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Abstract—In this paper, we propose an active node selection
framework for compressive sleeping wireless sensor networks
(WSNs) in order to improve the signal acquisition performance
and network lifetime. The node selection can be seen as a spe-
cialized sensing matrix design problem where the sensing matrix
consists of selected rows of an identity matrix. By capitalizing on
a genie-aided reconstruction procedure, we formulate the active
node selection problem into an optimization problem, which
is then approximated by a constrained convex relaxation plus
a rounding scheme. The proposed approach also exploits the
partially known signal support, which can be obtained from the
previous signal reconstruction. Simulation results show that our
proposed active node selection approach leads to an improved
reconstruction performance and network lifetime in comparison
to various node selection schemes for compressive sleeping WSNs.

I. INTRODUCTION

OVER the past two decades, the rapid development of
technologies in sensing, computing and communication

has made it possible to employ wireless sensor networks
(WSNs) to continuously monitor physical phenomena in a
variety of applications, for example air quality monitoring,
wildlife tracking, biomedical monitoring and disaster detec-
tion. As the number and the resolution of the sensors grow, the
performance bottleneck is the sensor node (SN), which usually
has limited battery power, memory, computational capability,
wireless bandwidth and physical size [1], [2].

Compressive sensing (CS) [3], [4] enables one to reconstruct
compressible signals from a small set of linear measurements.
It leverages the compressibility of natural signals to trade-off
the convenience of data acquisition against the computational
complexity of data reconstruction. Thus, it is suitable for data
acquisition and reconstruction in a WSN which is typically
constituted of a smart fusion center (FC) with high power and
computational capability and several dumb front-end SNs with
limited energy storage and computing capability [5]–[8].

Conventional CS exploits the signal representation with a
sparse structure and applies random measurements. The use of
additional signal knowledge such as a part of the signal support
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enables one to further reduce the number of measurements
required for reconstruction. For example, Vaswani and Lu
use the support estimate from the previous time instant of
a time sequence of sparse spatial signals as the known part
and recursively reconstruct the time sequence signals in [9],
[10]; Chen et al. use a Fréchet mean approach to estimate
the signal support from multiple correlated signals and then
leverage the support estimate to enhance the reconstruction
in [7]. The recovery conditions for signal reconstruction with
partially known support is analyzed in [11]. Furthermore, the
CS performance can be enhanced by replacing the random
sensing matrices with optimized ones. Various principles have
been applied to optimize the sensing matrices in [12]–[14],
and all of them lead to an improved performance compared
with the use of random sensing matrices.

In this paper, we focus on a scenario where signals detected
by a group of SNs distributed in the field have high spatial
correlations. We propose a novel active node selection frame-
work, where a subset of the SNs are selected to sense and
communicate to the FC, while the remainder are in the sleep
mode for saving energy, and the signals are reconstructed at
the FC following the CS principle. As compared to the random
node selection employed in conventional compressive sleeping
WSNs [5], the proposed active node selection is optimized
by exploiting the partially known signal support, and thus
leads to an improved performance and network lifetime. Our
contributions can be summarized as follows:

• We propose a novel active node selection framework for
the compressive sleeping WSNs, where the FC performs
an optimized selection of SNs. Node selection can be
seen as a special sensing matrix design problem where
the sensing matrix consists of selected rows of an identity
matrix, and consequently none of the existing approaches
for sensing matrix optimization in the literature [12]–[14]
can be directly applied to solve this problem.

• We formulate the node selection as an optimization
problem which aims to improve the reconstruction perfor-
mance for a certain number of active SNs (or conversely,
to reduce the number of samples for a certain target re-
construction quality) and to avoid too frequently selecting
any particular SN as to prolong network lifetime.

• We approximate the problem of active node selection by
a constrained convex relaxation plus a rounding scheme.



The related convex problem can be solved by efficient
iterative algorithms.

The following notation is used. Lower-case and upper-case
letters denote numbers, boldface upper-case letters denote ma-
trices, boldface lower-case letters denote column vectors, and
calligraphic upper-case letters denote sets. The superscripts
(·)T and (·)−1 denote the transpose and the inverse of a
matrix, respectively. The trace of a matrix is denoted by
Tr(·). xi denotes the ith element of x, Xi,i denotes the ith
diagonal element of X, and XJ denotes the submatrix of X
by selecting columns with indexes in the set J . J c denotes the
complement of set J . Ex(·) denotes expectation with respect
to the distribution of the random vector x.

(
n
m

)
denotes the

number of m combinations from a given set of n elements.
N (µ,Σ) denotes the multivariate normal distribution with
mean vector µ and covariance matrix Σ. In denotes the n×n
identity matrix. The ℓ0 norm, the ℓ1 norm, and the ℓ2 norm of
vectors, are denoted by ∥ · ∥0, ∥ · ∥1, and ∥ · ∥2, respectively.
The Frobenius norm of a matrix X is denoted by ∥X∥F .

II. SIGNAL ACQUISITION VIA COMPRESSIVE SLEEPING
WSNS

A. Conventional Compressive Sensing

We consider the conventional CS model where a discrete
signal f ∈ Rn is measured by linear projections, given by:

y = Φf + z, (1)

where y ∈ Rm (m < n) denotes the vector of measure-
ments, Φ ∈ Rm×n denotes the projection matrix, and z ∼
N (0, σ2Im) denotes the noise term for the measuring process.
The discrete signal f is assumed with a sparse representation
x ∈ Rn under some basis Ψ ∈ Rn×n, which can be written as
f = Ψx. Here, sparse means that only s (s ≪ n) elements in
vector x are non-zeros while all the other elements are zeros,
i.e., ∥x∥0 = s. Then the CS model can be described as

y = ΦΨx+ z = Ax+ z, (2)

where A = ΦΨ ∈ Rm×n denotes the equivalent sensing
matrix.

The typical signal reconstruction process behind conven-
tional CS approaches involves solving the following optimiza-
tion problem to recover the original signal:

min
x

∥x∥1

s.t. ∥Ax− y∥22 ≤ ϵ,
(3)

where ϵ is an estimate of the noise level. It has been demon-
strated that only m = O(s log n

s ) measurements [15] are
required for robust reconstruction in the CS framework.

A theoretical question in CS is what conditions should the
equivalent sensing matrix A satisfy in order to reconstruct
the signal representation x. The most popular conditions
used for evaluating the equivalent sensing matrix includes the
null space property, the restricted isometry property (RIP)
and mutual coherence property [16]. In comparison to the
null space property and the RIP, which are computationally

intractable, the calculation of the mutual coherence of a matrix
is relatively inexpensive, which is given by:

µ = max
1≤i,j≤n,i̸=j

|AT
i Aj |

∥Ai∥2 · ∥Aj∥2
. (4)

In [16], Donoho et al. demonstrated that if µ < 1
4s−1 and

A has normalized columns, then the error of the reconstructed
signal representation x̂ ∈ Rn in (3) is upper-bounded by

∥x̂− x∥22 ≤ (ϵ+ ϵ̂)2

1− µ(4s− 1)
, (5)

where ϵ̂ ≥ ∥z∥22. Thus, it is desired to use an equivalent
sensing matrix with small mutual coherence, which leads to
an improved reconstruction error bound in (5).

In addition to the mutual coherence, which is the maximum
coherence of all column pairs, various coherence properties
of the equivalent sensing matrix are applied to achieve an
optimized projection matrix design in the literature. For exam-
ple, to obtain an optimized projection matrix with improved
reconstruction performance, Elad propose to reduce the coher-
ence of the t largest column pairs [12], and the summation of
the square of all the coherence values of the column pairs is
considered in [13]. In [14], we propose to use tight frames
as the optimal equivalent sensing matrix, where the coherence
of column pairs also plays an important role in deriving the
design.

B. Compressive Sensing With Partially Known Support

The number of projections required to recover the original
signal can be reduced if some additional knowledge beyond the
sparse signal structure is given. For signals changing slowly in
time, the partially known support information can be obtained
from reconstruction of the signal in the previous time slot.
The support can also be estimated according to the signal
sparsifying model, e.g., the importance of the components of
the signal representation under principal component analysis
(PCA) are in decreasing order [17].

The modified CS reconstruction proposed in [9], [10] aims
to find a signal whose support contains the smallest number of
nonzero elements out of support J . The reconstruction process
involves solving the following optimization problem to recover
the original signal representation:

min
x

∥xJ c∥1

s.t. ∥Ax− y∥22 ≤ ϵ.
(6)

Compared with the conventional CS reconstruction in (3), the
modified CS reconstruction in (6) has better recovery perfor-
mance owing to the employment of additional information,
i.e., the partially known signal support J . The gain of the
modified CS reconstruction is affected by the accuracy of the
information of the partial support J regarding the actual signal
support [9], [10].



Fig. 1. A WSN with single hop communication.

C. Compressive Sleeping WSNs

Typical WSNs consist of a large number of SNs distributed
in the field to collect information of interest for geographical
monitoring, industrial monitoring, security and climate mon-
itoring. In these WSNs, signals sensed in the physical field
usually have high spatial correlations, and the signals can be
represented as sparse vectors under some basis, which can be
determined a-priori, or by an adaptive approach updated via
PCA [17] or by dictionary learning.

We consider a WSN architecture for collecting physical field
information with n SNs and a fusion center (FC) as shown in
Fig. 1. SN i (i = 1, . . . , n) has a monitored parameter fi to
report to the FC. We also consider a node sleeping strategy
as in [5] such that only m (m < n) nodes are active and all
the others nodes are turned off in order to reduce the energy
consumption. The original signal f ∈ Rn, which represents
the physical field information is then reconstructed at the FC
using the measurements of active SNs. The SNs are activated
to collect and transmit data in a demand-driven manner, i.e.,
triggered by a request from the FC1.

III. THE ACTIVE NODE SELECTION FRAMEWORK

In this section, we provide the active node selection frame-
work for compressive sleeping WSNs in order to minimize
the total number of SNs needed be activated. The proposed
approach, in conjunction with the consideration of network
characteristics, can be applied to improve the network lifetime,
which will be given in Section V.

A. Problem Formulation

In the compressive sleeping WSN, the entries of the pro-
jection matrix Φ ∈ Rm×n are all zeros except for m unity
entries for different rows, and the column indexes of these
unity entries corresponds to the SNs’ states, i.e., sleeping or
active. For example, if SN i is active, then there is a unity

1For example, by using a duty-cycle MAC protocol [18], SNs can periodi-
cally wake up to listen to broadcast messages from the FC that list the active
nodes.

element in the ith column of Φ, otherwise all the elements of
the ith column are zeros. Therefore, the projection matrix Φ
represents the states of SNs.

We define an n× n diagonal matrix Φ̃ such that

Φ̃i,i =

{
1, SN i is activated
0, otherwise . (7)

Then, Φ̃ can be written as a row-permutation of the concate-
nation of the sensing matrix Φ and a matrix of n −m rows
of zeros, which is given by

Φ̃ = Π

[
Φ
0(n−m)×n

]
, (8)

where Π is a row-permutation matrix, and ΦTΦ = Φ̃.
The goal of the proposed framework relates to the minimiza-

tion of the mean square error (MSE) and penalty of the node
selection subject to appropriate constraints, which is given as
follows

min
Φ̃i,i

Ez

(
∥F(y, Φ̃,Ψ,J )− x∥22

)
+ βTr(Φ̃P) (9a)

s.t. Φ̃i,i ∈ {0, 1}, i = 1, . . . , n, (9b)

Tr(Φ̃) = m, (9c)

where F(·) denotes an estimator of the signal sparse repre-
sentation, P ∈ Rn×n is a diagonal matrix with Pi,i ≥ 0 and
β > 0.

The term Tr(Φ̃P) in (9a) denotes the penalty function of
the weighted active node selection matrix Φ̃P where weight
Pi,i (i = 1, . . . , n) is the penalty for selecting SN i. Various
design targets could result in different interpretations of the
penalty term. For example, SNs could consume different
amounts of energy to communicate their readings to the FC
owing to the distinct transmission pathloss, where the penalty
term Φ̃P could reflect the constraint on the total energy
consumed by the selected SNs by setting Pi,i to be the energy
consumption of the ith SN. For another example, it could
be desirable to wake up those SNs having adequate levels
of stored energy rather than those SNs already low in stored
energy, so an SN with inadequate energy is associated with a
relatively large penalty. In this paper, we exploit this penalty
term with the aim of prolonging the network lifetime, and this
approach will discussed in more detail in Section IV.

The derivation of such a node selection design is very
difficult though, because the squared reconstruction error
term in (9a) depends upon the actual estimator. In view of
the lack of a closed-form tractable squared reconstruction
error expression for actual estimators, we use a genie-aided
reconstruction procedure that is assumed to know the actual
sparse representation support and performs least squares (LS)
estimation based on prior knowledge of the support. The genie-
aided reconstruction has been used for the design of projection
matrices [14] and in the analysis of the performance of various
reconstruction approaches [19], [20]. Here we assume that the
estimated signal representation support J is the actual support
and is used in the genie-aided reconstruction performance.



With the use of the signal representation support J , the
solution of the LS estimation can be given by

x̂ =(ΨT
JΦTΦΨJ )−1ΨT

JΦTy

=(ΨT
J Φ̃ΨJ )−1ΨT

J Φ̃Ψx+ (ΨT
J Φ̃ΨJ )−1ΨT

JΦT z,
(10)

and the MSE of the LS estimation is

Ez

(
∥x̂− x∥22

)
= σ2Tr

(
(ΨT

J Φ̃ΨJ )−1
)
. (11)

According to the original active node selection problem in (9),
we put forth the following optimization problem:

min
Φ̃i,i

Tr
(
(ΨT

J Φ̃ΨJ )−1
)
+ βTr(Φ̃P)

s.t. Φ̃i,i ∈ {0, 1}, i = 1, . . . , n,

Tr(Φ̃) = m.

(12)

Unfortunately, the optimization problem in (12) is non-convex.
As the variables Φ̃i,i are binary integers, a straightforward
way to solve (12) is to perform an exhaustive search over(
n
m

)
different combinations of m active nodes. However, the

complexity of the exhaustive search is impractical for a large
number of SNs.

B. Active Node Selection Via Convex Relaxation
In this subsection, we formulate the active node selection

problem in (12) as a relaxed convex optimization problem
that can be solved efficiently using numerical methods such as
interior-point algorithms. To simplify the original problem, we
relax the binary integer constraints so that Φ̃i,i can be in the
range from 0 to 1. Then the relaxed problem can be expressed
as follows

min
Φ̃i,i

Tr
(
(ΨT

J Φ̃ΨJ )−1
)
+ βTr(Φ̃P) (13a)

s.t. 0 ≤ Φ̃i,i ≤ 1, i = 1, . . . , n, (13b)

Tr(Φ̃) = m. (13c)

Proposition 1: Let ΨJ be an n × s matrix with rank s
and Φ̃i,i (i = 1, . . . , n) be nonnegative numbers. Then the
objective function in (13a) is convex in Φ̃i,i (i = 1, . . . , n).

Proof: We first prove that the expression Tr
(
(X)−1

)
is

convex in X if X is a positive definite symmetric matrix. Let

g(t) = Tr
(
(X+ tV)−1

)
, (14)

where X ≻ 0 and V is a symmetric matrix. Now we can
rewrite g(t) as

g(t) = Tr
(
(X+ tV)−1

)
= Tr

(
X−1 − t(X+ tV)−1VX−1

)
= Tr

(
X−1 − tX−1VX−1 + t2X−1VX−1VX−1

− t3X−1VX−1VX−1VX−1 + . . .
)
,

(15)

where the first equality can be proved by using the Searle set
of identities [21]. Then we have the second derivative that can
be derived as

lim
t→0

∂2g(t)

∂t2
= Tr

(
X−1VX−1VX−1

)
= Tr

(
WTX−1W

)
,

(16)

where W = VX−1. As X is positive definite, then we have
WTX−1W ≻ 0. Therefore, Tr

(
(X)−1

)
is convex in X.

As ΨT
J Φ̃ΨJ is invertible and Φ̃i,i (i = 1, . . . , n) are

nonnegative, we have ΨT
J Φ̃ΨJ ≻ 0. Thus, we can conclude

that Tr
(
(ΨT

J Φ̃ΨJ )−1
)

is convex in Φ̃i,i (i = 1, . . . , n) in
view of the fact that Tr

(
(X)−1

)
is convex in X if X is a

positive definite and the concavity of a function is preserved
under an affine transformation.

This relaxation of an optimization problem with binary
integers to a convex form makes the problem much easier
to solve than the original integer program. After finding
the solution of (13), the m largest Φ̃i,i can be chosen and
the corresponding indexes relate to the selected nodes. This
relaxation has also been used for antenna selection in multi-
antenna wireless communication systems [22], and sensor
selection in parameter estimation [23].

Note once again that the proposed node selection framework
for compressive sleeping WSNs capitalizes on the genie-aided
reconstruction procedure, while the support information is only
partially known in practical reconstructions. The effect of the
estimation accuracy regarding the actual support is investigated
in Section V.

IV. PROLONGING THE NETWORK LIFETIME

In this section, we apply the proposed active node selection
to improve the lifetime of compressive sleeping WSNs.

Network lifetime is determined by the time instant when
the network cannot support application-specific functions. It
can be the instant when the first SN runs out of energy, a
specified fraction of SNs run out of energy, or the network
partitions. In [24], Chen and Zhao study the network lifetime
which applies to any definition of the network lifetime and
holds independently of the underlying network model, and
derive the average network lifetime E(L) formula, which is
given by

E(L) =
ξ0 − E(Eu)

Pc + ρE(Et)
, (17)

where ξ0 is the initial total network energy, Pc is the con-
stant continuous power consumption over the whole network,
E(Eu)is the average total unused energy in the network when
it fails, ρ is the average data reporting rate, and E(Et) is the
average transmission energy consumed by all sensors.

According to (17), in order to prolong the network lifetime,
one desires to reduce the unused energy and the transmission
energy consumption. Define ξi and ηi as the required energy
for transmission of a message and the node energy storage
for SN i, respectively. Chen and Zhao propose a greedy node
selection approach that the SN with maximum value of ηi−ξi
is selected. In this paper, we formulate the penalty Pi,i by

Pi,i = −ηi
ξi

(18)

This penalty promotes the usage of an SN with large energy
storage ηi and/or small transmission cost ξi. This penalty
expression, in conjunction with the proposed framework (12),
aims to prolong the network lifetime and improve the signal



reconstruction performance. The SNs associated with the m
largest Φ̃i,i of the following problem are selected to be
activated

min
Φ̃i,i

Tr
(
(ΨT

J Φ̃ΨJ )−1
)
− β

n∑
i=1

ηiΦ̃i,i

ξi

s.t. 0 ≤ Φ̃i,i ≤ 1, i = 1, . . . , n,

Tr(Φ̃) = m.

(19)

V. PERFORMANCE RESULTS

We now compare the performance of proposed node selec-
tion approaches with other approaches in compressive sleeping
WSNs using synthetic data. We consider a WSN with n = 80
SNs, and we generate the sparse signal representations x
randomly for different time slots, where the non-zero com-
ponents are drawn from independent identically distributed
(i.i.d.) Gaussian distributions N (0, 1). The equivalent sensing
matrices A are also generated randomly for different time
slots, where the elements are drawn from the i.i.d. Gaussian
distribution N (0, 1). The received measurements are corrupted
by additive zero-mean Gaussian noise with variance 0.01. We
assume all the SNs consume the same amount of energy to
transmit one measurement to the FC2, i.e., ξ1 = . . . = ξn.
The signals are reconstructed by solving the conventional ℓ1
minimization3 in (3), and the results are averaged over 1000
trials.

The following approaches are compared:
1) Random selection: the active SNs are selected randomly;
2) Chen and Zhao’s approach: SNs are selected by the value

of remaining energy storage for transmission, i.e., ηi−ξi;
3) Proposed approach: SNs are selected via solving the

optimization problem in (19).
We first evaluate the signal reconstruction accuracy using

the root-mean-square error (RMSE), i.e., E
(
∥x̂ − x∥22

)
, for

different active node selection approaches without considering
the penalty relating to the network lifetime, i.e., β = 0. We
consider both the ideal support estimate, i.e., the estimate is
exactly the actual signal support, and two non-ideal scenarios
where 20% and 50% elements of the support estimate are
incorrect respectively. Fig. 2 shows that the proposed active
node selection approach outperforms the random selection
and Chen and Zhao’s approach in terms of the reconstruction
accuracy, i.e., the RMSE, for various numbers of activated
SNs in each time slot. We also observe that the gain of the
proposed approach is affected by the accuracy of the support
estimate. For example, 38 SNs are required to be activated

2This assumption is motivated by the fact that the PHY/MAC layers are
not adapting the modulation, coding and retransmission strategies during the
active time (which is the case with the low-energy IEEE 802.15.4 PHY and
typical MAC-layers such as nullMAC in the Contiki operating system). One
could also apply other energy consumption model for transmission. However,
it is sufficient to provides insights on the comparison of various approaches
via this model.

3Note that the conventional ℓ1 minimization does not exploit the support
estimate and thus the gain of the proposed approach results from the node
selection rather than the use of an advanced algorithm. With the use of the
modified CS reconstruction in (6), additional gains can be obtained.
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Fig. 2. The RMSE performance of different active node selection approaches
vs. number of activated SNs (β = 0).
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Fig. 3. The network lifetime vs. the number of activated SNs m (non-ideal
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to achieve an RMSE smaller than 0.02 with 20% incorrect
support estimate, while only 34 SNs are required in the case
of an ideal support estimate.

We also investigate the network lifetime for different node
selection schemes in compressive sleeping WSNs. In this
experiment, We define the network lifetime by the time instant
when the first SN fails and ignore the energy consumed by
SNs in the sleeping mode. The initial battery storage of each
SN is randomly generated by following a uniform distribution
in the range of [10τ, 20τ ], where τ is the amount of energy
consumed in one activation time slot for each of the SNs. The
network lifetime is reached when any one of the SNs runs out
of energy. We consider the non-ideal support estimate case
where only 50% elements of the support estimate are correct.
Fig. 3 shows the network lifetime for different numbers of
active SNs. The network lifetime tends to decrease with a
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Fig. 4. The trade-off between the RMSE and the network lifetime. (β =
10−3)

growing number of active SNs. In comparison to the random
node selection, the network lifetime has been significantly
improved by using the proposed active node selection ap-
proach. In addition, it is observed that the lifetime gain is also
affected by the weight β that represents the level of penalty
for selecting SNs with different levels of energy storage. Chen
and Zhao’s approach, which aims to prolong network lifetime
without considering reconstruction performance, achieves the
longest network lifetime.

We now illustrate the trade-off between the network life-
time and the signal reconstruction accuracy, in particular,
the RMSE, for compressive sleeping WSNs. With different
numbers of activated SNs m, we have distinct pairs of the
RMSE and the network lifetime, which are plotted in Fig. 4.
We note that the network lifetime tends to increase with rising
levels of RMSE, i.e., one has to pay the cost of a reduced
network lifetime in order to increase the signal reconstruction
accuracy. We observe that the proposed approach leads to
the best lifetime-performance curve in comparison to random
selection and Chen and Zhao’s approach. Fig. 4 also shows that
the gain of the proposed approach is affected by the accuracy
of the support estimation.

VI. CONCLUSION

In this paper, we propose a novel active node selection
framework for compressive sleeping WSNs to improve the
signal acquisition performance and network lifetime. The
proposed node selection is performed at the FC and can
be solved efficiently by iterative algorithms. The superiority
of our proposed approach in relation to the random node
selection in the conventional CS framework is revealed by
our experimental study.
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