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Abstract—In this paper, we investigate effective capacity by
modeling a cognitive radio broadcast channel with one secondary
transmitter (ST) and two secondary receivers (SRs) under
quality-of-service constraints and interference power limitations.
We initially describe three different cooperative channelsensing
strategies with different hard-decision combining algorithms at
the ST, namely OR, Majority, and AND rules. Since the channel
sensing occurs with possible errors, we consider a combined
interference power constraint by which the transmission power
of the secondary users (SUs) is bounded when the channel is
sensed as both busy and idle. Furthermore, regarding the channel
sensing decision and its correctness, there exist possiblyfour
different transmission scenarios. We provide the instantaneous
ergodic capacities of the channel between the ST and each
SR in all of these scenarios. Granting that transmission outage
arises when the instantaneous transmission rate is greaterthan
the instantaneous ergodic capacity, we establish two different
transmission rate policies for the SUs when the channel is
sensed as idle. One of these policies features a greedy approach
disregarding a possible transmission outage, and the otherfavors
a precautious manner to prevent this outage. Subsequently,we
determine the effective capacity region of this channel model,
and we attain the power allocation policies that maximize this
region. Finally, we present the numerical results. We first show
the superiority of Majority rule when the channel sensing results
are good. Then, we illustrate that a greedy transmission rate
approach is more beneficial for the SUs under strict interference
power constraints, whereas sending with lower rates will bemore
advantageous under loose interference constraints. Finally, we
note that the methodology and the approach we consider in this
study can be easily applied into a more general cognitive radio
broadcast channel model with more than two SRs.

I. I NTRODUCTION

Due to ever-increasing demand for wireless spectrum prac-
tices, the concept of cognitive radios emerged as a means
to provide transmission solutions by furnishing the idea of
secondary users (SUs) in the system. Since then, different
complex cognitive radio scenarios have been investigated
from several research perspectives. For instance, cooperative
strategies for cognitive radio networks attracted significant
attention [1]. Because of the possible non-continuous presence
of the primary (legal) users (PUs) in the environment, the SUs
have to sense the transmission channel. Therefore, both non-
cooperative and cooperative channel sensing strategies have
become the focus of some of the cognitive radio research.

This work was partially supported by the European Research Council under
Starting Grant–306644.

Through cooperative channel sensing methods, multiple SUs
share their channel observation data with each other in order to
boost the channel sensing performance. In that perspective, in
an earlier study [2], an experimental research comparing coop-
erative channel sensing with different channel sensing methods
was conducted. Besides, it was shown that the probability of
missing the available channels can be made arbitrarily small in
independent and identically distributed (i.i.d.) fading channels
by increasing the number of the cooperating SUs, while at
the same time protecting the PUs in the environment from the
harmful interference induced by these SUs [3]. Furthermore,
several decision combining algorithms for the cooperatingSUs
were studied in [4] and [5] as well.

Similarly, cognitive radio broadcast channels took a serious
consideration and were explored by many researchers pro-
foundly. For instance, a cognitive radio broadcast scenario in
which one primary transmitter and one secondary transmitter
are communicating with their respective receivers was consid-
ered, and the corresponding achievable regions were presented
[6]. Further cognitive radio broadcast channel studies were
also conducted in [7] and [8] where the ergodic sum rate ca-
pacity of the SUs with multiple antennas at both the secondary
transmitter and the secondary receivers was derived. Finally,
Asghariet al. studied the adaptive time and power allocation
policies by maximizing the achievable capacities of cognitive
radio broadcast fading channels [9]. In addition to above
studies, QoS regarding the buffer and delay constraints has
been considered as a vital metric in cognitive radio research
as well. Necessarily, effective capacity [10], which provides
the maximum arrival rate that a service process can support
while satisfying the desired QoS constraints, was investigated
under average and peak power constraints in cognitive radio
relay channels [11], and with imperfect channel sensing results
under interference power limitations [12].

In this paper, we investigate the throughput of the SUs
in cognitive radio broadcast settings where the SUs initially
detect the activities of the PUs cooperatively, and then one
secondary transmitter performs data transmission to two sec-
ondary receivers under QoS and interference power con-
straints. Especially, unlike in [13] in which the effectiveca-
pacity of a broadcast channel with only one single transmitter
and many receivers was considered, we address the effective
capacity of a cognitive radio broadcast channel where the SUs
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are engaged in data transmission under the channel uncertainty
caused by the channel sensing errors, and the interference
power constraints dictated by the PUs. It is worth to mention
that our approach can be easily generalized into the cognitive
radio broadcast channel models with more than two receivers.

II. CHANNEL MODEL

As seen in Figure 1, we assume that a secondary transmitter,
denoted by ST, performs communications with two secondary
receivers (SRs), i.e., SR1 and SR2, in an environment where
there are PUs that are likely to be active occasionally. There-
fore, the SUs initially implement channel sensing in order the
detect the activities of the PUs. Then, depending on their
channel sensing results, they select their data transmission
power and rate policies. At the beginning, the data sequences
generated by one source (or sources) to be conveyed to the
SRs are stored in two different data buffers before the data
transmission is performed in frames ofT seconds. During the
data transmission, the input-output relation between ST and
SRj at thekth time instant is given by

yj(k) = hj(k)x(k) + nj(k) k = 1, 2, · · · , (1)

when the PUs are inactive, and it is given by

yj(k) = hj(k)x(k) + nj(k) + sj(k) k = 1, 2, · · · , (2)

when the PUs are active. Note thatj is a subscript indicating
the number of the SRs, i.e.,j ∈ {1, 2}. In (1) and (2),
x and yj are the complex channel input at ST and the
complex channel output at SRj , respectively. We remark
that x carries information to both SRs. Besides,{nj} is a
sequence of additive thermal random noise samples at SRj ,
which is zero-mean, circularly symmetric, complex Gaussian
distributed with varianceE{|nj|

2} = σ2
n,j . Meanwhile,hj

represents the fading coefficient between ST and SRj , which
is likewise assumed to be a zero-mean, circularly symmetric,
complex Gaussian distributed random variable with variance
E{|hj |

2} = E{zj} = σ2
h,j . Note thatzj is the magnitude

square of the instantaneous fading coefficienthj , and thath1

andh2 are independent of each other. Furthermore,sj in (2)
denotes the active PUs’ faded signal arriving at SRj , and we
show the average power level ofsj with σ2

s,j .
We further consider a block-fading channel, and assume that

the fading coefficients stay constant for a frame duration ofT

seconds and change independently from one frame to another.
In addition, we also assume that the activities of the PUs stay
the same in each frame and change likewise independently
from one frame to another. We further emphasize that the
probability of the PUs being active in one frame is denoted
by ρ. At the same time, the SRs experience the interference
caused by the PUs contemporaneously when the PUs are
active. We finally underline that the available bandwidth isB

Hz, so is the symbol rate assumed to beB complex symbols
per second.

III. C HANNEL SENSING AND POWER CONSTRAINTS

A. Channel Sensing

The SUs (i.e., SU1: SR1, SU2: SR2, and SU3: ST) operate
channel sensing collaboratively before data transmissionin

Fig. 1. Cognitive radio broadcast channel model.

order to detect the PUs. In more details, each SU initially
performs channel sensing and obtains a sensing decision
individually, and then, the SUs gather these channel sensing
decisions at ST where the final channel sensing decision is
determined1. Considering that the transmission strategies of
the PUs are not known, an energy-based detection is applied at
each SU. Therefore, the firstN seconds of the frame duration
T seconds are allocated for channel sensing. Noting that there
areν = N ×B complex symbols in a duration ofN seconds,
the hypothesis testing problem between the noisenl(k) and the
received signalsl(k) at SUl can be mathematically expressed
as follows:

Hi : yl(k) = nl(k), k = 1, 2, ..., ν,

Hb : yl(k) = nl(k) + sl(k), k = 1, 2, ..., ν,
(3)

whereHi andHb denote the true hypothesis corresponding to
idle and busy states, respectively2. Above, yl is the received
signal at SUl where l ∈ {1, 2, 3}. Considering the above
detection problem, the optimal Neyman-Pearson detector at
each SU is given by [14]

Tl(y) =
1

ν

ν
∑

n=1

|yl(n)|
2

Ĥb

≷
Ĥi

λl (4)

where λl is the detection threshold at each SU. Assuming
that ν is sufficiently large, we can approximateTl(y) as a
Gaussian random variable by invoking Central Limit Theorem.
Now, it can be easily confirmed thatE{Tl(y)} = σ2

n,l and
E{Tl(y)} = σ2

n,l + σ2
s,l when channel state isHi and Hb,

respectively [15]. With these characterizations and Gaussian
assumptions, we have the following probabilities of false alarm
and detection at each SU in terms ofQ-functions [16]:

P l
f = Q





λl − σ2
n,l

√

2
νσ

2
n,l



 andP l
d = Q





λl − σ2
n,l − σ2

s,l
√

2
ν (σ

2
n,l + σ2

s,l)





whereQ(x) = 1√
2π

∫∞
x e−x2/2dx.

1We assume that the channel sensing results are fed to ST over delay-and-
error-free channels.

2We define that the PUs are active in the busy state, whereas there is not
any active PU in the idle state.
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Moreover, we consider a hard-decision combining algorithm
applied at ST, in which decision of each SU (either 0 or 1) is
combined for the final channel sensing decision3. Assuming
that the SUs receive the signal emitted by the PUs at the
same average power level (i.e.,σ2

s,l = σ2
s ), and that they

have the same average noise variance (i.e.,σ2
n,l = σ2

n), we
consider the same detection threshold applied at each SU
whereλl = λ. As a result, we will have the same values for the
probabilities of false alarm and detection at each SU:P l

f = Pf

andP l
d = Pd. In addition, we consider three different hard-

decision algorithms at ST such as OR, Majority, and AND
rules: Channel is considered as busy, when at least one SU
detects it as busy with OR rule, or when at least two SUs detect
it as busy with Majority rule, or when all of the SUs detect it
as busy with AND rule. Given the above conditions, we can
express the final probabilities of false-alarm and detection for
each hard-decision algorithm as follows:

P
final
f =

3
∑

i=K

(

3

i

)

(Pf )
i(1− Pf )

3−i, (5)

P
final
d =

3
∑

i=K

(

3

i

)

(Pd)
i(1 − Pd)

3−i. (6)

whereK = 1, K = 2, andK = 3, when OR, Majority, and
AND rules are applied, respectively.

B. Interference Power Constraints

Recall that ST chooses the transmission power policies
with respect to the channel sensing results. In more details,
if the channel is sensed as busy, ST sends the data symbol
x with the instantaneous transmission power policyP b(z),
andP b(z) = P b

1 (z) + P b
2 (z) whereP b

1 (z) andP b
2 (z) are the

instantaneous power allocation policies for the users SR1 and
SR2, respectively. On the other hand, when the channel is
sensed as idle, the instantaneous transmission power policy is
P i(z), andP i(z) = P i

1(z) + P i
2(z) whereP i

1(z) andP i
2(z)

are the instantaneous power allocation policies for SR1 and
SR2, respectively. Note thatz = {z1, z2} is the channel state
vector. As a result of the channel sensing errors, we notice that
ST deploys both policiesP b(z) andP i(z) when the PUs are
actually active. In particular, the policyP b(z) is deployed by
ST with probabilityPd, while the policyP i(z) is deployed
with probability (1 − Pd) during the activities of the PUs.
Therefore, in order to limit the interference caused by ST
on the PUs, we impose the following combined interference
power constraint on the SUs:

PdEz{P
b(z)} + (1− Pd)Ez{P

i(z)} ≤ Pint (7)

wherePint is the average interference power constraint4,5. In
the sequel, we will be considering the following normalized
instantaneous transmission power policies:µb(z) = P b(z)

Pint
,

30 indicates that the channel is idle (Hi), whereas 1 indicates that the
channel is busy (Hb).

4Pint is the average interference power normalized over average fading
power and path loss of the channels between ST and the primaryreceivers.

5A better interference protection strategy for the PUs can berealized by
applying a peak power constraint on ST.

µi(z) = P i(z)
Pint

, µb
j(z) =

P i
j (z)

Pint
andµi

j(z) =
P i

j (z)

Pint
. Note that

µb(z) = µb
1(z) + µb

2(z) andµi(z) = µi
1(z) + µi

2(z). Finally,
since the transmission power of ST is limited byPint, we
define the signal-to-noise ratio as SNR= Pint

Bσ2
n

.

IV. I NSTANTANEOUSTRANSMISSION RATES

Regarding the channel sensing result and its correctness, we
have four different transmission scenarios:

1) Channel is busy, sensed as busy (correct detection),
2) Channel is busy, sensed as idle (miss-detection),
3) Channel is idle, sensed as busy (false alarm),
4) Channel is idle, sensed as idle (correct detection).

We can easily see that ST will send with the power policy
µb
j(z) for SRj in Scenarios 1 and 3, andµi

j(z) in Scenarios
2 and 4. Therefore, assuming the interference caused by the
primary users as additional Gaussian noise, the instantaneous
ergodic channel capacity at each SR (i.e., SRj) during one
transmission frame in each scenario can be expressed as
follows [17]:

Cj,τ (z) = B log2{1+ζj,τ(z)} bits/sec forτ = 1, 2, 3, 4, (8)

where

ζj,1(z) =
µb
j(z)SNRzj

β + SNRµb
m(z)zj1[zm > zj]

,

ζj,2(z) =
µi
j(z)SNRzj

β + SNRµi
m(z)zj1[zm > zj]

,

ζj,3(z) =
µb
j(z)SNRzj

1 + SNRµb
m(z)zj1[zm > zj]

,

ζj,4(z) =
µi
j(z)SNRzj

1 + SNRµi
m(z)zj1[zm > zj]

,

andm 6= j for m, j ∈ {1, 2}. Above,β = 1 +
σ2
s

σ2
n

, and1[·]

is an indicator function where1[a] = 1 if a is true, and 0
otherwise. Note that we acquire an i.i.d. Gaussian codebook
for the input symbols to the channel.

Since the SUs rely on channel sensing results with errors,
they can not determine which scenario they are in. However,
they know that they are in either Scenario 1 or 3, if the channel
is sensed as busy, and that they are in either Scenario 2 or 4,
if the channel is sensed as idle. Now, considering the above
conditions, and assuming that ST performs linear (superpo-
sition) coding after obtaining channel side information, and
that SR1 and SR2 apply successive decoding, one of the best
transmission strategies could be that ST sends data at rates
equal toRb

j(z) = Cj,1(z) when the channel is sensed as busy,
i.e.,

Rb
j(z) = B log2 (1 + ζj,1(z)) (9)

for each SRj . We can easily observe that in Scenario 1, the
instantaneous transmission rates are equal to the instantaneous
channel capacities for both SR1 and SR2. Hence, there will
be a reliable transmission to both receivers. Similarly, since
the instantaneous transmission rates are less than or equalto
the instantaneous channel capacities for both receivers, i.e.,
Rb

j(z) ≤ Cj,3(z), data will be reliably transmitted to the
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receivers in Scenario 3 as well. As a result, in one transmission
frame, there will beTRb

j(z) bits transmitted effectively to the
receivers when the channel is sensed as busy.

On the other hand, when the channel is sensed as idle, we
consider the following two possible instantaneous transmission
rate strategies:

1) Strategy 1: ST sends data with rates equal toRi
j(z) =

Cj,4(z), i.e.,

Ri
j(z) = B log2 (1 + ζj,4(z)) . (10)

This can be considered as a greedy transmission rate strategy,
since ST sends data to each receiver at a rate equal to
max{Cj,2(z), Cj,4(z)}. Moreover, we can easily observe that
we always haveCj,2(z) ≤ Cj,4(z). However, this transmission
strategy has a risk of transmission outage in Scenario 2 since
Ri

j(z) = Cj,4(z) ≥ Cj,2(z). As a result, we assume that there
will be no reliable transmission to the receivers in Scenario
26. Hence, when ST transmits with this strategy, the effective
rate isTRi

j(z) bits per frame in Scenario 4, while it is 0 in
Scenario 2.

2) Strategy 2: ST sends data with rates equal toRi
j(z) =

Cj,2(z), i.e.,

Ri
j(z) = B log2 (1 + ζj,2(z)) . (11)

This strategy can be considered as a precautious transmis-
sion rate strategy, since ST sends data at a rate equal to
min{Cj,2(z), Cj,4(z)}, which is alwaysCj,2(z). Since ST
sends data with lower rates in contrast to the rates inStrategy
1, there will be no outage, and reliable transmission will be
provided to SRs in both Scenarios 2 and 4. Therefore, the
effective rate isTRi

j(z) bits per frame in Scenarios 2 and 4.

V. EFFECTIVE CAPACITY

Effective capacity was defined by Wuet al. as the maximum
constant arrival rate that a given service process can support
while satisfying statistical QoS constraints specified by the
QoS exponentθ [10]. If we denote the stationary queue length
by Q, then the decay rate of the tail distribution of the queue
lengthQ is defined byθ:

lim
q→∞

log Pr(Q ≥ q)

q
= −θ. (12)

Thus, we have the following approximation for the buffer
violation probability for largeqmax : Pr(Q ≥ qmax) ≈
e−θqmax . Therefore, largerθ corresponds to more strict QoS
constraints, while smallerθ implies looser constraints. Hence,
effective capacity can provide us the maximum arrival rate
to a data buffer when the system is subject to the statistical
buffer constraints. And, for a given QoS exponentθ, effective
capacity is given by

CE(θ) = − lim
t→∞

1

θt
loge E{e

−θS(t)} (13)

where S(t) =
∑t

l=1 r(l) is the time-accumulated service
process, andr(l) for l = 1, 2, ... is the discrete-time, stationary
and ergodic stochastic service process.

6It is assumed that a simple automatic repeat mechanism is incorporated
in order to ensure that the erroneous data is retransmitted.

Noting that ST has two different transmission queues for
storing the data allocated for each receiver SR1 and SR2,
we consider that each queue has its own QoS constraints.
Therefore, we denote the QoS exponent for each queue by
θj . Following the definition provided in [13], we can express
the following effective capacity region for the above cognitive
radio broadcast channel as follows:

CE(Θ) =
⋃

R1,R2

{C(Θ) ≥ 0 : Cj(θj)

≤ −
1

θjTB
loge Ez

{

e−θj(T−N)Rj

}

}

(14)

whereΘ = (θ1, θ2). Recall that the channel fading coeffi-
cients change from one frame to another independently, and
similarly the activities of the PUs in one transmission frame
do not depend on their activities in the previous frames. Now,
following the steps in [12], we can express the normalized
effective capacity in bits/sec/Hz for each SR as follows:

Cj(θj) =
loge E{pbe

−θj(T−N)Rb
j + p4e

−θj(T−N)Ri
j + p2}

−θjTB
(15)

if ST employsStrategy 1 when channel is sensed as idle, and

Cj(θj) =
loge E{pbe

−θj(T−N)Rb
j + (p2 + p4)e

−θj(T−N)Ri
j}

−θjTB
(16)

if ST employsStrategy 2 when channel is sensed as idle, where
pb = ρPd+(1− ρ)Pf , p2 = ρ(1−Pd), andp4 = (1− ρ)(1−
Pf ). In the rest of the paper, we will omit the function input
z, unless it is necessary.

VI. OPTIMAL TRANSMISSION POWER POLICIES

After characterizing the effective capacity region, we turn
our attention to the optimal transmission power policies that
will maximize the expressions in (15) and (16). Since ST
has to send data considering two different QoS exponentsθj ,
we assume that ST prioritize each user over the transmission
power allocation policies. Hence, we reconsider the interfer-
ence power constraint given in (7) as follows:

PdE{P
b
j }+ (1− Pd)E{P

i
j } ≤ ηjPint (17)

where η1 = δ, η2 = 1 − δ, and δ ∈ [0, 1]. We can
clearly see that ST divides the available average transmission
power between SR1 and SR2 with a ratio defined asδ. Now,
normalizing (17) overPint, we obtain7

PdE{µ
b
j}+ (1− Pd)E{µ

i
j} ≤ ηj . (18)

Theorem 1: The optimal power allocation policies,µb
j and

µi
j , that maximize the effective capacities given in (16) with

7We assume that depending on the channel conditions and QoS constraints
of each receiver, ST can select the value ofδ.
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respect to given constraints in (18) are given by

µb
j =














β
SNRzj

[

(

pbzj
γjPdβ

)
1

κj+1

− 1

]+

, zj ≥ zm,

β+µb
mSNRzj

SNRzj

[

(

pbzj
γjPd(β+µb

mSNRzj)

)
1

κj+1

− 1

]+

, otherwise,

(19)

when the channel is sensed as busy, and

µi
j =














β
SNRzj

[

(

pizj
γjPmβ

)
1

κj+1

− 1

]+

, zj ≥ zm,

β+µi
mSNRzj

SNRzj

[

(

pizj
γjPm(β+µi

mSNRzj)

)
1

κj+1

− 1

]+

, otherwise,

(20)

when the channel is sensed as idle, where[·]+ = max(·, 0)
is the maximum operator, andm 6= j for m, j ∈ {1, 2}, and
Pm = 1−Pd. Note thatpi = p2+p4 in (20).γj for j ∈ {1, 2}
is the power threshold value in the power adaptation policies,
and it can be obtained from the average interference power
constraint (18) through numerical techniques. Moreover, we
can easily state that the optimal transmission power policies
that maximize the effective capacities given in (15) with
respect to given constraints in (18) areµb

j in (19) when the
channel is sensed as busy, and

µi
j =














1
SNRzj

[

(

p4zj
γjPm

)
1

κj+1

− 1

]+

, zj ≥ zm,

1+µi
mSNRzj

SNRzj

[

(

p4zj
γjPm(1+µi

mSNRzj)

)
1

κj+1

− 1

]+

, otherwise,

(21)

when the channel is sensed as idle. Note thatγj obtained for
(15) will be different thanγj obtained for (16).

Proof: We will first obtain the optimal transmission power
policies that maximize the expression (16). Since logarithm is
a monotonic function, we can attain the optimal power policies
from the following minimization problem:

min
PdE{µb

j}+(1−Pd)E{µi
j}≤ηj

pbe
−θj(T−N)Rb

j + pie
−θj(T−N)Ri

j

(22)

wherepi = p2+p4. Recall thatpb, p2 andp4 are defined at the
end of Section V. Note further thatRb

j = B log2 (1 + ζj,1) and
Ri

j = B log2 (1 + ζj,2) as given in (9) and (11), respectively.
It is obvious that the expression in (22) is strictly convex and
the constraint (18) is linear with respect toµb

j and µi
j [18].

Then forming the Lagrange setting and taking the derivatives
with respect toµb

j andµi
j , we obtain

αjPd =
κjpbSNRzj

β

(

1 +
µb
jSNRzj

β

)−κj−1

(23)

and

αjPm =
κjpiSNRzj

β

(

1 +
µi
jSNRzj

β

)−κj−1

, (24)

whenzj ≥ zm, and

αjPd =
κjpbSNRzj

β + SNRµb
mzj

(

1 +
µb
jSNRzj

β + SNRµb
mzj

)−κj−1

(25)

and

αjPm =
κjpiSNRzj

β + SNRµi
mzj

(

1 +
µi
jSNRzj

β + SNRµi
mzj

)−κj−1

,

(26)
when zj < zm, whereαj is the Lagrangian multiplier and
κj =

θj(T−N)B
loge 2 . Defining γj =

αj

κjSNR, and solving (23) and
(25), we obtain (19), and solving (24) and (26), we have (20).
Since we assume that all available transmission power should
be used in general, we obtain the Lagrangian multiplierαj ,
and henceγj , numerically from the equality:

PdE{µ
b
j}+ (1− Pd)E{µ

i
j} = ηj .

As for the transmission power policies that maximize the
expression in (15), we similarly consider the following mini-
mization problem:

min
PdE{µb

j}+(1−Pd)E{µi
j}≤ηj

pbe
−θj(T−N)Rb

j + p4e
−θj(T−N)Ri

j

(27)

where Rb
j = B log2 (1 + ζj,1) and Ri

j = B log2 (1 + ζj,4)
as given in (9) and (10), respectively. Notice that since the
transmission rate policies are different when the channel is
sensed as idle while obtaining the effective capacity values in
(15) and (16), the ratesRi

j are different in the minimization
problems (22) and (27). Again, after setting the Lagrangian
function, when we take the derivatives with respect toµb

j and
µi
j , we will obtain the expressions in (23) and (25), and the

expressions (24) and (26) with parametersβ andpi replaced
with 1 andp4, respectively. Solving these equalities, we will
obtain the same formulation given in (19) and the one in
(21). �

VII. N UMERICAL RESULTS

In this section, we provide the numerical results. Unless
indicated otherwise, we consider the following parameter
values. We consider a Rayleigh fading environment in which
z1 andz2 are independent exponential random variables with
E{z1} = E{z2} = 1. The available channel bandwidth is
assumed toB = 2 kHz, and the transmission frame duration
is T = 1 second while the durationN = 0.01 seconds is
allocated for channel sensing. We further assume that the PUs
are active in one frame with probabilityρ = 0.1.

In Fig. 2, we plot the effective capacity region considering
different hard-decision algorithms with two different(Pf , Pd)
pairs at the SUs when both receivers have QoS exponents
equal to θ1 = θ2 = 0.01, and the interference-to-noise
parameter is set toβ = 2, and the signal-to-noise ratio is
SNR = 0 dB. Here, we note that we obtain two different
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Fig. 2. Effective capacity region,C1 vs. C2, considering different hard-
decision channel sensing algorithms when(Pf , Pd) = (0.13, 0.84) and
(Pf , Pd) = (0.96, 0.99).
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Fig. 3. Effective capacity region,C1 vs. C2, considering different
instantaneous transmission rate policies,Strategy 1 and Strategy 2 when
(Pf , Pd) = (0.13, 0.84).

(Pf , Pd) pairs by adjusting the channel detection threshold,
λ. We can easily see that when the probability of false alarm,
Pf , at each SU is high, the effective capacity regions obtained
by applying different hard-decision algorithms at ST are very
close to each other. The performance differences among hard-
decision algorithms are negligible. On the other hand, when
Pf is very low at the SUs while having considerably good
probability of detection values,Pd, the effective capacity
regions show different behaviors. For instance, the SUs can
obtain very high effective capacity values for both SRs by
employing Majority rule when compared with other decision
rules. Nevertheless, the same performance increase is not
observed when AND rule is applied.

In Fig. 3, we plot the effective capacity regions employing
different instantaneous transmission rate policies when channel
is sensed as idle with keeping the same channel parameters
considered in Fig. 2. We note that(Pf , Pd) = (0.13, 0.84).
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Fig. 4. Effective capacity region,C1 vs. C2, considering different
instantaneous transmission rate policies,Strategy 1 and Strategy 2 when
(Pf , Pd) = (0.13, 0.84) with different SNR values by employing only
Majority rule.

As seen in the figure,Strategy 2, i.e.,Ri
j = Cj,2, outperforms

Strategy 1 in using any hard-decision algorithm when SNR=
0 dB. Meanwhile, we can easily observe that the performance
gap is very significant betweenStrategy 1 andStrategy 2 when
Majority and AND rules are employed, while the performance
is very low when OR rule is considered. We underline that ST
does send data always with ratesRb

j = Cj,1 when the channel
is detected as busy8. Hence, the effective capacity regions are
calculated considering the expressions in (15) and (16) when
Strategy 1 and Strategy 2 are employed, respectively, if the
channel is sensed as idle. Furthermore, we show the effective
capacity regions for different SNR values (i.e., SNR= 7, 5,
0, −5 and−15 dB) when only Majority rule is applied in Fig.
4, in order to investigate the effects of employingStrategy 1
and Strategy 2 at loose and strict average interference power
constraints. We can clearly see that when SNR is high,Strategy
2 results in much higher performance levels when compared
to Strategy 1. In addition, the effective capacity region curve
saturates after certain SNR values whenStrategy 1 is employed
as seen when comparing the effective capacity values obtained
at SNR = 5 dB and SNR= 7 dB, whereas the effective
capacity values for both users increase with the increasing
SNR whenStrategy 2 is employed. On the other hand, at low
SNR values, the performance ofStrategy 1 is significantly
higher than the performance ofStrategy 2 as seen when we
compare the outputs of both policies at SNR= −5 dB and
SNR= −15 dB. We can conclude that the SUs should follow
a greedy transmission rate strategy when SNR is low, i.e.,
under strict average interference power constraints, while it is
much more beneficial for the SUs to follow a transmission rate
strategy that prevents data transmission outage when SNR is
high.

Moreover, we plot the effective capacity region regarding
different QoS exponents for both users in Fig. 5. We can easily

8We consider the different transmission rate policies that are employed only
when the channel is sensed as idle.
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SNR= 0 dB.
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observe that with the increasing QoS constraints, there is a
dramatic decline in the effective capacity region. However,
we note that while keepingθ1 fixed and changingθ2, the
maximum attainable effective capacity for the user SR2, which
is obtained when the effective capacity of the user SR1 is going
to zero, is not changing with differentθ1 values. Finally, we
plot the effective capacity region for different interference-to-
noise parameter values,β in Fig. 6, sinceβ is an important
parameter that affects both the channel sensing performance
and the effective capacity values. While the channel sensing
performance is increasing with increasingβ, the effective
capacity is decreasing due to the decreasing transmission rates
when the channel is sensed as busy, and the decreasing rates
when the channel is sensed as idle assumingStrategy 2 is
employed.

VIII. C ONCLUSION

In this paper, we analyzed the effective capacities of
cognitive radio broadcast channels under interference power

constraints and channel uncertainty. Considering different co-
operative channel sensing strategies, and different transmis-
sion rate selection strategies when the channel is sensed
as idle, we formulated the effective capacity region of this
broadcast channel model with two SRs and obtained the
optimal transmission power policies that maximize this region.
We showed that Majority rule outperforms the other sensing
strategies in general, and that greedy and prudent transmission
rate selection strategies are much more strategic when the
interference power constraints are strict and loose, respectively
in certain situations.
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