Hierarchical Cooperative Caching in Mobile
Opportunistic Social Networks

Yunsheng Wang Jie Wu Mingjun Xiao
Dept. of Computer Science Dept. of Computer and Info. Sciences School of Computer Science and Tech.
Kettering University Temple University University of Science and Tech. of China,
Flint, Ml 48504 Philadelphia, PA 19122 Hefei, China
Abstract—A mobile opportunistic social network (MOSN) is a Selfish in narrow sense Unselfish in narrow sense
new type of delay tolerant network (DTN), in which the mobile
users contact each other opportunistically. While cooperative Self (A) Friends (B) Strangers (C)
caching in the Internet has been studied extensively, cooperat Selih i gonera FETR—

caching in MOSNSs is a considerably different and challenging)) ;) - i
problem due to the probabilistic nature of contact among the Fi9- 1. An illustration of hierarchical cooperative cadm, B, and C

mobile users in MOSNSs. In order to reduce the total access delay, /lUStrate the size of each component.

we let the mobile users cooperatively cache these data items .

in their limited buffer space. We balance between selfishness as follows. Data sources transfer some data copies to some
(caching the data items according to its own preference) and nodes calleadtache nodes. Each cache node selects a subset of
unselfishness (helping other nodes to cache). The friends with5|| the data items to cache, due to its limited storage. Other
higher contact frequency may share similar interests, hence, ,qaq can access data items from cache nodes instead of data
caching the data items for friend users can lead to some benefit.
In this paper, we present a hierarchical cooperative caching SOUrces. Consequently, access delay can be reduced betause
scheme, which divides the buffer space into three components: the service provided by these cache nodes, while cache costs

self, friends, and strangers. In the self component, mobile users are increased; consistency should also be maintained af dat
cache the data items according to their preference. In the friensl jtems change.

component, mobile users help their friends to cache some data
items. In the strangers component, mobile users randomly cache In MOSNSs, the social relationship between the mobile

the remaining data items. We formally analyze the access delay Users becomes much more important. The individuals with
of the proposed scheme. The effectiveness of our approach ishigher contact frequency may have similar interests [7]ctvh
ve:ifigd tk_}_rough thensiv% rlI?a| world trage'dfiverr‘l_SimU|ati8?5- means that they have similar high-frequency access dats ite

naex lerms—AcCcess delay, cooperative caching, moblle op- iNAi i i ; i
portunistic social networks (MyOSNSS), Zipf-like distri%ution. P Thereforg, d§5|gn|ng an 'effICIent. cooperatlve cachingegsa .

by considering the social relationship between the mobile
users, can improve the performance dramatically.
In this paper, we propose a hierarchical cooperative cgchin

Delay tolerant networks (DTNSs) are characterized by intescheme, which divides the buffer storage into three key com-
mittent connectivity and limited network capacity, in whic ponents:self, friends, and strangers, as shown in Fig. 1. In
most of the time there does not exist an end-to-end pdtte self component, the mobile nodes will cache its most
between some or all of the nodes in the network. With tHeequently accessed data items. The mobile nodes with highe
popularization of smart phones, mobile opportunistic alocicontact frequency are considered as friends to the cachesnod
networks (MOSNSs), a new type of DTN, becomes popular. [fhe cache nodes will help the friends to store the friends’
MOSNSs, the individuals carrying smart phones walk arourdost frequently accessed data items infitends component.
and communicate with each other via Bluetooth or WiFi, wherinally, each mobile node randomly selects a subset of the
they are in each other’s transmission range. remaining data items into itstrangers component.

Because of the short contact duration and limited bandwidth Our detailed contributions are listed as follows: (1) To
only a small amount of data can be transferred during eaatidress the problem of cooperative caching, we exploiasoci
contact in MOSNSs. Also, the slow development of the batterglations among nodes. We define the relationship between
and limited cache space of the mobile devices restricts thairwise nodes based on the contact frequency among the
message flooding between the mobile devices. Cache plagmbile nodes. (2) In order to reflect the selfishness and
ment is an important factor in improving the performance afnselfishness, we divide the cache space into three key com-
data access in such a network environment. ponents: self, friends, and strangers. In each componeant, w

Mobile users may cache data items in a cooperative wayitwestigate different data caching and replacement m@dici
improve the efficiency of data access. Recently, there areeso(3) We formally analyze the total access delay of all mobile
literatures focusing on the cooperative caching problem imodes for the data items. (4) We develop a novel hierarchical
DTNs [1-6]. A typical strategy in cooperative caching worksooperative caching scheme in MOSNs, and demonstrate that

I. INTRODUCTION

it can significantly improve the performance of data accessThe objective of the cache placement problem is to deter-

through trace-driven simulations. mine which data items should be cached in which nodes,
The remainder of this paper is organized as follows. lim order to minimize the total access delay of all nodes

Section I, we review the related work. Section Ill descsibein the network. Therefore, the cache placement problem

our scheme in detail. Section IV analyzes the the averaggydebecomes how to select a set of cache node 3dts=

for the node to request the data item in our scheme. Sectio{ {M; }, {Ms}, ..., {M,, }}, where each mobile node W/}

focuses on the simulation and evaluation. We summarize tteches a copy of data itedy. Hence, we represent the cache

work in Section VI. placement problem as the following optimization problem:
n m
Il. RELATED WORK min > (f(4,4) x (i, 5)) 1)
Research in DTNs has attracted a lot of attention in the =1j=1 5
research community recently. Seyeral solutions have pm}n p St {{M;}|N; € {M;}}] < {J YN, € V.
posed to handle storage congestion control problems in DTNs l

most of which are based on message dropping policies [8, 9lThe constraint of this optimization problem is the buffer
or simply message migration policies [10, 11]. However, igpace constraint, which means ttétcan appear in, at most,
these kinds of mechanisms, the data access delay will ismre?% sets of M.
dramatically. Therefore, cooperative caching schemes hav Thig optimization problem can be viewed asfaxility
been proposed for the DTN environment [1-3, 12]. Theycation problem [14], which has been proved to be an NP-
improve the data accessibility from infrastructure ne&®or hard problem. In the general facility location problem,réhe
such as WiFi Access Points (APs) [2], or the Internet [1}onsists a set of potential facility sites where a facilignde
as well as peer-to-peer (P2P) data sharing among the mobjisned, and a set of demand points must be serviced. The
users [3]. goal is to pick a subset of facilities to open, to minimize
Social-based cooperative caching has been studied rgcefite sum of distances from each demand point to its nearest
in DTNs [4, 5, 13]. In [4], Zhuo et al. propose a centralityfacility, and plus the sum of opening costs of the facilities
metric to evaluate the caching capability of each node withpur problem, the caching nodes are considered as the yacilit
a community, which is used to determine where to cache. Théyes. The mobile nodes, which require access to the daa, ar
also consider the impact of the contact duration limitatbon considered as demand points. The distances from each demand
cooperative caching. In [5], Zhang and Zhao use social ngbint to its nearest facility are the waiting times requited
work analysis to classify and study different diffusionsstes the nodes to receive the data. The limited buffer space is the
based on the “homophily” phenomenon in social networks. bbnstraint of our optimization problem.
this paper, we consider the mobile users’ social role fran it o
own perspective locally, to hierarchical cooperative eattte B. Motivation
data items in different components of its buffer. In MOSNSs, there is a key conceptommunity. The nodes
in the same community tend to contact more frequently, for
which we call them friends.” Friends tend to have similar
In this section, We first introduce the network model for ounterests [7]. Hence, we take advantage of such friends’
work, then we highlight our motivation of cooperative camhi behavior to perform the cooperative caching, which enables
in MOSNSs. The data item placement scheme is presented neiita sharing within a community. As we discussed before, the
Finally, we describe the cache replacement policy. objective of our work is to minimize the data access delay for
the requesters. If the nodes can help their friends to cdwhe t
A. Network Model data items, the data access delay can be reduced according to
In MOSNS, the opportunistic contacts are described e community property and their opportunistic contacts.
network contact grapli’(V, E), whereV is the set of mobile In this paper, we introduce a novel idea that the cache
nodes in the network, anfl is the set of edges, with each edgés divided into three hierarchical components!f, friends,
in E' representing the opportunistic contact between pairwig@d strangers, as shown in Fig. 1. From the narrow sense,
nodes. In this paper, there arenobile nodes in MOSNS{ = the self component reflects the selfishness of the nodes. The
{N1, N3, ..., N,}), andm data items D = {di,ds, ...,d,,}). friends and strangers components are distributed for other
We assume that the size§ 6f all data items are the samenodes, which shows the side of its unselfishness. In mobile
Also the size §) of the buffer space of each node is the samepportunistic social networks, friends group together as a
The data item can be updated when the mobile nodes acasssmunity. Therefore, in general, self and friends comptse
the Internet via WiFi or WIMAX networks. Mobile nod&; are considered to show the selfishness of the nodes.
requests the data itedy with the frequencyf (i, j). Lett(s, j)
denote the waiting time for nod®; receiving the data item C- Data Item Placement
d; from its own cachet(i, j) = 1), or another nodéV,, which In our proposed hierarchical cooperative caching scheme,
caches this data itent((, j) is the inter contact time betweenwe treat the data items with different caching schemes, in
N; and Ny). terms of selfishness and unselfishness, locally.

I11. HIERARCHICAL COOPERATIVE CACHING

Algorithm 1 Hierarchical Cooperative Cache Replacement jtem. From [15], we know thaf (i, j) has a “cut-off” Zipf-like
/+ When cache nod&V; is full, and receives a new datadistribution given by

item d;. */ 0
if d; belongs to the self componerthen fli,g9) = 5 (2)
it f(i,5) > f(i,z), d, is the data item cached iW; J
with the smallest access frequentyen where)
d; replacesd,. moq\
else Q= <Z W ®3)
k=1

if d; belongs to the friends componetiten

it > f(k,j) >3 f(k,2), d. is the data item cached Hence, the probability (i, j) of a request for the'th pop-
in N; with the smallest access frequency for all itg|ar data item by, is proportional to-;, where0 < 3 < 1.
friends V.. then /

d; replacesd,. B. Data Access Delay
else Here, we will focus on calculating the average data access
if d; belongs to the strangers componehen delay time ((i, j)). We assume that the system has run many
Randomly replace a data item. rounds, and it has entered into a stable state. Moreoveretwe |

I, denote the set of data items that nadgis interested in.
The setl; can be determined by the Zipf-like distribution of
« In the self component, each mobile node caches/the the frequencies for nod®; to request the data items. We let
most frequently accessed data items, so that it can access) denote the set of friends of node, and letF+ (i) denote
these data items with the minimum delay (we assume thise set of friends of nod’;, as well as nodeV;, itself. We
delay is 1).A is the size of the self component. also letr denote the average repeated number of a data item in
« In the friends component, each node will store fH2| the nodes, and assume that the average request frequency for
most frequently accessed data items from its friendgach data item to be requestedpisThese values also can be
point of view, so that its friends can access these iterggtermined by the Zipf-like distribution of the frequersier
from this cached node with short delay.is the size of each node to request the data items. In addition, we assume
the friends component. that the inter contact time of a mobile node to its friends and
« In the strangers component, each mobile node randondffangers follows exponential distribution with mean tirhe
selects| 7| data items from the remaining ones to cachgyng L respectively [16]. Now, we consider the calculation in
whereC is the size of the strangers component. four cases as follows.
The first case is that the data itedp has been cached in

D. Cache Replacement
Caching locations of the data items are dynamicall adq'ijstQOdeNi' There are three subcases:
N9 ' . y ically 1) Data itemd; is cached in the self component of; as

by caphe rgplacement. Wher) the buffer is .fuII, after the NeY interested data item. Here, the probability #hais cached
data item is received, we first check which component |

o . in N; is % -1,¢7,, Wwherel,c;, is an indicator function to
belongs to. If it is the most frequently accessed data item,. " > Ikl €L jeli

. S . i hetherl; i i i ; e
for itself, it will compare the access frequency with theadatmdlcate whethetl; is an interested data item of;, and 1]

items in the self component and replace the lowest one.df tf'\? the average probability of an interested data itemNorto
£ cached in its self component.

received data |tem bel'on_gs tq the friends component, it w 2) Data itemd; is cached in the friends component &f
replace the data item in its friends component by comparin <

its access frequency to the friend nodes. Otherwise, if Hta da% an m_terested d_ata ftem M‘ N frlenc_is. In this subcase, the
: . robability thatd; is cached in the friends component &
item belongs to the strangers component, it randomly replat? b

one data item in the strangers component. The algorithmfoﬂU{c.eFmtfk \.'1dj.€U’EEF<“# ’tr\llve;er.eljeu.’cet””[kt IZ Zntlnqtlcatofr
the cache replacement policy is shown in Algorithm 1. unction o indicate whethed; 1S an interested data item for

the friends ofNV;, andm is the average probability of
IV. ANALYSIS an interested data item for the friends §f to be cached in

A. Request Frequency its friends component.
In [15], the authors found that the web request follows 3) Data itemd; is cached in the strangers component of

Zipf-like distribution, with a small portion of the webs giegy i- In this subcase, the. probalilhty tha} is cached in the
the most requests. Therefore, in this paper, we use the Zia{angers com.ponen'F a)f%» IS W'lﬂuk_gf(i)]k’ where
like distribution as the data request pattern. Ligu, pi e 1S @n indicator function to indicate whether
We only consider the frequency for a node to request all dafa iS not an interested data item for the nodesfir (i),
items. Moreover, we lef (i, j) be described by the probability and (S| is the average probability of an interested
that nodelN; requests the data itea) in each data request.data item for the friends ofV; to be cached in its strangers
Let all the data items be ranked in order of their popularitgomponent. In addition, the delay for nod& to access the

where data itemi; is the j’th most frequently requested datadata itemd; in this case isl. Denote the total probability

and average data access delay for this casé’asnd t;, The cache replacement policies are different for these

respectively. Then, we have: caching schemes above. For the Random Cache scheme, the
a b data item will be replaced randomly when the cache space
P = m~1jeu+ﬁ~ljeukg@1k+ is full. For Selfish Cache and Unselfish Cache schemes, the
! ‘ keF() Tk cache replacement policy will vary, according to the poptya
m'lj%ukewm[“ of the data items. . _ .
,) 20 @) In this paper, the following metrics are used for evaluation
1 = 1.

« Data access delaythe average delay for receiving the
The second case is that the data itéhas been cached in request data item.

a friend node ofV;. There are also three subcases, i.is « Successful ratio the ratio of queries being satisfied with

cached in the self component, the friends component, and the the requested data item within the deadline.

strangers component of the friend nodes, respectivelyofeen « Overhead the average number of data copies being

the total probability and average data access delay for this cached in the whole network.

case asP, andts, respectively. By using the same analysigl Smulation Setting

we discuss in the first case, we have: W i . . d hi hical
, , e compare the performance of our proposed hierarchica
(a+b)|F'(0)] [E (@)

Py= LjeUperm it LigU, s Iu> cooperative caching scheme with other three schemes we
| Uker) Il | Ukgr+ (i) Ikl PO discussed above, on tihefocom2006 trace, which is collected

ty = i. () by the computer laboratory at the University of Cambridge in
TA the Haggle project [18], anMIT reality mining trace, which

Note that the data item is repeated byimes. The delay is gathered by the MIT reality mining project [19].
for this case is forV; to access any one of them. Thus, the In all experiments, the first half of the trace is used for the
average data access delay%smultiplied by%. learning process, which is for the accumulation of the net-
The third case is that the data itetn has been cached in awork information, the process of distinguishing friendenfr
stranger node ofV;. Since the average request frequency faitrangers, and the process of learning data item preference
each data item ig, the average probability for the data itenof the other nodes. The data generation and requests happen
to be cached in the strangers®f is M. Denote the during the second half of both traces.

total probability and average data access delay for this aas [N the Infocom2006 trace, there are 78 participants with
Py andts, respectively. Then, we have: Bluetooth embedded iMote devices to record their contacts

~ Y during a 4-day conference. There are 128,979 internal ctsta
pgzw’ tgzi_ (6) among these participants. In the MIT reality mining trace,
n A there are 97 participants with Bluetooth embedded cellphon
The fourth case is that the data itein has been cachedto record their contacts. The duration of the MIT reality inin
in any node.N; receivesd; through WiFi or WiIMAX from trace is 246 days. It records 822,626 internal contacts gmon
the APs, if its request has not been satisfied in a predefing@se participants.
waiting time7". Then, the corresponding total probability and In the simulation, we assume that the lifetime of the gener-
average data access del#y, andt,, are: ated data item is infinite. The period for data item genenatio
is set to27', which is according to the request satisfaction
Pi=1=P—P=Ps ta=T, (") deadline in Section IV-B. The data request pattern of each
Based on the above analysis, we can get the average datidbile node follows Zipf-like distribution, as we discudse
access delay time(i, j) =Py - t1+Ps - to+P3 - t3+ Py - t4. in Section IV-A. Each request has a finite time constrdint
Every timeT, each nodeN; determines whether to request

V. SIMULATION data itemd; in probability P;(j), according to Eq. 2, and we

A. Comparison Scheme and Evaluation Metrics set3 to 0.5. After timeT, if the requested data item has not
In the simulation, we compare our proposed scheme wiig¢en received, we suppose an unsuccessful data request, and
the following caching mechanisms in MOSNS: the mobile node will download this data item from the APs

Random Cache in which every request node caches theirectly. Hence, in this situation, the data access deldy.is
received data items in its cache space to facilitate datesacc We assume that the data item size is the same as 20MB,
in the future. and the caching buffer size of the mobile nodes is adjusting

Selfish Cachewhich is similar as CacheData [17] in mobilgin range [180M B,900M B] for comparison purposes. We
ad-hoc networks. The mobile nodes cache the pass-by degapare the performance of the comparison schemes in the
items, according to their popularity in its own point of view following four categories:

Unselfish Cache in which every mobile node only caches 1) Varying data request frequency comparing the per-
the data items for other nodes, according to their knowledge formance of different values of.
about the data items’ request frequency of their encoutitere 2) Varying buffer space: comparing the performance of
nodes. different values of the buffer space of each node.

—=— Random Cache
—e— Selfish Cache
—— Unselfish Cache

5 - | v Hierarchical Cache

—=— Random Cache
gol |—® Selfish Cache
—a— Unselfish Cache
70 + [—¥—Hierarchical Cache|

200

—=— Random Cache
—e— Selfish Cache

150 |—A— Unselfish Cache
—v— Hierarchical Cache|

100 -

Overhead

50 -

Data Access Delay (hours)
Successful Ratio (%)

A\
o«

1 1 1 1 1 L L L 1 1 1 1 1
12 24 168 720 2160 12 24 168 720 2160 12 24 168 720 2160
Request Satisfaction Deadline (hours) Request Satisfaction Deadline (hours) Request Satisfaction Deadline (hours)

(a) Data access delay (b) Successful ratio (c) Overhead
Fig. 2. Comparison of the performance with different varyiregadrequest frequency.

3) Varying sizes of each component in hierarchical It shows that when the buffer size becomes larger, more
cooperative caching schemecomparing the perfor- data items can be cached, as shown in Fig. 3(c). Hence, the
mance under different sizes of each component in tldata access delay reduces and the successful ratio ingrease
hierarchical cooperative caching scheme. in Figs. 3(a) and 3(b). Whety increases from 180MB to

In the first two categories, we assume that the size of eathoMB, the data access delay of our proposed hierarchical

component in the hierarchical cooperative caching schameCPOPerative cache scheme decreases about 37.5%, and the
equal, of the total buffer size for each successful ratio increases from 47% to 63%. From Fig. 3(a),
. :

we find that our scheme can have 32% less delay, compared

with the selfish cache scheme, and 39% less delay than the

random cache scheme. Fig. 3(b) shows that our scheme can
1) Varying data request frequency: we first evaluate the increase the overall successful ratio by about 63%, 139%, an

different caching schemes in varying data request freqaencl68% compared with the slefish cache, random cache, and

in the MIT reality trace. We set the buffer size of thainselfish cache schemes, respectively. In Fig. 3(c), it show

mobile nodes §) to 540MB. Then, we adjust the data requeghat our scheme slightly increases the overhead compatad wi

satisfaction deadlinel{) from 12 hours to 3 months. the selfish cache and unselfish cache schemes. Our scheme has
Fig. 2 shows the simulation results with different valuel§ss copies of data items than the random cache scheme.

of 7. We find that the performance is mainly restrained by

the data request satisfaction deadline. It is clearly shgwi 3) Varying size of each component in hierarchical coop-

that our proposed hierarchical cooperative cache scheme Btive caching scheme: in this part, we will compare the

much better performance than any other schemes. As shdi@iformance of our proposed hierarchical cooperativeingch

in Fig. 2(a), our scheme has 33.5%, 38.2%, and 41.7% shorgeéheme with different sizes of each component, which can

delay than selfish cache, random cache, and unselfish calélécate the importance of all components in designing the

schemes, respectively. By comparing the successful ratioGaching scheme, in Infocom2006 trace.

. . . 0
Fig. 2(b), we find that our scheme can increase to 104/O’We compare four conditions of our scheme: the first one

147%, and 168% successful ratio, compared with selfish ¢ache

X , includes all components, and each oné isf the whole buffer
random cache, and unselfish cache schemes, respectively. 111y . .
ace 3, 3, 53); the second one only includes self and friends

. . . . S
'I:'g' Z(C.) showsdtha'i hlerar(r:]hlcgl cohqpre]zrgtlve cs;]lclhe Scﬁﬁgﬁemponents, and each one is half of the whole buffer space —
only requires moderate overnead, which 1S mucn lower 1 0); the third one includes self and strangers components,

random cache scheme. Whenis 12 hours, our scheme OnlYy andeach one is half of the whole buffer spacel-0, 3); the
hash2.7 ?]veragﬁ copies of eachh_dﬂtg item, wh;le the randgmﬂl one includes friends and strangers components, artd eac
(1:2‘5/ € scheme has 3.1 copies, which increases the cost by a H is half of the whole buffer space(6, %, %). We setT to
0. When?’ increases to 3 r_non_ths, the random cahe sche &r 4 hours, ands to 360MB or 720MB.

has 6.1 average copies, which increases the cost even more,
to about 22%, compared to our scheme. The major reasommhe simulation results are shown in Fig. 4. It shows that our
is that, in the random cache scheme, each node caches gheme, including all components, has the best performance
data item it receives until its buffer space is full. The s#lfi among all schemes, which means that all components are very
cache and unselfish cache schemes can reduce about l@Yortant in cooperative caching scheme. Fig. 4(a) shoas th
overhead, compared with our scheme. Since our scheme ff§sing the strangers component, the delay will increaseatab
much shorter delay and much higher successful ratio, wencla1%; missing the friends component, the delay will increase
that our scheme is more cost-effective. about 27.5%; and missing the self component, the delay will

2) Varying buffer space: we evaluate the performance withincrease about 44.8%. In Fig. 4(b), we find that missing one of
different buffer size constraints in the MIT reality trad&e the three key components, the successful ratio decreasas ab
set the data request satisfaction deadlifiptdp 1 week. Then, 14%, 16.5% or 34%, resepectively. For the average number of
we adjust the buffer sizeS) from 180MB to 900MB. copies, the four schemes perform similarly.

C. Smulation results

T T T T T
—=— Random Cache

—e— Selfish Cache

—a— Unselfish Cache

—v— Hierarchical Cache|

~
=)
T

T T

T T T
70 |-|—=— Random Cache 4
—e— Selfish Cache
—4&— Unselfish Cache v
60 |- |—v— Hierarchical Cache| o 4
-

T T T T

—=— Random Cache
—e— Selfish Cache

71 |—— Unselfish Cache
—v— Hierarchical Cache|

@

3
T
'

Data Access Delay (hours)
5
/
/
| /
Successful Ratio (%)

e

S 50 - v 4

a

3
T
'

40t 1

Overhead

©
S

T
'

N
S
T

o
T
'

L L
540 720
Buffer Size (MB)

(c) Overhead

L L L L 1 L
900 180 360 540 720 900 180 360

Buffer Size (MB)

1&0 3(;0 51‘10 720
Buffer Size (MB)
(a) Data access delay (b) Successful ratio
Fig. 3. Comparison of the performance with different bufferesi

T T T T 1 (1/3,1/3,173)
| o0 | [(1/3,1/3,173) 1 sr :&1/21/20)]
—1(1/3,1/3,1/3) 112,
[_1(1/2,1/2,0) I (1/2,0,1/2)
1(1/2,1/2,0)
_ B (1/2,0,1/2) 10,172,172
0 I (1/2,0,1/2) - [0z
LR 01212 || Tl 0.172.12)]
£ o
> 5 K]
© ©
£. | g St I
2 : :
¢] 3
3 K | Q
< S
] 7]
3
s i
sl i

w20 a0

2/360

2/720 4/360
T (hours)/S (MB)

4/360
T (hours)/S (MB)

2/360 2/720 4/720 2/360 2/720 41360

T (hours)/S (MB)
(a) Data access delay (b) Successful ratio (c) Overhead
Fig. 4. Comparison of the performance with different sizesaafhekey component.

D. Summary of Smulation [2] Y.Huang, Y. Gao, K. Nahrstedt, and W. He, “Optimizing fiktrieval in

. _ delay-tolerant content distribution community,”Rnoc. of IEEE ICDCS,
We evaluate our proposed scheme with other existing 2003/. Y

schemes in different network conditions. The performarfce d3] W. Gao, G. Cao, A. lyengar, and M. Srivatsa, “Supportingerative
all schemes are restrained by the buffer size and data rteun? caching in disruption tolerant networks,” Rroc. of IEEE ICDCS, 2011.
4

. . . . X. Zhuo, Q. Li, G. Cao, Y. Dai, B. Szymanski, and T. La Poftagcial-
frequency constraints. Our proposed hierarchical codpera based cooperative caching in dtns: A contact duration aampeoach,”

cache scheme performs best in all conditions, which reduces in Proc. of IEEE MASS, 2011. _ o
the data access delay and increases the successful ratio dph Y- Zhang and J. Zhao, “Social network analysis on datéusibn in

. y . . delay tolerant networks,” ifProc. of ACM MobiHoc, 2009.
matically. To evaluate the importance of all componentsun 0 (g] vy, wang, J. Wu, and W.--S. Yang, “Cloud-based multicastingh
scheme, we compare the performance by deleting one of the feedback in mobile social networks|EEE Transactions on Wireless
key components. The simulation results show that the schen}% Comnunications, vol. 12, no. 12, 2013.

. . J. J. Brown and P. H. Reingen, “Social ties and word-of-thaeferral
including all components, has the best performance. behavior,”Journal of Consumer Research, vol. 14, no. 3, 1987.

[8] X.Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performemodeling
of epidemic routing,"Comput. Netw,, vol. 51, no. 10, 2007.

In thi hi hical . h.r{9] A. Krifa, C. Baraka, and T. Spyropoulos, “Optimal buffer negement
n this paper, we propose a hierarchical cooperative cgeni policies for delay tolerant networks,” iRroc. of IEEE SECON, 2008.

scheme in mobile opportunistic social networks (MOSNS0] M. Seligman, K. Fall, and P. Mundur, “Alternative cusiads for con-
We dIVIde the Cache Space |nt0 three key Components Self, gestion control in delay tolerant netWOI’kS," Rroc. of the SGCOMM

friend d st In th If ¢ h .. workshop on Challenged networks, 2006.
rends, and strangers. In the selt component, €ac moq'i?] Y. Wang, J. Wu, Z. Jiang, and F. Li, “A joint replicatianigration-based

node caches its most frequently requested data items. In the routing in delay tolerant networks,” iRroc. of IEEE ICC, 2012.
friends component, each node helps its friend nodes to cadke S: Borst, V. Gupta, and A. Walid, “Distributed cachintparithms for

. . . . content distribution networks,” ifProc. of IEEE INFOCOM, 2010.
the data items which are the most popular for its frlendshmt[13] C. Boldrini, M. Conti, and A. Passarella, “Design andrfpemance

strangers component, the remaining data items are randomly evaluation of contentplace, a social-aware data disseiminaystem for

cached. We also investigate the cache replace policiesafibr e opportunistic networks Compuit. Netw., vol. 54, no. 4, 2010. ,
ivelv. Then. we formallv analvze the d4%4] D. S. Hqchbaum, ngrlstlcs for the fixed cost median peafbl

component, respectively. » W y y Mathematical Programming, vol. 22, 1982.

access delay by using the proposed hierarchical cooperatis] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S.n&ee “Web

caching scheme. Trace-driven simulation results showadhat caching and zipf-like distributions: Evidence and implioas,” in Proc.

. of IEEE INFOCOM, 1999.
proposed CaChmg scheme performs better than other SChGFﬂ%? A. Balasubramanian, B. Levine, and A. Venkataramani, RDbuting
Our future work will focus on the adaptive adjustment of the

as a resource allocation problem,” Rmoc. of ACM SGCOMM, 2007.
size of each component, based on the popularity of the moUiél L. Yinand G. Cao, “Supporting cooperative caching irnad networks,”
nodes in the network.

VI. CONCLUSION

IEEE Trans. on Mobile Computing, vol. 5, no. 1, Jan. 2006.
[18] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A.alDireau,
“CRAWDAD trace cambridge/haggle/imote/infocom2006 (v. 2@HB-
REFERENCES 29),” May 2009.
[1] M. J. Pitkanen and J. Ott, “Redundancy and distributed caching i#9] N. Eagle, A. Pentland, and D. Lazer, “Inferring sociahwork structure
mobile DTNs,” in Proc. of ACM/IEEE MobiArch, 2007. using mobile phone data,” iRNAS vol. 106(36), 2009.

