV. L OWER BOUND

The Auxiliary-Channel Lower Bound Theorem in [9, Sec.
VI] states that for two random variablesX andY , we have

I(X ;Y ) ≥ I(X ;Y ) = E

[

log

(
qY |X(Y |X)

qY (Y )

)]

(22)

whereqY |X(·|·) is an arbitrary auxiliary channel and

qY (y) =
∑

x̃

pX(x̃)qY |X(y|x̃) (23)

wherepX is thetrue distribution ofX . The distributionqY (·)
is thus the output distribution obtained by connecting the true
input source to the auxiliary channel. Using this theorem, we
can compute a lower bound onI(X ;Y ) by using the following
algorithm [9]:

1) Sample a long sequence(xn, yn) according to thetrue
joint distribution ofXn andY n.

2) ComputeqY n|Xn(yn|xn) and

qY n(yn) =
∑

x̃n

pXn(x̃n)qY n|Xn(yn|x̃n) (24)

wherepXn is the true distribution ofXn.
3) EstimateI(X ;Y ) using

I(X ;Y ) ≈ 1

nsymb
log

(
qY n|Xn(yn|xn)

qY n(yn)

)

(25)

Auxiliary Channel I: Consider the auxiliary channel

Ψk = Xk∆ ejΘk +Nk (26)

where {Θk} and {Nk} are defined in Sec. III andXk is
defined by (20). The channelΨ is the same asY in (13)
exceptthatFk is replaced withg ((k mod L)∆). The channel
is described by the conditional distributionpΨn|Xn

pΨn|Xn(yn|xn) =
∫

θn

pΘn,Ψn|Xn(θn, yn|xn) dθn (27)

where

pΘn,Ψn|Xn(θn, yn|xn)

=

n∏

k=1

pΘk|Θk−1
(θk|θk−1) pΨ|X,Θ(yk|xk, θk) (28)

with

pΘk|Θk−1
(θ|θ̃) =

{

pW (θ − θ̃;σ2
W ), k ≥ 2

1/(2π), k = 1
(29)

and

pΨ|X,Θ(y|x, θ) =
1

πσ2
N∆

exp

(

−
∣
∣y − x ejθ

∣
∣
2

σ2
N∆

)

. (30)

The channelpΨn|Xn has continuous statesθn, which makes
step 2 of the algorithm computationally infeasible.

S1 S2 S3 S4 S5 S6 S7 S8 S9

Υ1 Υ2 Υ3 Υ4 Υ5 Υ6 Υ7 Υ8 Υ9

X1 X2 X3 X4 X5 X6 X7 X8 X9

Fig. 1. Bayesian network forXn, Sn,Υn for n = 9.

Auxiliary Channel II: We use the following auxiliary
channel for the numerical simulations:

Υk = Xk∆ ejSk +Nk (31)

which has the conditional probability

pΥn|Xn(yn|xn) =
∑

sn∈Sn

pSn,Υn|Xn(sn, yn|xn) (32)

whereS is a finite set and

pSn,Υn|Xn(sn, yn|xn)

=

n∏

k=1

pSk|Sk−1
(sk|sk−1) pΨ|X,Θ(yk|xk, sk) (33)

where

pSk|Sk−1
(s|s̃) =

{
Q(s|s̃), k ≥ 2
1/|S|, k = 1.

(34)

Next, we describe our choice ofS andQ(·|·). We partition
[−π, π) into S intervals with equal lengths and pick the mid
points of these intervals to be the elements ofS, i.e., we have

S = {ŝi : i = 1, . . . , S} whereŝi = i
2π

S
− π

S
− π. (35)

The state transition probabilityQ(·|·) is chosen similar to [8]
and [10]:

Q(s|s̃) = 2π

S

∫

(φ,φ̃)∈R(s)×R(s̃)

pW (φ− φ̃;σ2
W ) dφdφ̃ (36)

whereR(s) = [s − π/S, s + π/S), i.e., R(s) is the interval
whose midpoint iss. The largerS andL are, the better the
auxiliary channel (31) approximates the actual channel (13).
We remark that even for smallS andL, the auxiliary channel
gives avalid lower bound onI(X ;Y ).

A. Computing The Conditional Probability

Suppose the inputXn has the distributionpXn . A Bayesian
network forXn, Sn,Υn is shown in Fig. 1. The probability
pΥn|Xn(yn|xn) can be computed using

pΥn|Xn(yn|xn) =
∑

s∈S

ρn(s) (37)



S1 S2 S3 S4 S5 S6 S7 S8 S9

Υ1 Υ2 Υ3 Υ4 Υ5 Υ6 Υ7 Υ8 Υ9

X1 X2 X3 X4 X5 X6 X7 X8 X9

Xsymb,1 Xsymb,2 Xsymb,3

Fig. 2. Bayesian network forXn, Sn,Υn for n = 9 andL = 3.

where we recursively compute

ρk(s) ≡ pSk,Υk|Xn(s, yk|xn) (38)
(a)
=
∑

s̃∈S

pSk−1,Sk,Υk|Xn(s̃, s, yk|xn)

(b)
=
∑

s̃∈S

ρk−1(s̃) pSk,Υk|Sk−1,Υk−1,Xn(s, yk|s̃, yk−1, xn)

=
∑

s̃∈S

ρk−1(s̃) Q(s|s̃) pΨ|X,Θ(yk|xk, s) (39)

with the initial valueρ0(s) = 1/|S|. Step(a) is a marginal-
ization, (b) follows from Bayes’ rule and the definition ofρk
in (38), while (39) follows from the structure of Fig. 1. We
remark that (39) is the same as with independentX1, . . . , Xn,
e.g., see equation (9) in [14, Sec. IV].

B. Computing The Marginal Probability

Define Ym ≡ (Y(m−1)L+1, Y(m−1)L+2, . . . , Y(m−1)L+L)
and Xm ≡ (X(m−1)L+1, X(m−1)L+2, . . . , X(m−1)L+L). Sup-
pose the inputsymbolsare i.i.d. andXsymb,m ∈ X whereX
is a finite set. Therefore,pXn has the form

pXn(xn) =

nsymb∏

m=1

pX(xm). (40)

A Bayesian network forXn, Sn,Υn is shown in Fig. 2. The
probabilitypΥn(yn) can be computed using

pΥn(yn) =
∑

s∈S

ψnsymb(s) (41)

where ψm(s) ≡ pSmL,Ym(s, ym) which can be computed
using the recursion:

ψm(s) (42)

=
∑

x̃∈XL

pX(x̃)
∑

s̃∈S

ψm−1(s̃) pSmL,Ym|S(m−1)L,Xm
(s, ym|s̃, x̃)

with the initial valueψ0(s) = 1/|S|. The setXL is

XL = {x · (g(∆), g(2∆), . . . , g(L∆)) : x ∈ X}. (43)

We remark that|XL| = |X | and not|X |L. Next, we define

χm,L(s, s̃, x̃) ≡ pSmL,Ym|S(m−1)L,Xm
(s, ym|s̃, x̃) (44)

for s, s̃ ∈ S and x̃ ∈ XL. Computingχm,L(s, s̃, x̃) is similar
to computingρn (see (39)). Intuitively, this is because a block

of L samples in Fig. 2 has a structure similar to Fig. 1. More
precisely,χm,L(s, s̃, x̃) can be computed recursively by using

χm,ℓ(s, s̃, x̃) (45)

=
∑

ς∈S

χm,ℓ−1(ς, s̃, x̃) Q (s|ς) pΨ|X,Θ

(
y(m−1)L+ℓ|x̃ℓ, s

)

with the initial value

χm,0(s, s̃, x̃) =
{

1, s = s̃
0, otherwise.

(46)

Therefore, computingpΥn(yn) involves two levels of recur-
sion: 1) recursion over the symbols as described by (42) and
2) recursion over the samples within a symbol as described
by (45).

V. NUMERICAL SIMULATIONS

We use two pulses with a symbol-interval time support:

• A unit-energy square pulse

g1(t) =
1

√
Tsymb

rect

(
t

Tsymb

)

(47)

where

rect(t) ≡
{

1, |t| ≤ 1/2,
0, otherwise.

(48)

• A unit-energy cosine-squared pulse

g2(t) =
1

√
Tsymb/2

cos2
(

πt

Tsymb

)

rect

(
t

Tsymb

)

. (49)

The first step of the algorithm is to sample a long sequence
according to the true joint distribution ofXn and Y n. To
generate samples according to the original channel (13),
we must accurately represent digitally the continuous-time
waveform (3). We use a simulation oversampling rateLsim =
1024 samples/symbol. After the filter (12), the receiver hasL
samples/symbol distributed according to (13). Next, to choose
a proper sequence length, we follow the approach suggested in
[9]: for a candidate length, run the algorithm about 10 times
(each with a new random seed) and check whether all esti-
mates of the information rate agree up to the desired accuracy.
We usednsymb = 104 unless otherwise stated. We define the
signal-to-noise ratio asSNR ≡ P/σ2

NTsymb= P/σ2
N .

For efficient implementation of (39),pΨ|X,Θ(·|·, ·) can be
factored out of the summation to yield:

ρk(s) = pΨ|X,Θ(yk|xk, s)

ρ′

k
(s)

︷ ︸︸ ︷
∑

s̃∈S

ρk−1(s̃) Q(s|s̃) (50)

Moreover, sinceQ(·|·) can be represented by a circulant matrix
due to symmetry,ρ′k(·) can be computed efficiently using the
Fast Fourier Transform (FFT). Similarly, the computation of
(45) can be done efficiently by factoring outpΨ|X,Θ(·|·, ·) and
by using the FFT.
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Fig. 3. Lower bounds on rates for 16-QAM, square transmit-pulse and multi-
sample receiver atfHWHMTsymb = 0.125.

A. Excessively Large Linewidth

SupposefHWHMTsymb = 0.125 and the input symbols are
independently and uniformly distributed (i.u.d.) 16-QAM.Fig.
3 shows an estimate ofI(X ;Y ) for a square transmit-pulse,
i.e., g(t) = g1(t − Tsymb/2) and anL-sample receiver with
L = 4, 8, 16 and S = 16, 32, 64. The curves withS = 64
are indistinguishable from the curves withS = 32 over the
entire SNR range for all values ofL, and henceS = 32 is
adequate up to 25 dB. EvenS = 16 is adequate up to 20 dB.
The important trend in Fig. 3 is that higher oversampling rate
L is needed at highSNR to extract all the information from
the received signal. For example,L = 4 suffices up toSNR
∼ 10 dB,L = 8 suffices up toSNR ∼ 15 dB butL ≥ 16 is
needed beyond that. It was pointed out in [9] that the lower
bounds can be interpeted as the information rates achieved by
mismatched decoding. For example,I(X ;Y ) for L = 8 and
S ≥ 32 in Fig. 3 is essentially the information rate achieved
by a multi-sample (8-sample) receiver that uses maximum-
likelihood decoding for the simplified channel (26) when it is
operated in the original channel (13).

Fig. 4 shows an estimate ofI(X ;Y ) for a cosine-squared
transmit-pulse, i.e.,g(t) = g2(t − Tsymb/2) and anL-sample
receiver atL = 4, 8, 16 and S = 16, 32, 64. We find that
S = 32 suffices up to∼ 25 dB. We see in Fig. 4 the same
trend in Fig. 3: higherL is needed at higherSNR. Comparing
Fig. 3 with Fig. 4 indicates that the square pulse is better than
the cosine-squared pulse for the same oversampling rateL.

B. Large Linewidth

As the linewidth decreases, the benefit of oversampling
at the receiver becomes apparant only at higherSNR. For
example, forfHWHMTsymb = 0.0125 and i.u.d. 16-PSK input,
Fig. 5 shows an estimate ofI(X ;Y ) for a square transmit-
pulse and anL-sample receiver atL = 1, 2, 4, 8, 16 and
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Fig. 4. Lower bounds on rates for 16-QAM, cosine-squared transmit-pulse
and multi-sample receiver atfHWHMTsymb = 0.125.
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Fig. 5. Lower bounds on rates for 16-PSK, square transmit-pulse and multi-
sample receiver atfHWHMTsymb = 0.0125.

S = 64. We see thatL = 4 suffices up toSNR ∼ 19 dB,
L = 8 suffices up toSNR ∼ 24 dB and only beyond that
L ≥ 16 is necessary.

We conclude from Fig. 3–5 that the requiredL depends on
1) the linewidthfFWHM of the phase noise; 2) the pulseg(t);
and 3) theSNR.

C. Comparison With Other Models

We compare the discrete-time model of the multi-sample
receiver with other discrete-time models. The simulation pa-
rameters for our model (GK) arensymb = 104, L = 16 (with
Lsim = 1024) and S = 64 for 16-QAM (S = 128 was too
computationally intensive) andS = 128 for QPSK.
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Fig. 6. Comparison of information rates for different models.

In Fig. 6, we show curves for the Baud-rate model used in
[1] and [7]–[11]. The model is (1) where the phase noise is
a Wiener process whose noise increments have varianceγ2.
We setγ2 = 2πβTsymb. The simulation parameters for the
Baud-rate model arensymb= 105 andS = 128.

We also show curves for the Martalò-Tripodi-Raheli (MTR)
model [14] in Fig. 6. For the sake of comparison, we adapt
the model in [14] from a square-root raised-cosine pulse to a
square pulse and write the “matched” filter output{Vm} as

Vm =

L∑

ℓ=1

Ψ(m−1)L+1 (51)

where m = 1, . . . , nsymb and Ψk is defined in (26). The
auxiliary channel is

Ym = Xsymb,m ejΘm + Zm, m ≥ 1 (52)

where the process{Zm} is an i.i.d. circularly-symmetric
complex Gaussian process with mean0 and E[|Zm|2] =
σ2
NTsymb while the process{Θm} is a first-order Markov

process (not a Wiener process) with a time-invariant transition
probability, i.e., fork ≥ 2 and all θk, θk−1 ∈ [−π, π), we
havepΘk|Θk−1

(θk|θk−1) = pΘ2|Θ1
(θk|θk−1). Furthermore, the

phase space is quantized to a finite numberS of states and the
transition probabilities are estimated by means of simulation.
The probabilities are then used to compute a lower bound on
the information rate. The simulation parameters for the MTR
model arensymb= 105, L = 16 andS = 128.

We see that the Baud-rate and MTR models saturate at
a rate well below the rate achieved by the multi-sample
receiver. Moreover, the multi-sample receiver achieves the
full 4 bits/symbol and 2 bits/symbol of 16-QAM and QPSK,
respectively, at high SNR.

VI. CONCLUSION

We studied a waveform channel impaired by Wiener phase
noise and AWGN by evaluating via numerical simulations tight

lower bounds on the information rates achieved by a multi-
sample receiver. We found that the required oversampling rate
depends on the linewidth of the phase noise, the shape of
the transmit-pulse and the signal-to-noise ratio. The results
demonstrate that multi-sample receivers increase the informa-
tion rate for both strong and weak phase noise at high SNR.
We compared our results with the results obtained by using
other discrete-time models.
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