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Abstract—With fast advances in camera sensor devices and
wide applications of wireless camera sensor networks (WCSNs),
optimizing the tradeoff between power consumption and coverage
rate of WCSNs attracts a great deal of research attention. In
contrast to 2D WCSNs, 3D WCSNs capture more accurate
and comprehensive information for surveillant applications. The
percolation theory has been proved to be powerful and effective in
characterizing the exposure path prevention using 2D WCSNs.
While percolation theory can be potentially extended into 3D
WCSNs to improve the power and coverage performances, there
are still many new challenges remaining unsolved. On the other
hand, the clustering algorithm is widely cited as an efficient
power saving and interference mitigation technique for WCSNs.
However, how to integrate the clustering technique with 3D per-
colation theory in WCSNs is still an open problem. To overcome
the aforementioned challenges, in this paper we propose the 3D
percolation theory-based exposure-path prevention scheme for
optimizing the tradeoff between power consumption and coverage
rate over clustered WCSNs. First, we apply and extend the
bond-percolation theory to derive the optimal density of camera
sensors deployed in 3D WCSNs subject to the minimum exposure-
path prevention probability constraint. Then, we apply the
mutual entropy to analyze the dependency among 3D neighboring
camera sensors, justifying the bond-percolation theory in 3D
WCSNs. Finally, we apply the new low energy adaptive clustering
hierarchy (LEACH) architecture into our 3D WCSNs for power
saving and interference mitigation. The conducted extensive
simulations show that our proposed schemes outperform the
other existing schemes in optimizing the tradeoff between power
consumption and coverage rate over 3D WCSNs.

Index Terms—3D WCSNs, exposure-path prevention, perco-
lation theory, NEW LEACH, optimal power-coverage tradeoff

I. INTRODUCTION

THE rapid development in VLSI device and image sensor
techniques has enabled the cost-effective development of

the large-scale, small-size, and energy-saving wireless camera
sensor networks (WCSNs). As a result, how to efficiently
design and implement WCSNs in many critical applications,
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such as the battlefield surveillance, homeland security, indus-
trial process supervision, and health monitoring systems has
received a great deal of research attention from both academia
and industry [1].

One of the key issues in designing and implementing WC-
SNs is how to optimize the tradeoff between power consump-
tion and coverage rate. Most existing works on sensor coverage
mainly focus on full coverage models. In contrast, many
applications focus on the exposure-path prevention, which only
needs partial coverage. The percolation theory has been proved
to be powerful and effective in solving the exposure-path
prevention problem in 2D WCSNs. While percolation theory
can be also potentially extended into 3D models to future
improve the power and exposure-path prevention performance,
there are still many new challenges remaining unsolved.

On the other hand, the clustering algorithm is widely
cited as an efficient power saving and interference mitigation
technique for 2D WCSNs. There are many existing works on
the clustering algorithm [2] [3]. However, how to integrate the
clustering technique with 3D percolation theory for optimiz-
ing the power-saving subject to the minimum coverage rate
constraint in 3D WCSNs still remains as an open problem.

To overcome the above-mentioned challenges, we propose
the 3D percolation theory-based exposure-path prevention
scheme for optimizing the tradeoff between power consump-
tion and coverage rate over clustered WCSNs. First, we
formulate and solve the exposure-path prevention problem
under the percolation theory [4], [5]. We derive the critical
density of camera sensors subject to the minimum exposure-
path prevention probability constraint using bond-percolation
theory. We also model and analyze the mutual dependency
among 3D neighboring camera sensors, justifying the fea-
sibility of application of the bond-percolation theory in 3D
WCSNs. Finally, using the critical sensor density derived,
we can develop the NEW-LEACH-based scheme to derive
the optimal probability of selecting cluster heads, minimizing
power consumption and interference.

The rest of this paper is organized as follows: Section II
establishes the FOV model for 3D WCSNs and the bond-
percolation model. Section III formulates the coverage prob-
lem to derive the optimal density for exposure path and mea-
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Fig. 1. 3D omnidirectional model for WCSNs.

Fig. 2. 3D directional model for WCSNs.

sures the mutual dependency among 3D neighboring camera
sensors. Section IV uses the NEW-LEACH to determine the
threshold for cluster head selection. Section V validates and
evaluates our proposed schemes by simulations. The paper
concludes with Section VI.

II. THE SYSTEM MODEL

There are two types of 3D sensing models: the omnidi-
rectional model and directional model, shown in Fig. 1 and
Fig. 2, respectively. Our system models are under the following
assumptions: (1) All camera sensors have the same sensing
radius. For directional sensing model, all sensors also have
the same sensing angle 2θ, and the same field of view (FOV)
as shown in Fig. 2; (2) All sensors transmit at the same power
level; (3) Each camera sensor uses 1 unit of energy to transmit
or receive 1 unit of data.

A. 3D Sensing Model
The 3D omnidirectional model is based on the sphere model

for omnidirectional WCSNs. Let Lc(xc, yc, zc) denote the
location of the camera sensor. Rs denotes the sensing radius.
As shown in Fig. 1, the omnidirectional model for a camera
sensor is a 3D sphere space centered at Lc. A target point
Lt(xt, yt, zt) in the 3D space is said to be covered if

|LcLt| ≤ Rs (1)

where the Euclidean distance between |LcLt| is

dct =
√

(xt − xc)2 + (yt − yc)2 + (zt − zc)2. (2)

In addition, the radius of the blind area is denoted as Rf . If
the distance between the target and the sensor node is less than
Rf , the target cannot be detected. From the omnidirectional
model, we can derive the sensing volume Vo as follows,

Vo =
4π
(
R3

s −R3
f

)
3

. (3)

The 3D directional model is based on the FOV in WCSNs.
As shown in Fig. 2, FOV for directional sensing model
is defined as a cone with 4 tuples

(
Lc, Rs,

−→
Vc, θ

)
, where

Lc(xc, yc, zc) is the location of the camera sensor; Rs is the
sensing radius;

−→
Vc is the sensing direction; {−θ, θ} is the offset

angle on both sides of
−→
Vc. In addition, the radius of the blind

area is denoted as Rf . A target is said to be covered if and
only if the following conditions hold:

1) |LcLt| = dct ≤ Rs;
2) the offset angle between

−−−→
LcLt and

−→
Vc is within [0, θ].

where dst is spesified by Eq. (2).
We can derive the directional sensing volume, denoted by

Vd, as follows,

Vd =
2π
(
R3

s −R3
f

)
(1− cos(θ))

3
. (4)

B. 3D Sensor Deployment Model

The sensors are distributed as a stationary Poisson process.
The location of each sensor is identically and independently
distributed (i.i.d.). Let k be a positive integer, N denote the
number of camera sensors deployed in the 3D sensing space
V . The probability that there are k sensors in V is given by

Pr {N = k} =
(λ∥V ∥)k

k!
e−λ∥V ∥ (5)

where ∥V ∥ is the total volume of the 3D sensing space V .
The offset angle θ is uniformly distributed over [0, π].

C. The Bond-Percolation Model For Exposure-Path Preven-
tion

As defined in [1], a continuous curve from one side of the
deployment space to the opposite side is said to be an exposure
path if the continuous curve belongs to a 3D vacant space
which is not covered by any sensing sphere. According to
percolation theory, we can define the critical density of camera
sensors, denoted by λc. If λ ≤ λc, there exists exposure paths
in the sensor-deployed space a.s. We model the exposure-path
problem by a 3D lattice with the length 2a of each side, see
Fig. 3. The lattice contains M3 vertexes with M vertexes along
each side of the lattice, denoted by Ve = {v1, v2, ..., vM3}.
Let ei,j denote the edge between two vertexes vi and vj ,
where i, j ∈ [1, 2, ...,M3]. Any two vertexes connected by
a common edge are called the neighboring vertexes. We use
two definitions to characterize whether edge ei,j is open or
closed, which can yield the lower bound and upper bound of
the critical density for 3D WCSNs.

Definition 1: L-closed/L-open Edge. If at least one point on
the edge ei,j is covered by a sensor network, then ei,j is said
to be an L-closed edge. Otherwise, ei,j is called L-open.

Definition 2: U-closed/U-open Edge. If all points on the
edge ei,j are covered by one camera sensor network, then ei,j
is called as U-closed. Otherwise, ei,j is called U-open.

Define two functions to determine whether ei,j is closed
or not. For L-closed/L-open edges, L(ei,j) = 1, if at least
one point on ei,j is covered; Otherwise, L(ei,j) = 0. For U-
closed/U-open edges, U(ei,j) = 1, if all points on ei,j are

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

306



3

Fig. 3. 3D lattice for WCSNs.

covered; Otherwise, U(ei,j) = 0. Then, derive the following
two probabilities for L-closed edges and U-closed edges:{

pl , Pr {L(ei,j) = 1},
pu , Pr {U(ei,j) = 1}.

(6)

Therefore, we can use L-coverage lattice to derive the lower
bound of the critical density of camera sensors, and U-
coverage lattice to derive the upper bound for the critical
density of camera sensors.

III. THE CRITICAL DENSITY OF CAMERA SENSORS

We assume that the probability whether all edges are closed
or not is independent under bond-percolation theory. However,
pl(pu) of edge ei,j depends on p′ls(p

′
us) of the neighboring

edges in reality. We will analyze the dependency issues in
Section III-C. Define pc to be the percolation threshold. For
all p > pc, there exists one closed path extending from one
side to another, whereas for all p < pc, there exists no exposure
path. As proved in [6], percolation threshold pc for 3D lattice
is equal to 0.2488. Therefore, if pl < 0.2488, there exists
exposure paths; if pu > 0.2488, there is no exposure path. The
deployed camera sensor density denoted by λl for L-coverage
lattice and λu for U-coverage lattice are as follows,{

λl , sup{λ | pl ≤ 0.2488},
λu , inf{λ | pu ≥ 0.2488}.

(7)

Then, define the critical density, denoted by λc, of camera
sensors, satisfying the following inequations λl < λc < λu.

A. Critical Camera Sensor Density for Omnidirectional Model

Let tn be any point on edge ei,j . Define Si

⊔
Sj as follows:

Si

⊔
Sj ,

∪
∀tn∈ei,j

Sn (8)

where Sn is the sphere centered around tn with radius Rs, as
shown in Fig. 4; Si is the sphere centered at Vi and Sj is the
sphere centered at Vj . Assuming that all points on edge ei,j
are not covered if and only if there is no sensor node within
the space Si

⊔
Sj , we derive the following equations [1]:{

λl = − log(1−pl)
V1

,

λu < − log(1−pu)
V2

(9)

Fig. 4. The covered volume for edge ei,j .

where {
V1 = 4

3πR
3
s + 2π

aR2
s

M ,

V2 = 8
∫
Si

∩
Sj

dv⃗
(10)

where we define dv⃗ , dxdydz; V1 is the volume of Si

⊔
Sj

and V2 is the volume of Si

∩
Sj . Thus, we can derive the

lower and upper bound for critical density, denoted by λo
c of

omnidirectional camera sensors in as follows:
− log(1− pl)
4
3πR

2
s +

4aRs

M

< λo
c <

− log(1− pu)

V1
. (11)

B. The Critical Camera Sensor Density for Directional Model

Suppose there is a directional camera sensor at point
Lc(x, y, z) in Si

⊔
Sj . A sphere centered at Lc with radius

Rs intersects x-axis at point D1(x−
√
R2

s − y2 − z2, 0, 0) and
D2(x+

√
R2

s − y2 − z2, 0, 0). Let d1 = x−
√

R2
s − y2 − z2

and d2 = x +
√
R2

s − y2 − z2. Define ⟨⃗a, b⃗⟩ to be the angle
between a⃗ and b⃗. Then if ei,j is L-closed, we can derive the
following equations [1]:

λl =
− log (1− pl)∫

Si

⊔
Sj

(
1− p

(1)
n

)
dv⃗

(12)

where we can further derive the probability that a directional
camera sensor in Si

⊔
Sj cannot cover any point on ei,j ,

denoted by p
(1)
n , as follows:

p(1)n =



2π−2θ−⟨−−→Lcvi,
−−−→
LcD2⟩

2π , if d1<− a
m and |d2|< a

M ;
2π−2θ−⟨−−−→LcD1,

−−−→
LcD2⟩

2π , if − a
m <d1<d2<

a
M ;

2π−2θ−⟨−−→Lcvi,
−−−→
Lcvj⟩

2π , if d1<− a
m and d2>

a
M ;

2π−2θ−⟨−−−→LcD1,
−−−→
Lcvj⟩

2π , if |d1|< a
m and d2>

a
M .

(13)
Then, if ei,j is an arbitrary edge in U-coverage lattice in
directional WCSNs, we have the following equations [1],

pu > 1− exp

(
−λu

∫
Si

∩
Sj

(
1− p(2)n

)
dv⃗

)
(14)

where the probability p
(2)
n that the directional sensor in Si

∩
Sj

cannot cover any point on ei,j is derived as follows:

p(2)n =

{
1, if ⟨

−−→
Lcvi,

−−→
Lcvj⟩ > 2θ;

2π−2θ−⟨
−−→
Lcvi,

−−−→
Lcvj⟩

2π , otherwise.
(15)
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Thus, we can derive the lower and upper bound for critical
density, denoted by λd

c , of camera sensors as follows:

− log(1− pl)∫
Si

⊔
Sj

(
1− p

(1)
n

)
dv⃗

< λd
c <

− log(1− pu)∫
Si

∩
Sj

(
1− p

(2)
n

)
dv⃗

.

(16)

C. Dependence Among Neighboring Edges

In reality, pl(pu) of edge ei,j is not independent of p′ls(p
′
us)

of its neighboring edges. However, in bond-percolation theory,
whether all edges are closed or not is independent. Thus,
we also need to model and analyze the dependency among
neighboring edges. In our 3D model, without loss of generality,
we consider edge e1,2’s dependency on its neighboring edges.
In particular, edge e1,2 has 5 neighboring edges e1,3, e1,4,
e1,5, e1,6 and e1,7. According to [7] and [8], we define n-
variable mutual entropy which quantifies the amount of mutual
information that is shared among n random variables. The n-
variable mutual entropy is defined as follows:

I(X1, X2, ..., Xn)

=
∑

x1∈φ,x2∈φ,...,xn∈φ

PX(x1, x2, ..., xn) log
PX(x1, x2, ..., xn)∏n

i=1 PXi(xi)
(17)

where n-variable random vector X = (X1, X2, ..., Xn);
φ = {0, 1}; PX(x1, x2, ..., xn) is the joint probability mass
function (PMF) of X1, X1, ..., Xn and PXi(xi) is the marginal
PMF of xi, for i = 1, 2, ..., n.

For L-coverage lattice with n = 6, see Fig. 3. we define
PX(x1, ..., x6) = Pr {L(e1,2) = x1, ..., L(e1,7) = x6},
PX1(x1) = Pr {L(e1,2) = x1},
...

PX6(x6) = Pr {L(e6,7) = x6}
(18)

where x1, ..., x6 ∈ φ.
As for n-variable mutual entropy I(U(e1,2), ..., U(e1,7))

for U-coverage lattice, the definition is similar, but we
use PY(y1, ..., y6) and PYi(yi) instead, where Y =
(Y1, Y2, Y3, Y4, Y5, Y6) and y1, ..., y6 ∈ φ.

We can calculate I(X1, X2, ..., X6) for our omnidirectional
model. From Eq. (10), for i = 1, ..., 6, we have{

PXi(0) = e−λV1 ,

PXi(1) = 1− e−λV1 .
(19)

where the value of V1 is determined by Eq. (11). Furthermore,
we have

PX(0, 0, 0, 0, 0, 0) = Pr

N

 ⊔
i=1,...,6

Si = 0

 . (20)

According to the identity for converting the joint distribution
to the product of conditional distribution and marginal distri-
bution, i.e., P (AB) = P (A|B)P (B), we can derive the joint
PMF of Xi , where i = 1, 2, ..., 6. When Rs = 10, a = 50,
and n = 100, we can observe from Fig. 5 that the maximal
value for I(L(e1,2), L(e2,3)) is about 3.2 and the maximal
value for I(U(e1,2), U(e2,3)) is about 3.3. Similarly, we can

Fig. 5. Analysis and comparison between I(L(e1,2), ..., L(e1,7)) and
I(U(e1,2), ..., U(e1,7)) for omnidirectional WCSNs

derive I(X1, X2, ..., X6) for directional model. Because of
the large-scale feature for 3D WCSNs, there are a large
number of camera sensors deployed in the entire sensing
space. The mutual dependency among neighboring edges is
relatively weak. Therefore, we can approximately apply the
bond-percolation theory in our 3D models.

IV. NEW LEACH ALGORITHM

LEACH algorithm has been used to achieve energy effi-
ciency in WCSNs for years. Compared with LEACH, NEW
LEACH algorithm considers the different weights among
residual energy, energy consumption rate and location infor-
mation, achieving better performance in saving energy and
reducing the interference between camera sensors in WCSNs.
However, all previous works directly use a random deployed
density λ to derive the threshold for cluster head selection.
Under the minimum exposure-path prevention probability con-
straint, the critical deployed density of camera sensors can be
applied in NEW-LEACH algorithm in our paper.

In NEW LEACH algorithm, assuming all nodes are homo-
geneous, at first all nodes has the same probability to become
a cluster head. Let ξ(g) denote the threshold whether node g
can be selected as the cluster head. The decision is made at the
beginning of each round by each node g ∈ G independently
choosing a random number in [0, 1]. If the random number is
less than the threshold ξ(g), then node g becomes a cluster
head in the current round. The threshold ξ(g) is derived as
follows,

ξ(g) =



pωW1
Ec

E0

1− pω

(
rmod

(
1
pω

)) +
pωW2e

−Eb−Ec
E0

1− pω

(
rmod

(
1
pω

))
+

pωW3

(
d2
a

d2
m+d2

i

)
1− pω

(
rmod

(
1
pω

)) , if ∀g ∈ G,

0, otherwise
(21)

where G is the set of non-selected nodes in the previous
rounds; r is the current round number per epoch; pω is
the probability for a sensor to become a cluster head; E0,
Ec, and Eb are the initial energy, current energy and the
energy in the former round comparing to the current round
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of the sensor node, respectively; da and dm are the average
distance and the maximal distance from the sensor nodes to
the processing center, respectively; di is the distance from
the current selected node to the processing center; (W1,W2,
W3) is the weight value for the residual energy, energy
consumption rate and the location information. As shown
in [3], the optimal combination of weights (W1,W2,W3) is
(0.111111, 0.000528, 0.88836).

A. Power Saving
We characterize the entire supervisory space as a cube with

the side length of 2a, and the processing center is in the center
of the cube. Let ∆i denotes the length of the segment from
sensor i to the processing center. Let λ = λo

c or λ = λd
c , which

we derived in Section III, we can get

E[∆i|N = n] =

∫
V

√
x2 + y2 + z2

(
1

8a3

)
dv⃗

= 0.961a (22)

where (x, y, z) is the location of the sensor node.
The total power P used by the sensors to communicate 1

unit of data to the cluster head is

E[P] = E[E[P|N = n]]

= E[N ]

(
1− pω

2Rc

√
pωλ

+
0.961pωa

Rc

)
= λ∥V ∥

(
1− pω

2Rc

√
pωλ

+
0.961pωa

Rc

)
. (23)

where Rc is the radio distance of the sensor node. Then, taking
the first derivative over Eq. (24) yields

∂E[P]

∂pω
= −

√
λ∥V ∥

4Rc
√
pω

−
√
λ∥V ∥

4Rcp
3
2
ω

+
0.961λ∥V ∥a

Rc
. (24)

The second derivative over Eq. (23) yields

∂2E[P]

∂p2ω
=

√
λ∥V ∥

8Rcp
3
2
ω

+
3
√
λ∥V ∥

8Rcp
5
2
ω

> 0. (25)

Thus, the only real valued root p∗ω for Eq. (24) is

p∗ω =

{
1

11.532a
√
λ

+
0.109

a
√
λ 3

√
2+398.961a2λ+11.532

√
3λ(398.961a2λ+4)

+

3

√
2+398.961a2λ+11.532

√
3λ(398.961a2λ+4)

11.532a
√
λ 3
√
2


2

.

(26)
which will be used in Eq. (21) by setting pω = p∗ω .

B. Mitigation of Interference
NEW-LEACH algorithm can also mitigate the interference

among massive sensor nodes, which is measured by the signal-
to-interference-plus-noise ratio (SINR) [9] [10]. We define
SINRi,j between node i and node j as follows:

SINRi,j =
PTL(di,j)

σ2 + γ
∑

k ̸=i,j PTL(di,j)
(27)

where PT is the transmit power; σ2 is the power of the
background thermal noise; γ is the inverse of the processing
gain of the system, depending on the technology applied in the
system, γ 6 1; L(di,j) is the path-loss function for wireless
channel, where di,j is the Euclidean distance between node i
and node j. Then, L(di,j) = |di,j |−α, where α is the path-loss
exponent, with 3 6 α 6 6.

In addition, according to NEW-LEACH algorithm discussed
above, we can increase the value of SINR by clustering sensors
into groups. Because in this case, all the sensor nodes will
only communicate data with cluster heads, then cluster heads
will transmit the aggregated data to the processing center.
We define the maximum possible distance Rmax at which a
process point can be the away from its nucleus in a Voronoi
cell. Define k to be the number of hops away from the cluster
head. Setting k = Rmax/Rc [4]. Let Rρ be the radius of the
minimal ball centered around the nucleus in the the Voronoi
cell, and PR = Pr {Rρ > R}. Then as it proved in [11], the
value of Rmax is

Rmax =

√
−0.917λ log

(
PR

7

)
p1

. (28)

Set PR to be very small in order to ensure small energy
consumption. According to this, the Euclidean distance be-
tween node i and node j cannot be larger than Rmax. That
is, di,j 6 Rmax. The path-loss function should satisfy that
L(di,j) > R−α

max. Thus, we have larger received power for
incoming signals of interest.

V. SIMULATION EVALUATIONS

We use MATLAB simulation to evaluate and validate our
proposed schemes. The parameters we use in our model are
as follows: Rs = 10m, Rf = 0.05m, θ = π/6, V = 1003m3,
E0 = 0.5J , Γ = 1, α = 3, PR = 0.01 and B = 100. Fig. 6
shows the relationship between λ and the probability that ei,j
is closed in omnidirectional sensor network. From Fig. 6, we
can observe that the critical density is λl = 0.00007 and
λu = 0.00008. Because λ = N/∥V ∥, subject to the minimum
exposure-path prevention probability constraint, the optimal
number of nodes that should be deployed in the entire sensing
space is equal to 80 in 3D omnidirectional WCSNs.

To validate the critical deployed density λc in our schemes
do reduce the total energy consumption, we compare the
residual energy with different deployed densities. Fig. 7 shows
that as the deployed density λ increases, the average residual
energy for each node decreases. It implies that when we apply
our critical deployed density in NEW-LEACH, we are able to
maximize the residual energy. For mitigation of interference,
we observe that there is an 11dB gap between the graphs when
the interferences are neglected (γ = 0) or not (γ = 0.01),
as shown in Fig. 8. This implies that we need to consider
the impact of the interference. Therefore, all the simulation
results above show that our proposed schemes can optimize
the tradeoff between power consumption and coverage rate
over 3D WCSNs. From Fig 9, we can observe that SINR
decreases while λ increases. The difference between each plot
reduces gradually when λ increases, which implies when λ
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Fig. 6. Relationship between λ and the probability that ei,j is closed in
omnidirectional sensor network.

Fig. 7. Average residual energy for each camera sensor node.

approaches a saturation point asymptotically, SINR finally
remains unchanged when λ is above the saturation point.
Therefore, we can observe that the critical deployed density λ
can reduce the interference among sensor nodes.

VI. CONCLUSIONS

We proposed the 3D percolation theory-based exposure-path
prevention scheme for optimizing the tradeoff between power
consumption and coverage rate over clustered WCSNs. We
applied and extended the bond-percolation theory to derive the
optimal density of camera sensors deployed using the Poisson
distribution in 3D WCSNs subject to the minimum exposure-
path prevention probability constraint. We also applied the mu-
tual entropy to analyze the dependency among 3D neighboring
camera sensors, justifying the bond-percolation theory in 3D
WCSNs. Finally, we applied NEW-LEACH architecture into
our 3D WCSNs for power saving and interference mitigation.
The conducted extensive simulations show that our proposed
schemes outperform the other existing schemes in optimizing
the tradeoff between power consumption and coverage rate
over 3D WCSNs.
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