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Abstract—This paper considers a joint design that incorporates
the physical, medium access and network layers of a generic
OFDMA-based wireless network with an ad hoc topology. The
network employs channel reuse, whereby a frequency subchannel
might be used simultaneously by multiple nodes. In addition
to being a source and/or a destination, each node can act as
a half-duplex relay to assist other nodes. The design objective
is to determine the jointly optimal data routes and subchannel
power allocations that maximize a weighted sum of the rates
that can be reliably communicated over the network. Assuming
that the signals transmitted by the nodes are Gaussian, the joint
cross layer design of routing and power allocation is cast as an
optimization problem. Unfortunately, this problem is non-convex,
and hence difficult to solve. To circumvent this difficulty, an
efficient technique based on geometric programming is developed
to obtain a local solution that satisfies the Karush-Kuhn-Tucker
necessary optimality conditions. Numerical results show that,
despite the potential suboptimality of the obtained solution, for
some network scenarios, it offers significant gains over optimal
scheduling-based schemes in which a frequency band is allowed
to be used by one node only at any time instant.

Index Terms—Convex optimization, routing, scheduling, power
allocation, KKT conditions.

I. INTRODUCTION

The prospect of having ubiquitous wireless services is

leveraged by the versatility and the portability of the commu-

nication devices that will form the nodes of future wireless

networks. These devices will be able to perform various

functions including sending, receiving and/or relaying data to

other nodes [1]. As such, it is expected that future wireless

networks will not possess a predetermined topology, but rather

an ad hoc one. Such a model is generic and is capable of

representing the key features of a wide range of networks,

including current cellular ones [2].

Orthogonal Frequency Division Multiple Access (OFDMA)

offers several practical advantages over other multiple access

techniques. These advantages include design simplicity and

resilience to interference and frequency-selective fading. In

addition, OFDMA offers the potential of efficient sharing of

the available frequency band by multiple nodes, depending on

their channel conditions.

In order for a wireless network to be able to support

the reliable communication of high data rates, the typically

scarce resources available for the network must be carefully

exploited. Such exploitation involves choosing the optimal

propagation routes of the packets and the optimal power to

be allocated by the nodes to each subchannel. Although these

tasks have traditionally been performed separately to simplify

the design of the network, they are interrelated and performing

them in isolation may incur a significant loss in the maximum

rates that the network can support. Hence, it is desirable

to perform the optimization of routes and power allocation

jointly, while maintaining computational cost practical.

Optimization-based techniques have been successfully em-

ployed in studying and improving the performance of var-

ious communication networks. For instance, optimal power

allocations have been obtained in [3] and [4] for uplink and

downlink cellular communications, respectively. A layered

architecture has been considered in [5] for multicell OFDMA

systems. However, further improvements have been sought by

joint design of multiple network layers. For instance, joint

optimization of the power allocations and binary subchan-

nel schedules in OFDMA networks was considered in [6].

Solutions obtained therein are suboptimal and rely on the

premise that each subchannel is exclusively used by one node.

When the nodes are restricted to use preassigned orthogonal

channels, the joint design of routes and power allocations can

be cast in an efficiently solvable convex form [7]. However,

this restriction was alleviated in [8] by allowing the channels to

be non-orthogonal. In that case, the optimal routes and power

allocations are obtained, provided that the rates are chosen

from a discrete set. Cross layer designs that exploit the broad-

cast feature of the wireless medium were developed in [9]

and [10] using superposition coding and optimization tech-

niques, including geometric programming (GP). Techniques

for jointly optimizing the power allocations, the subchannel

schedules and the data routes were developed in [11], [12] for

networks in which subchannel reuse among multiple nodes is

not permitted.

To facilitate the design of OFDMA-based wireless networks,

each subchannel is typically restricted to be exclusively used

at any given instant by one of the nodes in the network.

The optimal scheduling of subchannels to nodes can be

incorporated with the optimization of data routes and power

allocations [11]. Despite the practical advantages of using

subchannel scheduling for avoiding interference, the rates

provided by the networks that use this technique may be

significantly inferior to those provided by networks that allow

the subchannels to be used simultaneously by multiple nodes.

This is especially the case when the network is composed of

essentially separated clusters; subchannel reuse is optimal for

clustered networks.



In contrast with scheduling-based designs, in this paper we

consider a joint design that incorporates the physical, medium

access and network layers of an OFDMA-based network, in

which the nodes are entitled to reusing subchannels. The nodes

in the considered network can assume multiple roles simul-

taneously including being sources, destinations and/or half-

duplex decode-and-forward relays. Assuming that the channel

coefficients are fixed and known a priori, the cross layer de-

sign objective is to determine the routes and power allocations

that maximize a weighted sum of the rates injected and reliably

communicated over the network. This design is cast as an

optimization problem, which is, unfortunately, nonconvex and

hence, difficult to solve. To overcome this difficulty, we adopt

a GP-based approach [9], wherein constraints that are not

compatible with the GP standard form are approximated by

the first order term in the corresponding Taylor expansion in

the logarithmic domain. This technique is typically referred to

as monomial approximation [13]. One of the desirable features

of this technique is that its successive application is guaranteed

to yield a local solution of the Karush-Kuhn-Tucker (KKT)

corresponding to the optimization problem [14]. The essence

of this technique is to construct a convex approximation of

the optimization problem in the neighbourhood of an initial

feasible point. This approximation is in a GP-compatible form,

which is amenable to efficient polynomial-time interior-point

solvers; see e.g., [15]. The output obtained by the solver is then

used to construct the subsequent approximation, and so on.

Numerical results show that the performance of the proposed

technique, although potentially suboptimal, can significantly

outperform the performance of the optimal solution obtained

by scheduling-based approaches, which restrict the subchan-

nels to be used at most by one node at any time instant.

II. SYSTEM MODEL AND PRELIMINARIES

We consider an OFDMA-based ad hoc wireless network of

N nodes, each with one transmit and one receive antenna,

and a fixed power budget, Pn, n ∈ N , {1, 2, · · · , N}. In

addition, each node is assumed to be capable of simultaneously

transmitting, receiving and relaying data to other nodes. This

assumption is generic, in the sense that constraining some

nodes to perform a subset of tasks can be readily incorporated

in the forthcoming formulations. For practical considerations,

the relaying nodes are assumed to operate in a half-duplex

mode, whereby each node uses distinct physical channels for

transmission and reception. The available OFDMA frequency

spectrum, W0, is divided into K narrowband subchannels,

each of bandwidth W = W0

K
. The K subchannels are assumed

to remain essentially constant during the entire signalling

interval.

Such a network can be represented by a weighted fully-

connected directed graph with N vertices. To facilitate the

enumeration of the L = N(N − 1) links in this graph, the

link from node n to node n′ will be labelled by ℓ = (N −
1)(n−1)+n′−1 if n < n′ and by ℓ = (N−1)(n−1)+n′ if

n > n′. The set of all links is denoted by L and the sets I(n)
and O(n) represent the sets of incoming and outgoing links

of node n ∈ N , respectively. The connectivity of this graph

can be captured by an incidence matrix, A = [anℓ], where [9]

anℓ =







1 if link ℓ ∈ O(n),
−1 if link ℓ ∈ I(n),
0 otherwise.

(1)

For the considered OFDMA-based scenario, each link ℓ ∈ L
consists of K subchannels, each with a complex random

coefficient. The coefficient of the k-th subchannel of link

ℓ connecting node n to node n′ is denoted by h
(k)
nn′ . The

nodes receive a superposition of noise and the transmissions

of all other nodes, scaled by the respective gains. Using v
(k)
n ,

u
(k)
n and y

(k)
n to respectively denote the Gaussian noise and

the signals transmitted and received by node n on the k-th

subchannel, we can write

y(k)n =
∑

n′∈N\{n}

h
(k)
nn′u

(k)
n′ + v(k)n , n ∈ N , (2)

where \ denotes the set minus operation.

In contrast with [9], in the current model, it is assumed

that the nodes cannot broadcast data simultaneously on the

same subchannel to different destinations. However, because

of the superposition, this model resembles a multiple access

channel, wherein the nodes might be able to jointly decode

the signals of other nodes. Such decoding involves successive

detection and cancellation in a certain order, which makes

the network design rather complicated. A more pragmatic

approach is for each node to decode the signal received on

each link separately, while treating the signals received on

other links as additive interference. In this case, assuming, as

before, that ℓ ∈ L is the link connecting node n to node n′, it

can be seen from (2) that the signal-to-noise-plus-interference

ratio (SNIR) observed by node n′ on subchannel k of link ℓ
is given by

SNIR(ℓ, k) =
p
(k)
n |h(k)

nn′ |2

WN0 +
∑

n′′∈N\{n,n′} p
(k)
n′′ |h(k)

n′′n′ |2
, (3)

where p
(k)
n is the power allocated by node n to the k-th

subchannel and N0 is the variance of the additive Gaussian

noise. The second term in the denominator represents the

aggregate interference observed by node n′ on subchannel k of

link ℓ. When the nodes transmit Gaussian distributed signals,

the maximum data rate that can be reliably communicated on

this subchannel is given by W log2(1 + SNIR(ℓ, k)).
Having described the system model, in Section III we will

provide a mathematical characterization of the constraints that

must be satisfied by the flows on each link, and the power and

rate allocated to each transmission. This characterization will

enable us to propose an efficient methodology for optimizing

these design variables to maximize the weighted sum of the

rates injected and reliably communicated over the network.

A. The GP Standard Form and Monomial Approximation

A GP optimization problem can be readily transformed to

an efficiently solvable convex one. To provide the standard



form of a GP, let z ∈ R
n be a vector of positive entries.

A monomial in z is defined to be a function of the form

c0
∏

i z
αi

i and a posynomial in z is defined to be a function of

the form
∑J

j=1 cj
∏n

i=1 z
αij

i , where cj > 0, {αi} and {αij},

are arbitrary constants, j = 0, 1, . . . , J , and i = 1, . . . , n. A

standard GP [13] is an optimization problem of the form:

min
z

f0(z),

subject to fi(z) ≤ 1, i = 1, . . . ,m, (4)

gi(z) = 1, i = 1, . . . , p,

where {fi} are posynomial and {gi} are monomials.

A monomial approximation of a differentiable function

h(z) ≥ 0 near z(0) is given by its first order Taylor

expansion in the logarithmic domain [13]. Defining βi =
z
(0)
i

h(z(0))
∂h
∂zi

∣

∣

z=z(0) , we have

h(z) ≈ h(z(0))

n
∏

i=1

( zi

z
(0)
i

)βi

. (5)

This approximation will be used to provide a GP approxima-

tion of the cross layer design problem.

III. PROBLEM STATEMENT

In this section we will provide a characterization of the

constraints that must be satisfied by the variables that represent

feasible routes and power allocations. Using this characteriza-

tion, we will formulate the network design as an optimization

problem, which although nonconvex, will be transformed in

the next section into a form that is more convenient for

obtaining locally optimal solutions efficiently. For tractability,

the nodes will be assumed to always have data ready for

transmission [7].

A. System Constraints

Let D , {1, 2, · · · , D} be the set of all destination nodes.

Let s
(d)
n be the rate of the data stream injected into node

n ∈ N and intended for destination d ∈ D, and let x
(d)
ℓk

be the corresponding flow on subchannel k ∈ K of link

ℓ ∈ L. The flows, {x(d)
ℓk }, and the injected rates, {s(d)n }, are

related by the flow conservation law, which must be satisfied at

each node. This law stipulates that the sum of flows intended

for any destination d ∈ D at each node must be equal to

zero [7]. Applying this law to the current network and using

the incidence matrix in (1), it can be seen that {x(d)
ℓk } and

{s(d)n } must satisfy the following constraints:

∑

ℓ∈L

∑

k∈K

anlx
(d)
ℓk = s(d)n , n ∈ N \ {d}, d ∈ D. (6)

The flow conservation law implies that the rate of data leaving

the network at d ∈ D equals the sum of the data rates injected

into the network and intended for this destination. Hence, we

can write s
(d)
d = −∑

n∈N\{d} s
(d)
n .

The injected rates, {s(d)n }n6=d, are non-negative and since

in our model the network will be represented by a directed

graph, the flows, {x(d)
ℓk }, must be also non-negative. Hence,

x
(d)
ℓk ≥ 0, ℓ ∈ L, k ∈ K, d ∈ D, (7)

s(d)n ≥ 0, n ∈ N \ {d}, d ∈ D. (8)

As mentioned in Section II, we are considering a network

design problem wherein the relaying nodes operate in a half-

duplex mode and the nodes cannot simultaneously broadcast to

multiple destinations on the same subchannel. These require-

ments can be captured by introducing a new set of variables

{qℓk}, ℓ ∈ L, k ∈ K. These variables are related to the node

powers by the following set of equations:

p(k)n = max
ℓ∈O(n)

qℓk, n ∈ N , k ∈ K, (9a)

a+nℓa
+
nℓ′qℓkqℓ′k = 0, ℓ, ℓ′ ∈ L, k ∈ K, n ∈ N , (9b)

where a+nℓ = max{0, anℓ}, that is, a+nℓ = 1 if ℓ ∈ O(n) and

zero otherwise.

To gain a better understanding of the transformation in (9),

we note that (9b) implies that for any subchannel k ∈ K and

any two links ℓ, ℓ′ ∈ O(n), at least qℓk = 0 or qℓ′k = 0. In

other words, this equation implies that, of all the links in O(n),
only one element in the set {qℓk}ℓ∈O(n), ∀ n ∈ N k ∈ K can

assume a strictly positive value. Now, (9a) indicates that this

value is the power allocated by the node n to subchannel k.

Note that using (9) will enable us to formulate the design in

terms of {qℓk} instead of {p(k)n }. In the sequel, the elements

of {qℓk} will be referred to as the link powers.

We now consider the requirement for the network to operate

in a half-duplex mode. Since in the current network, no

scheduling is considered, this requirement can be imposed by

restricting the nodes to transmit and receive data on distinct

subchannels. In other words, if a transmission intended for

node n on subchannel k of an incoming link, then the power

allocated by node n to subchannel k of any outgoing link must

be zero. Using the link powers defined in (9), the half-duplex

operation can be captured by the following set of constraints.

a−nℓa
+
nℓ′qℓkqℓ′k = 0, ℓ, ℓ′ ∈ L, k ∈ K, n ∈ N . (10)

where a−nℓ = min{0, anℓ}, that is, a−nℓ = −1 if ℓ ∈ I(n) and

zero otherwise. Note that (9b) and (10) are trivially satisfied

if either link ℓ or ℓ′ are not connected to node n.

In a practical network, the nodes are likely to have a certain

power budget which bounds the total power allocated by each

node on all subchannels. This constraint can be written as
∑

k∈K

p(k)n ≤ Pn, n ∈ N .

Using (9a), this constraint can be cast as
∑

k∈K

∑

ℓ∈L

a+nℓqℓk ≤ Pn, n ∈ N , (11)

where the link powers must satisfy the following non-

negativity constraints:

qℓk ≥ 0, ℓ ∈ L, k ∈ K. (12)



To complete the network characterization, we point out that

the data flows and the power allocations are coupled by the

maximum rate that can be supported by the subchannels of

each link. In particular, the aggregate rate
∑

d∈D x
(d)
ℓk must

not exceed the capacity of the k-th subchannel of link ℓ.
As mentioned in Section II, when the nodes use Gaussian

signalling, this capacity is given by W log2(1 + SNIR(ℓ, k)),
where SNIR is defined in (3). For notational convenience, we

will use the fact that the index of each link ℓ corresponds to a

specific (n, n′) pair and will use γℓk to denote |h(k)
nn′ |2 for any

two nodes n, n′ ∈ N . Using this notation and invoking (3),

the constraint on the aggregate rate on each subchannel k ∈ K
of each link ℓ ∈ L can be written in terms of {qℓk} as

∑

d

x
(d)
ℓk

W
≤ log2

(

1 +
qℓkγℓk

WN0 +
∑

ℓ′∈L\{ℓ} qℓ′kγℓ′′k

)

, (13)

where, here and henceforth, ℓ′′ is used to denote the index of

the link connecting the node at which link ℓ′ originates to the

node at which link ℓ ends.

B. The Cross Layer Design Problem

We are now ready to formulate the cross layer design as

an optimization problem. The objective of this problem is

to maximize a weighted sum of the rates injected into the

network. From a practical perspective, assigning weights to

the injected rates provides a convenient means for controlling

the quality of service (QoS); a higher weight implies a higher

priority to the corresponding rate. Such weights are typically

assigned a priori, but can be adapted to meet variations in

the QoS requirements [6]. Another advantage of considering

weighted sum rates is that varying the weights over the unit

simplex enables us to determine a set of rates that can be

simultaneously achieved by a given network. To ensure the

feasibility of the rates generated by our design, the constraints

on the routes and power allocations in (6)–(13) must be

satisfied. Hence, the design problem can be written as:

max
{s

(d)
n },{x

(d)
ℓk

},{qℓk}

∑

d∈D

∑

n∈N\{d}

w(d)
n s(d)n , (14a)

subject to
∑

ℓ∈L

∑

k∈K

anℓx
(d)
ℓk = s(d)n , n ∈ N \ {d}, d ∈ D, (14b)

x
(d)
ℓk ≥ 0, ℓ ∈ L, k ∈ K, d ∈ D, (14c)

s(d)n ≥ 0, n ∈ N \ {d}, d ∈ D, (14d)

∑

d∈D

x
(d)
ℓk

W
≤ log2

(

1 +
qℓkγℓk

WN0 +
∑

ℓ′∈L\{ℓ} qℓ′kγℓ′′k

)

,

k ∈ K, ℓ ∈ L, (14e)

qℓk ≥ 0, ℓ ∈ L, k ∈ K, (14f)
∑

k∈K

∑

ℓ∈L

a+nℓqℓk ≤ Pn, n ∈ N , (14g)

a−nℓa
+
nℓ′qℓkqℓ′k = 0, ℓ, ℓ′ ∈ L, k ∈ K, n ∈ N , (14h)

a+nℓa
+
nℓ′qℓkqℓ′k = 0, ℓ, ℓ′ ∈ L, k ∈ K, n ∈ N , (14i)

where {w(d)
n } are the weights assigned to the respective rates.

The optimization problem in (14) is nonconvex because the

right hand side (RHS) of the capacity constraints in (14e) is

the logarithm of a rational function of {qℓk}, and therefore not

concave. This can be verified by showing that the correspond-

ing Hessian matrices are non-definite. The equality constraints

in (14h) and (14i) are not affine and hence, also nonconvex.

By examining (14), it can be seen that this problem shares

some features with the GP standard form in (4), including the

non-negativity of the optimization variables and the product

form appearing in some of the constraints. To exploit this

observation, in the next section we will perform a change

of variables that will enable us to express the objective and

all, but one set, of constraints in a GP-compatible form. The

residual constraints that do not comply with the GP standard

form are approximated using the monomial approximation

in (5). Applying this technique iteratively is known to yield a

local solution of the KKT system corresponding to (14), see

e.g., [9].

IV. PROPOSED GP-BASED ALGORITHM

Since solving the nonconvex problem in (14) directly is

difficult, we will cast it in a form that is amenable to an effi-

cient approximation technique. The structure of the constraints

in (14e), (14h) and (14i) suggests GP as a candidate approach

for providing a convex approximation of (14).

Let us define two new sets of variables, {t(d)n } and {r(d)ℓk },

which are related to {s(d)n } and {x(d)
ℓk } by the following maps:

s(d)n = log2 t
(d)
n , n ∈ N \ {d}, d ∈ D, (15)

x
(d)
ℓk = W log2 r

(d)
ℓk , ℓ ∈ L, k ∈ K, d ∈ D. (16)

These maps are bijective, which renders recovering {s(d)n } and

{x(d)
ℓk } from {t(d)n } and {r(d)ℓk } straightforward.

Using (15) and (16), the objective in (14a) and the con-

straints in (14b)–(14d) can be readily expressed in a GP-

compatible form. For the constraints in (14e), substituting

from (16) yields the following set of equivalent constraints

(

WN0 +
∑

ℓ′∈L\{ℓ}

qℓ′kγℓ′′k

)

∏

d∈D

r
(d)
ℓk ≤ WN0 +

∑

ℓ′∈L

qℓ′kγℓ′′k,

k ∈ K, ℓ ∈ L. (17)

The RHS of (17) is not a monomial, which renders (17)

not compatible with the GP framework in (4). To provide

a cross layer design formulation that is compatible with this

framework, we will invoke (5) to approximate the RHS of (17)

by a monomial expression near an initial {q(0)ℓk }.

We now consider the constraints in (14h) and (14i). The

constraints in (14h) have negative coefficients {a−nℓ}, but can

be equivalently cast as |a−nℓ|a+nℓ′qℓkqℓ′k = 0, ∀ℓ, ℓ′, k. Now, the

RHSs of these constraints and the ones in (14i) are zero, which

is not compatible with the framework in (4). This problem

can be alleviated by constraining the left hand side of these

constraints to be less than an arbitrary small ǫ > 0.



Using the transformations in (15) and (16), the monomial

approximation of (17) and the relaxed versions of (14h)

and (14i), the joint design of data routes and power allocations

in (14) can be approximated with the following GP.

max
{t

(d)
n },{r

(d)
ℓk

},{qℓk}

∏

d∈D

∏

n∈N\{d}

(

t(d)n

)w(d)
n

(18a)

subject to
∏

ℓ∈L

∏

k∈K

(

r
(d)
ℓk

)Wanℓ = t(d)n , n ∈ N \ {d}, d ∈ D, (18b)

r
(d)
ℓk ≥ 1, ℓ ∈ L, k ∈ K, d ∈ D, (18c)

t(d)n ≥ 1, n ∈ N \ {d}, d ∈ D, (18d)
(

WN0 +
∑

ℓ′∈L\{ℓ}

qℓ′kγℓ′′k

)

∏

d∈D

r
(d)
ℓk ≤ cℓk

∏

ℓ′∈L

(

qℓ′k/q
(0)
ℓ′k

)θℓ′k
,

k ∈ K, ℓ ∈ L, (18e)
∑

k∈K

∑

ℓ∈L

a+nℓqℓk ≤ Pn, n ∈ N , (18f)

|a−nℓ|a+nℓ′qℓkqℓ′k ≤ ǫ, ℓ, ℓ′ ∈ L, k ∈ K, n ∈ N , (18g)

a+nℓa
+
nℓ′qℓkqℓ′k ≤ ǫ, ℓ, ℓ′ ∈ L, k ∈ K, n ∈ N , (18h)

where cℓk =
(

WN0 +
∑

ℓ′∈L q
(0)
ℓ′kγℓ′′k

)

, and θℓ′k =

q
(0)
ℓ′kγℓ′′k/cℓk. Note that the non-negativity constraints in (14f)

are inherently incorporated in the GP framework.

The problem in (18) is in the form of a GP, which, using

a standard exponential transformation, can be converted to a

convex problem [16]. Hence, (18) enables us to efficiently

solve the cross layer design problem approximately in the

neighbourhood of any initial set {q(0)ℓk }.

Finding the global solution for the nonconvex problem

in (14) is difficult, whereas solving the approximated problem

in (18) is straightforward. To exploit this fact, we incorporate

the formulation in (18) in an iterative algorithm, whereby the

output of solving (18) for an initial set {q(0)ℓk } is used as

a starting point for the subsequent iteration. This technique

is usually referred to as the single concentration method,

e.g., [9], and under relatively mild conditions, its convergence

to a solution of the KKT system corresponding to (14) is

guaranteed [14].

The relaxations in (18g) and (18h) may result in infeasible

power allocations that do not satisfy the constraints in (9b)

and (10). To construct a feasible, but potentially suboptimal,

power allocations, the elements of {qℓk} that are less than or

equal to
√
ǫ are set to zero. More specifically,

If qℓk ≤ √
ǫ, then qℓk = 0, ∀ k ∈ K, ℓ ∈ L. (19)

After updating the link powers according to the rule in (19),

the node powers can be readily obtained using (9a). The

optimal routes and input rates corresponding to the (potentially

suboptimal) updated node powers can be obtained through the

efficiently computable linear optimization problem in (14) with

power allocations being fixed.

This algorithm is described in Table I.

TABLE I
SUCCESSIVE GP-BASED ALGORITHM FOR SOLVING (18)

1- Let U (0)
= 0. Choose a feasible {q

(0)
ℓk
}. Set accuracy to δ > 0.

2- Solve the GP in (18). Denote the value of the objective by U .

3- While U − U (0) ≥ δ,

{q
(0)
ℓk
} ← {qℓk},

U (0) ← U ,
Solve the GP in (18). Denote the value of the objective by U ,

End.
4- Update the power allocations by (19).
5- Solve the linear problem corresponding to (14) with power allocations fixed.

V. NUMERICAL EXAMPLES

In this section we provide two numerical examples that

illustrate the potential advantage of the cross layer design

method proposed herein. Since in this method the subchannels

are allowed to be simultaneously used by multiple nodes, its

advantage over scheduling-based methods is more pronounced

when the network exhibits a cluster-like structure. This is

because, in that case, the interference generated by any cluster

has a small impact on the rest of the network, which enables

efficient reuse of the subchannels.

In the numerical results reported herein, locally optimal sets

of data routes and power allocations for this network are found

using MOSEK [17], which is a powerful polynomial-time solver

that converts the GP in (18) to a convex form and solves it

using an interior-point method.

To maximize the sum rate, the weights {w(d)
n } are set equal

to 1, ∀n, d, n 6= d and the nodes are assumed to have identical

power budgets; i.e., Pn = P , n = 1, . . . , 4. The channels are

generated using the indoor non-line-of-sight hotspot scenario

of the IMT-Advanced in [18]. In this scenario, the path loss

component of link ℓ connecting node n to n′ is given by

43.3 log10(rnn′ ) + 11.5 + 20 log10(fc),

where rnn′ is the distance in metres between node n and n′

and fc is the carrier frequency in GHz. The corresponding

shadowing component is log-normal distributed with a 0 dB

mean and a standard deviation of 4 dB. The fading component

is obtained from the standard Rayleigh distribution.

In accordance with the IMT-Advanced document [18], the

noise power is set to be -114 dBm/Hz, the carrier frequency is

set to be fc = 2 GHz and the available bandwidth is set to be

20 MHz, which is equally divided between the subchannels.

Example 1. Illustrating the advantage of subchannel reuse in

a network with N = 4 nodes and K = 2 subchannels.

In this example, we consider maximizing the sum rate that

can be reliably communicated by the quasi-static network

in Figure 1. This network has N = 4 nodes, which were

randomly dropped in a square of 100× 100 m2. The number

of links is L = 12, and the number of destinations is

D = 2; i.e., D = {1, 2}. Two subchannels are available for

communication, i.e., K = 2. We obtained the realization of

the channel gains represented by the matrix in (20) below. For

ease of exposition, the (k, ℓ)-th entry of this matrix represents



log10(γ
−1
ℓk ) instead of γℓk.

[

8.8 1.0 6.7 9.4 9.1 9.7 9.1 6.4 9.6 6.9 9.9 1.1
1.1 9.9 6.8 1.1 7.7 9.9 9.9 7.8 9.8 6.9 1.1 1.1

]

(20)

Node 1 Node 2

Node 4 Node 3

s
(1)
1

s
(2)
1 s

(1)
2

s
(2)
2

s
(1)
4 + s

(2)
4 s

(1)
3 + s

(2)
3

Fig. 1. Network schematic. Each link is composed of two subchannels.

Setting δ = 10−6, and P = 5 dBm, the algorithm in

Table I yielded a sum rate of 37.48 bits-per-second (bps)

with the ‘active’ links represented by the thicker solid lines

in Figure 1; dashed lines represent ‘inactive’ links. As shown

in this figure, each subchannel has been used twice during

the signalling interval. It is worth noting that even for the

small network considered in this example, the number of

variables and constraints is relatively large; 80 variables and

172 constraints.

To demonstrate the benefit of the proposed algorithm, we

compare its sum rate performance with binary and continuous

scheduling-based approaches. Both approaches do not allow

for subchannel reuse and ensure that, at any given time, each

subchannel is used by one node only. In the binary approach,

each subchannel is assigned to a certain node for the entire

signalling interval. As such, binary scheduling can be regarded

as a special case of the general cross layer design considered

herein. In this case, the cross layer design problem corresponds

to a mixed integer program [11], and can be solved using

an exhaustive search over L!
(L−K)! possible binary schedules;

a computationally prohibitive approach for large networks.

Performing this search for the network in Figure 1 yielded

a maximum sum rate of 20.33 bps. In addition to binary

scheduling, we also compare the sum rate performance of the

proposed approach with that of continuous scheduling, which

subsumes binary scheduling and allows each subchannel to

be time-shared by multiple nodes. This type of scheduling

was shown in [11] to give rise to a convex optimization

problem that can be efficiently solved. Using the formulation

in [11], this type of scheduling yielded a maximum sum rate

of 28.47 bps. This comparison is shown in Table II.

Performing the exhaustive search required for binary

scheduling at various values of P is computationally expen-

TABLE II
THE SUM RATE GENERATED BY PROPOSED ALGORITHM COMPARED WITH

BINARY AND CONTINUOUS SCHEDULING-BASE ALGORITHMS.

Proposed alg. Optimal Optimal
with subchannel reuse with binary sch. with continuous sch.

37.48 20.33 28.47

sive. Hence, for that case, we only provide a sum rate compar-

ison between the approach proposed herein and the one based

on continuous (time-sharing) scheduling. This comparison is

depicted in Figure 2, which shows that the cross layer design

proposed herein can significantly outperform the scheduling-

based approach. For instance, at a sum rate of 35 bps, the

proposed approach provides a power gain of 15 dBm. As P
increases, the effect of interference becomes significant and

reuse becomes less effective. This effect would not arise had

the network had a clustered structure.
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Fig. 2. Sum rate of proposed and continuous scheduling-based designs for
the network considered in Example 1.

�

Example 2. Illustrating the advantage of subchannel reuse in

a network with N = 10 nodes and K = 4 subchannels.

To further demonstrate the benefit of the proposed algo-

rithm over scheduling-based designs even in non cluster-like

structures, in this example we consider a network of N = 10
nodes communicating with each other, i.e., D = N . We

consider the same scenario as described in Example 1, except

that, now, the nodes are randomly dropped in a square of

500 × 500 m2. The network has L = 90 links and operates

over K = 4 subchannels. The number of variables for the

considered network in this example is 4050 and the number

of constraints is 10270.

Providing the subchannel gains of the considered network

is not possible due to space limitations. However, since these

gains are dominated by the pathloss component, in Figure 3

we provide the geographic location of the nodes. Implementing

the algorithm in Table I for P = 20 dBm yields the routes

shown in Figure 3. In this figure, the thickness of the lines are

made proportional to the power allocated to the transmissions

of the nodes. It can be seen from this figure that each sub-

channel is reused over multiple links. This is in contrast with

the scheduling-based design, which allows each subchannel to

be used at most once.
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Fig. 3. Schematic of the network in Example 2, data routes, subchannels
reuse and corresponding power allocations.

The sum rate achieved by the algorithm in Table I and

the approach based on continuous (time-sharing) scheduling

is provided in Figure 4 for various P . From this figure, it
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Fig. 4. Sum rate of proposed and continuous scheduling-based designs for
the network considered in Example 2.

can be seen that, despite being potentially suboptimal, at

a sum rate of 50 bps, the proposed design yields a power

advantage in excess of 25 dBm over the design based on the

optimal continuous scheduling. As the network size increases,

the opportunity of reusing a subchannel also increases and

therefore the advantage of using the proposed algorithm over

scheduling-based techniques becomes more pronounced.

Further numerical investigations suggest that the proposed

design can offer significant rate advantages over scheduling-

based approaches for a large class of networks with more

general structures. The results of these investigations are not

presented due to space considerations. �

VI. CONCLUSION

We considered the joint design of data routes and power

allocations in an OFDMA-based wireless network with ad hoc

topology in which each frequency subchannel can be used

by multiple nodes simultaneously. We developed an efficient

iterative approach that enabled us to obtain locally optimal

solutions of this nonconvex design problem in polynomial

time. Although potentially suboptimal, for some network sce-

narios, the data routes and power allocations obtained by our

technique enabled achieving significantly higher rates than

those achieved by their optimal counterparts in scheduling-

based cross layer designs.

ACKNOWLEDGMENT

The authors would like to thank Dr. C. S. Bontu and Dr. J.

Womack of BlackBerry (formerly, Research In Motion (RIM))

for their support.

REFERENCES

[1] R. Pabst, B. Walke, D. Schultz, P. Herhold, H. Yanikomeroglu,
S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Agh-
vami, D. Falconer, and G. Fettweis, “Relay-based deployment concepts
for wireless and mobile broadband radio,” IEEE Commun. Mag., vol. 42,
pp. 80–89, Sept. 2004.

[2] X. Bangnan, S. Hischke, and B. Walke, “The role of ad hoc network-
ing in future wireless communications,” in Proc. Int. Conf. Commun.

Tech. (ICCT), pp. 1353–1358, Apr. 2003.
[3] H. Inaltekin and S. V.Hanly, “Optimality of binary power control for the

single cell uplink,” IEEE Trans. Inf. Theory, vol. 58, pp. 6484–6498, Oct.
2012.

[4] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM
systems,” IEEE J. Select. Areas Commun., vol. 21, pp. 171–178, Feb.
2003.

[5] M. Moretti, A. Todini, A. Baiocchi, and G. Dainelli, “A layered archi-
tecture for fair resource allocation in multicellular multicarrier systems,”
IEEE Trans. Vehicular Tech., vol. 60, pp. 1788–1798, May 2011.

[6] J. Huang, V. G. Subramanian, R. Agrawal, and R. A. Berry, “Downlink
scheduling and resource allocation for OFDM systems,” IEEE Trans.

Wireless Commun., vol. 8, pp. 288–296, Jan. 2009.
[7] L. Xiao, M. Johansson, and S. P. Boyd, “Simultaneous routing and

resource allocation via dual decomposition,” IEEE Trans. Commun.,
vol. 52, pp. 1136–1144, 2004.

[8] M. Johansson and L. Xiao, “Cross-layer optimization of wireless
networks using nonlinear column generation,” IEEE Trans. Wireless

Commun., vol. 5, pp. 435–445, Feb. 2006.
[9] R. H. Gohary and T. J. Willink, “Joint routing and resource allocation

via superposition coding for wireless data networks,” IEEE Trans. Signal

Processing, vol. 58, pp. 6387–6399, 2010.
[10] S. Shabdanov, P. Mitran, and C. Rosenberg, “Cross-layer optimization

using advanced physical layer techniques in wireless mesh networks,”
IEEE Trans. Wireless Commun., vol. 11, pp. 1622–1631, 2012.

[11] R. Rashtchi, R. H. Gohary, and H. Yanikomeroglu, “Joint routing,
scheduling and power allocation in OFDMA wireless ad hoc networks,”
in Proc. IEEE Int. Conf. Commun. (ICC), pp. 5483–5487, June 2012.

[12] K. Karakayali, J. Kang, M. Kodialam, and K. Balachandran, “Cross-
layer optimization for OFDMA-based wireless mesh backhaul net-
works,” in Proc. IEEE Wireless Commun. Ntwk Conf. (WCNC), pp. 276–
281, Mar. 2007.

[13] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optimization and Engineering, vol. 8, pp. 67–
127, 2007.

[14] B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Operations Research, vol. 26,
pp. 681–683, 1978.

[15] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-Point Polynomial

Algorithms in Convex Programming, vol. 13. SIAM, 1994.
[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:

Cambridge University Press, 2004.
[17] MOSEK Apps., The MOSEK optimization toolbox for Matlab Manual,

Vesion 6.0, 2012. Available at: http://www.docs.mosek.com.
[18] Int. Telecommun. Union (ITU), Guidelines for Evaluation of Radio

Interface Technologies for IMT-Advanced. ITU-R: TR M.21351, Dec.
2009. Available: http://www.itu.int/pub/R-REP-M.2135-1-2009.


